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It is assumed that the ~-baryon interactions are universal and the E-baryon interactions account for the
large mass differences between baryons. If further all baryon spins are —, and E spin is zero, (Z,A) parity
is even, the (Z,A) mass difference can be neglected, and the present baryon spectrum and its isotopic spin
assignments are correct, then to all orders in the ~-baryon coupling constant and to the second order in the
E-baryon coupling constants, one can obtain the essential feature of the observed mass spectrum. The
magnitudes of the E-coupling constants that yield this mass spectrum are crudely estimated.

actions is known. If inequalities between the E-coupling
constants are to account for the mass splits, then one
faces the interesting question why baryons with
different strangeness have a similar interaction with E
mesons but a different value of the coupling constant.

In Sec. 2 an expression for the self-mass of the baryon
is obtained. In Sec. 3, a relation among the baryon
masses is obtained on the basis of general arguments.
In Sec. 4, a complete set of intermediate states is
introduced into the expression for the self-mass, and
the one-baryon intermediate state and the state with
one baryon plus a baryon pair are taken into account
in estimating the E-baryon coupling constants. Finally,
the result is discussed in Sec. 5.

1. INTRODUCTION

~

~

KVKRAL attempts' ' have been made to deduce
experimentally verifiable consequences from strong

meson-baryon interaction under assumptions stronger
than charge independence. Notable among these as-
sumptions is the universal x-baryon interactions in
which one assumes that in the absence of all strong E
couplings the baryons are completely mass degenerate
and then arrives at asymmetries between the E inter-
actions to account for the mass difference among the
(isotopic spin) multiplets. There is no understanding of
masses of elementary particles within the framework
of present field theories. The differences of masses, how-
ever, may be explainable on the basis of known inter-
actions with reasonable assumptions.

We assume all strong interactions are charge inde-
pendent (formally invariant under rotation of isotopic
spin) and neglect electromagnetic interactions so that
masses within the baryon multiplets are identical.
Next, let the ~-baryon interactions have universal
(global) symmetry so that they do not contribute to
the diGerences between baryon masses. All possible
self-mass corrections from the m-baryon interactions
give rise to a degenerate baryon mass mo. The mass
differences among the baryon multiplets may only arise
from the virtual emission and reabsorption of various
numbers of E mesons with their various corrections.

The mass relation that the sum of masses of Ã and
is equal to that of A and Z [Eq. (16)$ is now derived to
all orders in the x coupling and to second order in E
coupling. This analysis provides the formalism for the
estimation of the E-coupling constant.

Since one presumably cannot rely on a perturbation
calculation of the E interactions, no attempt was made
to explain the details of the mass splitting —not eve
the (Z,A) mass difference. Such details presumabl
cannot be explainable until a reliable method of est'
mating the higher order corrections of E-baryon inte

2. METHOD

The interaction Hamiltonian adopted for m and E
mesons is the doublet representation of Gell-Mann' and
Pais' in which I= 2 is assigned to all baryons and I=O
to E+ and Eo, i.e.,

H =iG[EzeysNz+NseysNs

+NseysNs+N4eysN4]~,

Hzz Fz2*[(NzrfzN—s—)K'+ (Nzzfz Ns)K+]

+Fz z2'L (N4rf z zNs) &+—(N4riz z'Ns) K 7+H.c.,

where H. c. is the Hermitian conjugate,

(
(zs~ (2 *(As—Z')3

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' M. Gell-Mann, Phys. Rev. 106, 1296 (1957).

2 J. Schwinger, Phys. Rev. 104, 1164 {1956);Ann. Physik 2, 407
(1957).' A. Pais, Phys. Rev. 110, 574 (1958).

B.d'Espagnat, J.Prentki, and A. Salam, Nuclear Phys. 3, 446
(1957).

and the symbol of a particle denotes the field operator
that destroys it.

The assumptions underlying Eqs. (1) and (2) are
that all strong interactions are charge independent with
m interactions being in addition universal, the present
baryon spectrum and its isotopic spin assignments are
correct, the baryon spins are —,

' and the E spin is zero,
the (Z,A) parity is even, and the (Z,A) mass difference
can be neglected. Since we carry out a perturbation
calculation with respect to the E-baryon interactions
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where the subscript+ designates the chronological
I' product of the parenthesis. The initial and final states
of the S~ matrix are eigenstates of the Hamiltonian
H)v. +Hoz, i.e.,

(H~.+Hoz) ~e)=Z„(e), (7)

so
~
ss) can be represented as the product of the eigen-

states of the free E-meson Hamiltonian IIf)~ and those
of the Hamiltonian II~ which includes the m.-baryon
interactions. In the following expressions the E-meson
state is suppressed since it can be factored out.

