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Partial-Wave Dispersion Relations for Pion-Nucleon Scattering*
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Partial-wave dispersion relations for pion-nucleon scattering are derived from the Mandelstam representa-
tion. The symmetry of the representation is used to obtain expressions for the discontinuities across the
unphysical branch cuts. These expressions involve scattering amplitudes for pion-nucleon scattering and
for the process ~+~ ~ X+N. In the approximation of neglecting all but the nearest singularities it is
shown that the Chew-Low effective-range formula is a solution to the equations.

I. INTRODUCTION

PROGRAM of calculation of cross sections for
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~

~ ~ ~

strong interactions by means of partial-wave
dispersion relations has been initiated by Chew and
Mandelstam. ' In this paper we carry out the initial
stages of the application of their method to pion-
nucleon scattering. ' Most of the paper is concerned
with using Mandelstam's representation' to locate the
singularities of the partial-wave amplitudes and derive
expressions for the discontinuities across the branch
cuts. These tasks are necessary preliminaries to any
calculations of pion-nucleon scattering. Finally, in the
approximation of nelgecting all but the closest branch
cut to the physical region, it is shown that the Chew-
Low eGective range formula4 is a solution of the
equations.

In Sec. II the variables are defined, and in Sec. III
the Mandelstam representation for pion-nucleon scat-
tering is discussed. In Sec. IV the singularities of the
partial-wave amplitudes are located, and in Sec. V the
discontinuities across the branch cuts are calculated.

Expressions are given for these discontinuities in
terms of scattering amplitudes for pion-nucleon
scattering and the process sr+sr —& N+N. Many
complicating features of the problem are found which
do not appear in the case of scattering of particles of
equal mass. In Sec. VI the Chew-Low effective-range
formula, is shown to be an approximate solution of the
partial-wave dispersion relations plus unitarity.

II. DEFINITION OF VARIABLES

Let the four-vector momenta of the incident and
outgoing pion be g& and g2, respectively, while those of

*This work was begun under the auspices of the U. S. Atomic
Energy Commission while the authors were at the Lawrence
Radiation Laboratory, Berkeley, California, where the second-
named author was a visitor from the Argentine Army.

t Present address: Department of Physics, University of Cali-
fornia, La Jolla, California.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).' This problem has been discussed by S. W. MacDowell, Phys.
Rev. 116,774 (1960).We include for completeness and consistency
of notation many formulas contained in this reference.' S. Mandelstam, Phys. Rev. 112, 1344 (1958), and Phys. Rev.
115, 1741 and 1752 (1959).

4 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

the initial and final nucleon are pi and ps. Define the
van ables

s (pi+fr) ) (2.1a)

(2.1b)

(2.1c)

Conservation of momentum leads to the relation

s+ tt+t= 2m'+2tt' (2.2)

The Lorentz invariants defined by Kqs. (2.1a, b, c) are
the squares of the energies in the barycentric system
of the three reactions:

I. pi+pi ~ ps+tIs (w+N ~ sr+N), (2.3a)

II. pi —qs ~ ps —
qr (rr+N ~ sr+N), (2.3b)

III. qi —qs ~ ps —pi (w+sr ~ N+N). (2.3c)

These three reactions will all enter into the equations
for pion-nucleon scattering if one uses the Mandelstam
representation.

For an analysis of, the kinematics of pion-nucleon
scattering we refer the reader to Chew, Goldberger,
Low, and Narnbu' (hereafter CGLN), whose notation
we shall employ herein. Similar considerations for the
process sr+sr ~ N+N are given by the authors. '
Finally, defining k as the magnitude of the three-vector
momentum and 0 as the scattering angle in the bary-
centric system of reaction I, one finds

t = —2k'(1 —cose),

t't' =Ls—(m+ts) 'jLs —(m —tt) 'j/4s,

(2.4)

(2.5)

1—cosg (m' —tt')' 1+cose
(s—2m' —2tt') (2.6)

2 $ 2

III. MANDELSTAM REPRESENTATION

We assume that the invariant functions A'+' and
8&+) defined in CGLN satisfy the spectral representation

5 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

6 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
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proposed by Mandelstam:

g2 g2
B(+)(s,8, t) = + +—, ds'

m S m 8 X' ~ (m+tt)2

b(s(+) (s', 8')

4 (~„) (s' —s) (s'—8)

2 t

+— ds
7r d(~p)2 ~4p2

b (s(+) (s', t')
dt'

(s' —s) (t' —t)

B(k)(s 8 t) = g
2

g
2

m' —s m' —8

1 (
" b)(+) (s', Z —s —s')

(m+tt) 8 —8

1 r
" bs(+) (t', s)

+— dt' , (3.5)
~ ~'4„ t' —t

1 p" (
" bss(+) (s', t')

+— d8' I dt' . (3.1)
m' ~( +„)~ 44„2 (8'—s)(t' —t)

The functions A(+' satisfy a similar representation,
excluding the first two terms. It may be necessary to
make subtractions in these representations, but this
will not aGect the considerations which follow.