' A. Pais, Phys. Rev. 112, 624 (1958).' An analogous situation has been discussed in S. Sunakawa and
K. Tanaka, Phys. Rev. 115, 754 (1959). The main steps are in-
cluded here for the sake of completeness.

whose coupling constants are large compared to (say)
the electromagnetic interactions, we cannot expect to
explain the (Z,A) mass difference which is the smallest
baryon mass difference.

In Eq. (1), the sfz, rlz', sf zz, and sizz' stand for 1 or its.
If the (E',E+) parity is even we have rfz=rtz', sfzz=rfzz',
and sfz=1(its) corresponds to even (odd) parity of
(1V1,A,E). Further, if the (,1V) parity is even, then
qz= gzz, and it it is odd, then gz= 1, gzz= iy5 or gz= iy5,
rtzz ——1. If (E'E+) parity is odd, we have irtz'ps rf——z and
igzzys=gzz'. These factors g are suppressed in the
following.

If the (E',E+) parity is odd, then there is an addi-
tional possible strong interaction of the type EEx
whose coupling constant is presumably very small. '
Neither this interaction nor other possible ~E inter-
actions are considered here.

It should be mentioned as a danger signal that H~
given by Eq. (2) with rfz=slz', rtzz=sfzz' is incompatible
with associated-production experiments. '

The total Hamiltonian of our system of interacting
baryons, x mesons and E mesons is given as

H=H~ +Hozz+Hzr,

where HN is the Hamiltonian of the interacting baryons
and x-meson field including counter terms for mass
renormalization and four-meson divergence, IIO~ is the
free Hamiltonian for the E-meson field, and H~ is the
Hamiltonian for the E-baryon interactions given by
Eq. (2). Equation (1) is a part of Hzv .

An arbitrary Schrodinger operator is transformed as'

O(t) =exp[i(Hzm+Hoz)t]O exp[ s(H& +—Hoz)t j, (5)

where we have taken A=c=1. Inserting the E-meson
field E and its current operator jz (which is a bilinear
product of baryon field operators) into 0 of Eq. (5),
one finds that the E(t) is the bare operator and jz(t) is
the dressed operator by the m-baryon interactions.

In this interaction picture, the S~ operator is given as

" (—s)"
Sz ——p ) dx, dx„(Hz(xi). Hz(x„))~, (6)

n=o g f

To the second order in the E-coupling constants, the
mass shift of the baryon is due to the virtual emission
and reabsorption of a E meson by the (physical) baryon.
In the rest system of the baryon, the S matrix is given
by the expression

(—2)'
Sx()= e — dx dy Hz x &z y

2t

(—2)'
sr(z*( )&*(r))+o) (4)

2f

where
~
ss,) is an eigenstate of Eq. (7) with one baryon

n; and no E mesons. ' The letter n; represents any
member of the baryon multiplet i (for example, proton
or neutron for =21). The baryons ssz, sss, ns, and 244

have the degenerate baryon mass mo which is already
modified by the self-mass arising from m interactions.

This is exactly what would have been obtained from
a term of the form' —8m jV,1V, in the interaction Hamil-
tonian Hz. According to Eq. (6), we thus get a term

,
'I

Om; x; dxSx;(x)Z;(x) x;)

0 dxExS;x 0

which eliminates Eq. (8) so that we have, ' "after sub-
stituting Eq. (2) into Eq. (8) and changing variables
to s=x—y,

5m,u;I;
1

ds(r(E(s)Et(0))),
2~

X(ss'~ T(2Fz'(N1N2N2N1+¹N1N1N2)

+2Fz'(N1NsNsN1+NsN1N11Vs)

+2Fzzs(N4N2N2N4+¹N4N4N 2)'
+2Fzz (N41VslVslV4+ÃsN4N41Vs) j I

ss'). (9)

The expression (9) for the self-mass can be represented
graphically by I'ig. 1.

1The Sz matrix element is defined by (p~Sz~p)/(O~Sz~0). The
ex ectation value of the S~ operator with respect to the vacuum
(0 Sz~ 0) gives rise to the second term on the right-hand side of
Eq. (8). We shall suppress this term as it will not affect our argu-
ments in any way, but will restore it at the appropriate place later.

8 This is based on the fact that S~('& is a constant when the
baryon is a free particle {with the 2l- meson cloud) in the initial
and final states. The subscripts i are not to be summed.' The cross terms (whose coefFicient is FzFzz) are of the type
Z„( (N Nn~ )r(ns~Nn4N

~
)asftner introducing a complete set of

states. As can be seen from Sec. 3, all such terms vanish.
For the proton and neutron self-masses a related expression

has been obtained in G. C. Wick, Proceedings of the Seventh
Annual Rochester Conference on High-Energy nuclear Physics, l957
(Interscience Publishers, Inc. , New York, 1957), p. 1—34; R. A.
Sorensen (to be published).
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Fxo. 1. Baryon self-mass diagram. The solid line represents
baryons. The dotted line represents E mesons and the wavy lines
represent m mesons. The shaded area represents all possible correc-
tions arising from virtual mesons and baryon pairs.

Since the mass difference between charged and neutral
E mesons is neglected, the T products of all the E
mesons are identical so that the subscript may be
dropped and these products factored out. The argu-
ments of the baryon field operators in all terms in the
bracket on the right-hand side of Eq. (9) have been
suppressed because it is obvious that the argument
of the first two field operators is s and that of the last
two is the null vector.

For further discussion, we set

i td—z&-T(E(z)Et(0)))p
2

y &e; I T(NiN2N21V1+¹N1N1N2)
I
~,)

= (N,N„~;). (&O)

The remaining terms are defined by a similar ex-
pression. Then, the self-masses are expressible as

8m, =2Fr'{(N iN2, e,)+ (N iNa, n, )}
+2Fip{(1V41V2,e,)+ (N4Ns, e,)}. (11)

The subscripts i designate the particles: i=i corre-
sponds to E, i =2, 3 to Z, A, and i=4 to

Equation (11) is our basic expression from which a
relation among the self-masses will be obtained. It is
noted again that all baryons that appear in the brackets
have the same degenerate baryon mass mo and are dis-
tinguished by their strangeness quantum number. The
first two letters within the brackets will be called the
first argument and the last letter the second argument.
The brackets are symmetric with respect to the sub-
scripts within the first argument so that, for instance,

as (N41Vu, ei) and (1ViN3,»). We shall now show that
brackets of the latter kind vanish.

In order to examine the bracket (NiN, ,e2) further,
we need to consider the T product of the baryon field
operators of'Eq. (10). We take the case zo)0 (as the
case zo(0 can be handled similarly) and introduce
a complete set of states of the Hamiltonian H~ .

&» INiNÃui+NuiNiN3l»)

=Q. &» INilV3ln)&elN3Nil»)

+2- &»IN~Nil~)&~INiN3I~2) (&3)

Because of conservation of baryons the intermediate
states rs consist of states with one baryon, one baryon
plus an arbitrary. number of m mesons, and baryon-
antibaryon pairs.

The state vectors and baryon field operators are
clothed by the x-baryon interactions. When a z meson
interacts with baryons, it does not change the kind of
baryon as can be seen from Eq. (1) so that the baryon-
antibaryon pairs have no net strangeness, i.e., S=o.
This means that the baryon that appears in any
possible state of the first term on the right-hand side
of Eq. (13) should have strangeness S=—2 because
XiN3 increases S by one unit and N2 has S=—1, so
that the state should consist of a particle (corre-
sponding to n4) plus ir mesons and baryon pairs so as to
conserve charge and strangeness.

After separating out the interaction Hamiltonian
Eq. (1) with its counter terms between the ir mesons
and baryons from H&, we get for the matrix elements'
of the first factor of the 6rst term of Eq. (13)

&» INiN~I ~)= &» INiNS I
~4 )

=(,I(sN, N, ), l
. .), (~4)

where S is the scattering operator of the x-baryon inter-
actions and

I ) desigriates bare states, and dots desig-
nate an arbitrary number of x mesons and baryon
pairs. Since the S operator does not change one kind of
baryon into another kind, all such matrix elements as
well as those of the second term of Eq. (13) vanish so
that (NiNB, ») =0. Similarly, one can show that all
the brackets of the second kind vanish. From this fact,
and from Eqs. (11) and (12) the baryon self-masses
are given as

(N1N2)'+1) (N1N2)'+2) )

(N4Ng, ») = (1V41V2,e4).
1

a. SELF-MASS RELAnoN

(12)

The self-masses of the baryons are given by Eq. (11).
There are two kinds of brackets that appear here. The
6rst kind is that in which the subscript of the second
argument of the bracket is identical to one subscript of
the first argument such as (NiN2, ei). The second kind
is that in which the subscript of the second argument is
diGerent from the subscripts of the first argument such

hami ——2Fi'{(NiN2, ei)+ (NilVa, ei)},
bm2 ——2Fr'(1ViN2 B1)+2FII (1V41V2»),

8m3 2Fr'(NiN——3,ni) +2Fr r'(N41V3y») y

8m4 ——2Fr r'{(1V4N2, '+~)+ (N4N3 ii3) }
from which it follows that

5mg+ bm4 = 5m2+ bmoc.