As shown by Mandelstam, one can easily derive from
Eq. (3.1) one-dimensional dispersion relations with
either s, 8, or t held fixed. For example, the ordinary
dispersion relation at fixed t is

g
'

g
' 1 I" bg(+)(s', t)

B(+)(s,s, t) = W +— ds'
m —S m —S X & (m+tt)2 S S

1 t
" bs(+) (s', t)

+— d8' . (3.2)
X' ~ (m+~)2 S —8

and similarly for A(+'. The "absorptive parts" b;(x,y)
are equal to ImB when the variables s, 8, and t are in
the physical region for reaction i, as defin'ed by Eq. (2.3).
The variable x is the square of the energy corresponding
to reaction i, and y is the corresponding momentum
transfer. The two absorptive parts b1 and b2 are related
by crossing symmetry, which requires that

A(+'(s, 8,t) = WA(+) (8,s, t), (3.3a)

B(+)(s,8,t) =WB(+)(8,s,t). (3.3b)

Imposing these requirements on Eq. (3.2) and its
counterpart for A(+', one finds that

as(+) (s', t) =+ug(+) (s', t), (3.4a)

bs(+) (s', t) = Wb((+) (s', t). (3.4b)

In order to investigate the analytic properties of the
pion-nucleon scattering partial-wave amplitudes, we
need the representation which makes explicit the
dependence on cosa at fixed energy:

where the abbreviation Z=2m'+2p' has been intro-
duced, and where Eq. (3.4b) has been used to eliminate
b2. The relation for A(+) does not contain the pole
terms, and has the W inverted. Now Eq. (3.1) shows
that

1 ~" b(s(s', 8')
b)'+'(8' Z —s-8') =- ds'

7
/

(m+p) S S

1 t
" b~s(8', t')

(3.6)
m "4„2 t'+s+8' Z—

The spectral functions b;, , a;; actually vanish over
parts of the regions of integration in Eqs. (3.6) and
(3.1).For details see reference 3 and Fig. 2 of reference 6.

IV. ANALYTIC CONTINUATION OF THE
PARTIAL VfAVE AMPLITUDES

A straightforward method for performing the decom-
position in partial waves is available in the results of
Jacob and Wick. ' One can easily show by their method
that, in the notation of CGI N,

~1
f(g(W) =— d costt(Pgf(+P(~(fs),

2 ]
(4.1)

where the superscripts (&), which refer to the isotopic
spin decomposition, have been suppressed. In terms of
the invariant amplitudes A and 8 one finds

2

f/y(W) = f, (E+m)(A(+(W m)B(j-
26m-W

(E—m)( —A (p(+ (W+m) B)g(j), (4.2)

where lV is the total energy in the barycentric system
of reaction I, and E is the total energy of a nucleon in
this system; i.e.,

and Z= (W'+m' —p')/2W.

We have also defined

(4 3)

Now let us consider the analytic properties of the
amplitudes fg~(W). In the case of scattering of particles
of equal mass it has proved convenient to consider the
partial-wave amplitudes as functions of the variable s.'
In the present case, however, we will encounter con-
siderable complexity in working in the s plane because
the kinematical factors multiplying A& and BI in Eq.
(4.2) have a branch point at s=0. We shall therefore
concentrate our attention on the W plane.

It is actually possible to form a linear combination of

' M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).

LA ((s);B~(s)]=— d cosHP((cosset)LA (s,t);B(s,t)j (4.4).
—1
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the f('s which does not have a branch point at s=0,
namely

above in the region —m —2&8'& —m —1, one finds
from Eq. (4.9) that

0+= (—1/W) (f++f(+ ) ), -
0 i = f-)+—f((—+»

(4.5a)

(4.5b) f(+(W+(e) =
e "('+»-( w) sinI)((+» (—W)

(4.10)
k

These amplitudes, suggested by MacDowell, ' are just
the helicity amplitudes of Jacob and Wick. i Both have
J=L+,'; Q(-+ describes scattering of a nucleon of
positive helicity (spin along direction of motion) into
a nucleon of positive helicity, whereas P( describes
scattering of a nucleon of positive helicity into a
nucleon of negative helicity. Again using Eq. (4.1) and
Eqs. (3.5) and (3.6) of CGLN, one f(nds that

(t ) = (1/16m.s)L(s+m' —t(') (A i—A (+i)
+m(s —m'+t(') (Bi—Bi+i)j, (4.6a)

Thus the two partial-wave amplitudes corresponding
to a given total angular momentum are boundary
values in different regions of the complex plane of a
single analytic function f(+(W) The.refore we can limit
our attention to ft+ and ignore f) .

It will probably be more convenient in the application
'

of these analyticity properties not to work directly
with the functions f(~ but rather with functions in
which the threshold behavior is made manifest, namely,

()) ~——(1/16irs)L2m(At+A(+i)
+ (s—m' —t(') (Bi+B)+i)]. (4.6b)

W J')+(W)
k((W) =-

E+m k" (4.11a)

with 8 real. The methods which have been used to
solve partial-wave dispersion relations with this type
of unitarity condition rely on the fact that

Im(1/f)~) = —k. (4.8)

No such simple relation holds for the g(~.
Turning now to the complex S" plane, we see that

all the singularities of f( come from singularities in
the A)'s and B)'s (except for a pole at the origin which
we shall remove in a moment). These singularities
arise from the vanishing of denominators in Eqs. (3.5)
and (3.6). The first term in Eq. (3.6) gives rise to the
physical cuts; i.e., branch cuts in the regions W) m+1
and TV& —m —1.' The former is the true physical
region in which one can apply the unitarity condition,
Eq. (4.7), below the inelastic threshold. The latter
region (hereafter called the left-hand physical cut) is a
novel feature of the 8' plane, whose meaning is elu-
cidated by the symmetry relation

f(+ ( W) = f()+» (W)—(4 9)

This relation, which was pointed out by MacDowell, '
can easily be verified by inspection of Eqs. (4.2) and
(4.3).It permits one to apply unitarity on the left-hand
physical cut. Namely, as one approaches the cut from

Hereafter we use units in which the pion mass is unity. We
have set A=c=1 throughout, and use the coupling constants
f'=g'/4~'=o o8 ~ud a'=a '/4~.

In spite of the comparative simplicity of these
formulas, the fi's will probably be more convenient for
many applications. The usefulness of partial-wave
dispersion relations has rested on the simple way in
which the requirement of unitarity 'can be satisfied.
Namely, in the elastic-scattering part of the physical
region,

p.
'~'+ sln5~~

(4 7)

1 Bg
+ (W—m) + (E—m)'

k"

I-pl+1
+ (W+m)

k2 l+2 k2 l+2
(4.11b)

No singularity is introduced by division by k", since
it can be seen directly from the Mandelstam representa-
tion that Ai, Bi k" for k'=0, and hence that fi(. k"
for 8'=m&1. At the other two points at which k'=0,
namely W= —m&1, it follows from Eq. (4.2) that
f(+ (E+m)k2(, thereby justifying the analyticity of
ki(W). This latter consideration follows also from
Eq. (4.9), which shows that at the left-hand physical
threshold f~ behaves like a partial wave of orbital
angular momentum /+1 At this t.hreshold k' E+m,
so that k)(W) approaches a constant at both the left-
and right-hand physical thresholds. Finally, the factor
5' is introduced in h& in order to avoid a singularity at
the origin.

We actually cannot be completely certain about the
behavior of h& at the origin, since the question of the
asymptotic behavior of the scattering amplitude is
involved. This fact can be seen from Eqs. (2.4) and
(2.5), which show that k' is infinite at W=O and
therefore that if cos9 is restricted to physical values,
then also t is infinite at 8'=0. Then A~ and 8~ are
regular at W =0 as long as A (s,t) and B(s,t) are bounded
as t ~ . Although it is not known whether this con-
dition is true in general, it has been found to be true
in lowest-order perturbation theory. ' We shall assume
hereafter that hg is regular at the origin, in which case all
the singularities of h((W) come from singularities in the
3) s and 8) s.