The physical masses of the baryons are defined as

m, =mo+bm, , i=1, 2, 3, 4,

(15)
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which immediately yields the observable baryon mass
relation"

From Eq. (15) and rules given in Eq. (18), we finally
obtain

mx+ xxx4 m2+ xxxp, (16) ~~1=4~12A,

If the nucleon mass is taken as unity and the center
of gravity of the masses of the A and Z's is taken for m2,
the experimental result is

my= 1, ns2= ma= 1.248, and ns4= 1.408,

where

bm2= 5mp= 2Fx'A+2F xx'&,

bm4= 4Eiz'&

A = (NxN2, ex) and 8= (N4N2, e2).

so that Eq. (16) is valid to 4/q.
Equation (16) is correct for even (Z,A) and (E,E+)

parities and is independent of the (,N) parity.
Although we have taken direct type interactions of E
mesons and baryons in Eq. (2), Equation (16) is also
valid when derivative typeinteractions are taken. This is
a powerful result because the essential feature of the
spectrum of baryon masses is reproducible to all orders
in the m-baryon coupling constant and to the second
order in the E-baryon coupling constant, once it is
assumed that the (Z,A) and (E',E+) parities are even.
Relations similar to Eq. (16) have been discussed
before under more special conditions such as to the
second order in the E-baryon coupling constants and
explicitly in the zeroth' or second order" in the x-baryon
coupling constant.

I et us consider in the remainder of the paper that
the (E',E+) parity is even. Then the Hamiltonians
H~, Ho~, and B~ are invariant under the following
combined interchanges' '.

N, ~N„E+~EP, EP~E+. — (17)

The T product of the E-meson field operators in
Eq. (10) is invariant under the interchanges (17). The
remaining part of Eq. (10) does not depend on the
E-meson field operators so that we need to be concerned
only with the interchanges between the baryon field
operators.

I et U be the unitary transformation which generates
the interchanges (17). Since this commutes with the
Hamiltonian H~ that defines the states ~N), it leaves
the vacuum state invariant and generates interchanges
in the one-particle states and field operators so that,
for instance, inserting Uvt'= 1 in Eq. (10) leads to

(NxNp, ep)

1
i ds—(T—(E(s)Ei(0)))p(xpp i

Uvt(¹NpNpNx
2J

iN, N,N, N, ) VV t I ~,)

1 f= —i ~ds(T(E(s)Et(0)))p-
2~

X(~p i
T(NxN2NpNx+¹Nx¹Np) i exp)

= (NxNs, happ). (18)

"The equality m&=ns3, which has been assumed, imposes the
restriction that the (E'p, E'+} parity should be even.

~ H. Katsumori, Progr. Theoret. Phys. (Kyoto} 19, 342 (1958};
20, 578 (1958}.

Equation (19) leads to mx+m4=2m2 but we have not
said anything about the relative magnitudes of mi and
m4. This point will be discussed in the next section. We
have explicitly obtained the relation (19) that can
also be found in a perturbation theory of the m inter-
actions in order to provide the formalism for further
analysis.

4. ESTIMATE OF X-BARYON COUPLING CONSTANT

The expression 4J'z'A that appears in the self-mass
relations (19) can be written with the aid of Eq. (10),
after the second term of Eq. (8) is restored, as

4Fx2A = i "d—s(T(E(s)Et(0)))p

XL(~,
~
(jx(s)jxt{O))+~~x)

—(Olj (s)j t(O)IO)j, (2O)

where the baryon current is

jx(s) =%2Fx¹(s)F2(s);
The remaining term again vanishes for the reasons
given in Sec. 3. The baryon current is clothed by the
n.-baryon interactions. The matrix elements of Eq. (20)
are unknown so that again a sum over a complete set
of states ~e) of the Hamiltonian H~ is introduced on
the right-hand side of Eq. (20), and the Tproduct of the
E-meson field operators is replaced by

(T(E{s)Et{0)))p——-', Dp(s);

4Fx'~= —i " d»x (s) & L(~xl jx~(s)I~)(~l jx~'(0) I~x)
n

A factor of 2 has been inserted on the right-hand side
of Eq. (21) because of restricting the integral to the
region zo&0 since it can be proved that the contribution
from the region zo&0 is idnetical to that from zo&0.