Let us now continue the enumeration of these
singularities. We have already seen that the hrst term
in Eq. (3.6) gives rise to the physical cuts. The second
term, having been introduced arti6cally through the
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separation into partial fractions of one of the terms in
Eq. (4.1), actually does not give rise to a singularity in
the scattering amplitude. A similar term which occurs
in b3 cancels the apparent singularity when both
terms are substituted in Eq. (3.5).

The rest of the singularities of A ~ and B~ come from
vanishing denominators in Eq. (3.5). The first term,
the pole in s, contributes. only to Bs (and hence only
to Its) since it is independent of cos8. The other terms
on the right-hand side of Eq. (3.5) produce singularities
in all B~.Let us consider first the denominators contain-
ing 8. From the defining equation (4.4) for Bi we find
after a change of variable in the integration over cosg
that these terms make the following contribution to B~'.

1 / i. .) )r Z —s—8) g,s

'de~)) 1+
2k 2 I m' —I

2(
B &+)(s) =+

2k' ~1,,(,)

1 t" bii+)(s', Z —s—s')
de' + . , (4 12)

&" (m+i) ' 8 —S

where Li(s) and I2(s) are the limiting curves corre-
sponding to cosa= —1 and cos0=1, respectively. These
curves are shown in Fig. 1. One finds from Eq. (2.6)
that their form is:

I.i(s) = (m' —1)'/s,

I.2(s) =2m'+2 —s.

(4.13a)

(4.13b)

s~rn+I)
s= fry':

Lf(S)

errrr rrrrr rrrrrrrrrrrrrrrrrr i rrrrrrrrz S a SlggggXo

( -' '

It can easily be shown that the denominators in
Eq. (4.12) can vanish only for real s. The location of
the zeros, and hence of the singularities of 0 g, can be
seen from Fig. 1. To find the branch cut in Bi(s)
corresponding to a given value of 8', find the intersection
of the line 8= 8' with the shaded region. In this manner
one finds that the pole at 8=m' gives a branch cut in
the regions s(0 and m' —2+1/m'(s&m'+2. The

r2= m2 —|.. (4.15)

In the 8' plane the cuts then lie along the imaginary
axis plus a circle about the origin having radius r.

In Fig. 2 the location of all the singularities in the 8'
plane is shown, along with the appropriate contour of
integration to be used in writing a partial-wave disper-
sion relation. We include the contour inside the circle,
even though the integral around it vanishes, because it
will turn out that the discontinuity across the circle is
related to the process rr+2r~E+E. We would not
know how to evaluate the integral around the outside
of the circle only. Similar considerations lead us to the
inclusion of contours in both left and right half-planes.

The foregoing statements about the regions of
analyticity of h& are equivalent to the following disper-
sion relation:

1 /" Imhi(W) 1 /

— —' Imlt)(W')
&,(W)= — dW' +-

~W' —W 2r ~ W' —W

gsg 1 tI
—m+1/m rr i(WI)

+— dW'
2(m+W) 2r ~ i p2)2 W' —W

~(ms+2)& ~ i(W&) 1 )m
—i rr l(WI)

+— ' dW' +— dW'
8"'—S' x ~ +g 8"—8'

r /
' as'(y) 1 r" rr4'(y)

+— id' +— dy, (4.16)
We 'e —r 2r ~ „y+iW—

provided the function behaves properly at infinity.
Along the positive real axis this is guaranteed by
unitarity. The discontinuities n; (W) will be evaluated
in the next section. As usual, the superscripts (~)
have been suppressed.

continuum beginning at s'=(m+1)' gives a branch
cut in the region s&(m —1)'. In the W plane these
cuts map into cuts along the entire imaginary axis and
in the following regions:

—(m'+2)'& W& —m+1/m, (4.14a)

—m+1& W&m+1, (4.14b)

m —1/rm &W & (rl'+ 2)'*. (4.14c)

Finally, there are the singularities coming from the
vanishing of the denominator of the last term in Eq.
(3.5), t' t. In—the k2 complex plane these are very
simple; namely, a branch cut in the region k'& —1.
In the s plane this cut maps into a cut along the negative
real axis plus a cut along a circle centered at the origin
and with radius r', where

FIG. 1.The real ss plane for pion-nucleon scattering. The shaded
area is the region in which —1 & cose (1.The curve I.r(s) corre-
sponds to cose= —1; the curve L2(s), to cos8=+i. The intersec-
tion of this area with the region of integration in 8 in the Mandel-
stam representation LB=ms, s & (r/2+1)2] gives rise to the branch
cuts shown along the s axis.