In order to make some estimate, it is advantageous
to treat the one-baryon intermediate state on an equal
footing with the intermediate state with one baryon
plus a baryon-antibaryon pair because a part of the
latter gives rise to the contribution corresponding to the
negative-energy state of the intermediate nucleon in
perturbation theory. The one-baryon approximation
would amount to retaining only the first diagram on the
right-hand side of I ig. 1.
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The one-baryon state and the state of one baryon
plus a baryon-antibaryon pair are taken from the first
term of Eq. (21), and the state of a baryon-antibaryon
pair is taken from the second term. The one-baryon
intermediate state is characterized by the momentum
variable q[zl, (q'+mo')*'], the other internal variables
being suppressed. It is a physical state in the absence
of E-baryon interaction.

Let e~ be a proton" whose momentum variable is

p(p=0, mezzo). It follows from the conservation of charge
and strangeness (and the fact that jzr increases the
strangeness quantum number by one unit) that the
intermediate baryon state is a 2+ hyperon state. The
further analysis may be carried out in a way analogous
to that in reference 6 so that it will not be repeated here.
The result is

4Fz'A = i —ds Dz. (s)
kp

XE [&Ppl jx(s) l&q&&&ql jet(0) IPp)

—
&01 ja(s) l~p»q&&~p pql jzr'(0) I0&].

The vertex of the E-baryon interaction that appears in
the first term on the right-hand side of Eq. (22) can be
expressed as

&Ppl j&(s) Izq)= (mo'/qopo) 'VZPzu(p)-gzu(q)

XG[(p q)']s '" "—' (23)

where the form factor G is normalized such that
G(—yzz') = 1, and is dependent on a three-dimensional
momentum transfer. The matrix elements in the second
term on the right-hand side of Eq. (22) can be
written as

(0 I jzz(s) I &p»q&= —(mo2/qopo) 'v2F ze (q)ztzu(p)

xG[(p+q) ]e" + '. (24)

The factor A+(q) = ( iq„y„+—mo)/2mo is a projection
operator and gz=1 or iy5, depending on whether the
(E,A) parity is even or odd.

The substitution of Eqs. (23) and (24) and the rela-
tion Dz;(s) =2iDz+'(s) (so)0) into Eq. (22) leads to

tXI r
4Pz A =4Pz ds D'+i(s) d'q[zNo/(2zr)'qo]

0 ~p

x(u(p)nz~+(q)nzu(p)s "" " *G'L(p —q)']

+u(p)%~+( q)nzu(p)s""+" 'G'—[(p+q)']) (25)

Carrying out the integrations in Eq. (25) as in reference

'3 One can just as well take a neutron, in which case the only
difference would be that one has an intermediate state with a
different charge. The internal variables such as spin, isotopic spin
and strangeness are suppressed.

6 and taking mp= j., we obtain

Fzo 2 t." k'- tr E~1
4Fz2A = — —— dk

I
G'[2 (E—1)]

4zr zr ~o zoE Ezo+E—1

8~1
G'[—2(E+1)] I, (26)

oi+E+1

where E= (k'+1)'* and zo= (k'+pre') l. The pzz is
the mass of the E meson. The upper and lower
signs of Eq. (26) refer to the cases hz= 1 and pz=ipo,
respectively.

It is appropriate to note the relation between Eq. (26)
and the more familiar lowest order perturbation result
without a cutoff factor. '4 The latter result is denoted
by A'. The self-mass that a nucleon has by virtue of
a virtual emission and reabsorption of a E meson is
given to the second order by

p d4k
4Fz'3'=4Fi' I i

(2~)4 ~ ko —io

gz[—i(p„—k„)7„+mo]gz
X u. (27)

[(p q)'+—mo' io]—

Integration of Eq. (27) with respect to ko, andrearrange-
ment, gives

Fz' 2 t"" k' 8~1 E~
4~& ~ ———— dk (28)

4' or & o ozE oz+E 1 oz+E+1 .

Comparison of Eq. (26) with Eq. (28) shows that the
present result is similar to the lowest order perturbation
result but that it is multiplied by a natural cutoff which
is a manifestation of the strong x-baryon interaction
modifying the vertex operator of K mesons and baryons.
Equation (26) is essentially a consequence of retaining
the state with one baryon and the state with one
baryon plus a baryon-antibaryon pair. The first term
on the right-hand side of Eq. (26) gives the contribution
from the intermediate positive-energy baryon state and
the second gives that from the intermediate negative-
energy baryon state. Some di6erences between this
method and the lowest order perturbation should be
noted here. Since Eq. (28) may be written in many
diAerent ways by adding the same term to both the
first and second terms on the right-hand side, the con-
tributions from the intermediate baryon states (with
positive and negative energy) are not unique. Further,
the self-mass is logarithmically divergent in perturba-
tion theory so that some arbitrary cutoff must be
employed. The present method avoids these difficulties
so far as lowest order perturbation theory is concerned.
However, an infinite number of other terms to order

'The comparison of A with the lowest order perturbation
result with a cut-off function is obtained by substituting ip&G for
J„in Eq. (47) of reference 6.
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or
12.2FP/4zr —Fz P/4zr = 15.6,

Fz'z/4zr 12.2F z z'z/4zr =—15.6. (30)

In addition, if Fz2=FzP=F' then F'/4zr=1. 4 satisfies
m4) mz for the upper case of Eq. (30).

S. RESULTS

We have shown that the essential feature of the
spectrum of baryon masses, namely m( )+m(Ã)

Fz2/4zr have been left out, notable among thezn the
state with one baryon and one meson. The consequent
error is very dificult to estimate.

Returning to Eq (.26), we have no information about
the form factor G. For the sake of illustration, let us
take a Yukawa model:

6=A'/(6'+ q'),

with a rms radius a'=6/A'= (0.566X10 ")' cm' and
let us evaluate Eq. (26) in steps of 0.2 frozn k=0 to 2
and in steps of 2 from k=2 to 10 by use of Simpson's
rule.

The first form factor that appears on the right-hand
side of Eq. (26) depends on a space-like momentum so
that it is in the experimental region, whereas the
second form factor depends on a time-like momentum
so that it is in the nonexperimental region. For the
latter we assume a form factor that agrees with the
former in the experimental region. In the evaluation of
Eq. (26), the previously mentioned singularity in the
form factor' does not occur for the rms radius given
above.

The numerical result of 4~3 is 4~3,= —0.078 for
ztz=1 and 4zrAo= —0.0064 for ztz=iy5. If the (,Ã)
parity is even, then we have 8,=A Bp =2 p from which
according to Eq. (19), it follows that

rzm2 8mz m2 mz 2(Fz /4zr —Fzi' /7r)4z—rA =0—.2,

so that
Fz'/4zr —Fzz'/4zr= 1.3, rlz=1

= 15 6, t/z= ipse. (29)

If ( P') parity is odd, then we have A =A., B=Ao or
A=Ap, 8=A. so that

=2m(Z), can be explained on the basis of universal zr

interactions, reasonable spin assignments to the par-
ticles, and even (Z,A) and (K',IC+) parities with asym-
metries between the E interactions to account for the
large mass splits. The result is correct to all orders in
the m-baryon coupling constant but only to the second
order in the E-baryon coupling constants.

The crude estimate of the E-baryon coupling con-
stants, Eqs. (29) and (30), shows that if the (,N) and
(EO,E+) parities are even and if the (IC,A) parity is
even, then the (Xz1V2E) coupling constant should be
FP/4zr) 1.3 and if it is odd FP/4zr) 15.6 to reproduce
the observable mass diRerences between baryons. These
values of the coupling constants depend on the assumed
E-meson form factor so that they should be regarded
only as an illustration.

So far we have assumed the universality of the m

interactions without any valid reason. There is also a
possibility that the E interactions are universal and
the vr interactions are asymmetric so as to be able to
account for the baryon mass splits. "For this case also
one can readily see that carrying out a calculation
similar to that previously discussed (to all orders in the
E-coupling constant and second order in the x-coupling
constants) would lead to the baryon mass splits on
the basis of inequalities of the coupling constants
because one must a,ssume that the parities of (Z,A.)
and (Z,N) are even. This is to be contrasted with the
case of universal m. interactions in which the mass spec-
trum can be explained on the basis of inequalities of
the coupling constants or relative parities or both.

In the event that neither the universality of x inter-
actions nor that of E interactions is valid, then it
would be very difficult for present field theories to make
any reliable statements about baryon mass differences
if the mass diRerences are a manifestation of the break-
down of symmetries of the strong interactions.
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