V. DISCONTINUITIES ACROSS THE BRANCH GUTS

All the integrations on the right-hand side of Xq.
(4.16) except for the first two terms extend over
unphysical regions of the TV plane. Therefore, in
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The same equation with the W inverted hoMs when
the 8& and b& are replaced by A& and ai. Then for
us'(W) we find

e(W) rz, ,(,&'t" (W)= ~ dl(k- P, (*)
32~k' ~„(,i

X[—art+&+ (W—m)bi'+ 7+ (8—m)'

Xk " 'P&+t(x)[a, i+&+(W+tN)bt'+&7), (5.6)

FIG. 2. The position of the singularities in the W plane of the
partial-wave amplitudes for pion-nucleon scattering. The branch
cuts are indicated by heavy lines; the dotted line is the contour
of integration for the partial-wave dispersion relation.

and where

xp(W) =1+(Z—W' —m')/2k'.

From the definition of h» we then find that

(5.2)

o &i+&(W) =~[e(W)was/8ks7[(W tr&)k-s&Pi(xp)

+ (E—I)'(W+~) k " 'P&+r(*p) 7. (5.3)

The discontinuity mrs'(W) in the region —m+1 &W & tw

1 can be expressed in terms of pion-nucleon scattering
cross sections by means of crossing symmetry. One
finds from Eq. (4.12) that in this region'

e(W) t L„(,&
ImB&t+&(W) = +

2k Lg(s&

XP&[x(W,n)7btt+&(s, Z —W' —s) (5.4)
where

x(W s) = 1+ (g —Ws —s)/2ks (5.5)

9 Strictly speaking, we should write Reb& in Eq. (5.4), and
similarly for all the absorptive parts in the remainder of this
section. As mentioned in Sec. IV, the absorptive parts can become
complex, but their imaginary parts do not contribute to the
discontinuities o.; (8"). This fact is not of immediate practical

. importance, because the Legendre polynomial expansions discussed
below do not converge when the absorptive part becomes complex.
We are indebted to Professor M. L. Goldberger for calling our
attention to this point.

order to apply the partial-wave dispersion relations we
must evaluate the numerators of the integrands, which
are the discontinuities across the various branch cuts.
This can be done by examination and interpretation of
Eq. (3.5) and the corresponding equation for A(s, I)

Consider the discontinuity nt(W) across the short
branch cuts arising from the pole at 8=m'. This term
depends only on the pion-nucleon coupling constant.
From Eq. (4.12) and the corresponding equation for
A ~ one can see that in the region of the short branch
cuts [see Eqs. (4.14a) and (4.14b)7

ImA&'+&(W) =0,
ImB&i+& (W) = We(W)trg, 'P&[xp(W) 7/2k', (5.1)

where

e(W) = 1 for W) 0
= —1 for H/ &0,

where the arguments of a~ and bJ are the same as in
Eq. (5.4).

The quantities a& and bi have a direct physical
meaning, since 8 and Z —s—8 are restricted by the
limits of integration to values which are physically
accessible in pion-nucleon scattering. For 8, the square
of the energy, this is obvious from the limits. For
Z —s—8, the momentum transfer, it can be seen by
consideration of the cosine of the corresponding scatter-
ing angle 0; i.e.,

coso= 1+(Z —s—8)/2k' (5.7)

where A,
" is obtained from k' by substituting 8 for s

in Eq. (2.5). One can easily show that —1 & cosi&

&1 as long as s&0 and 8 lies within the limits of
integration in Eq. (5.6).

If the energy and momentum transfer are in the
physical region, it follows that a&= ImA, as discussed in
Sec. III. One can then expand in partial waves, using
the formulas of CGLN, to obtain

[at&+& (s, Z —s—s); bti+& (s, Z —s—8)7

[W+m;17 ~
Q [Im f(+i+& (W)P&~t'(cose)

g+ its i=p

[W—m; —17—Imfi '+'(W)Pi t'(cos0)7—
E—m

X Q P&'(cose)[Imf& &+&(W)
2=1

-I f~"&(W)7, (5.8)

where 8' and E are related to 8 in the same way as
W and P. are related to s. Utilization of Eqs. (5.8) and
(5.6) now gives us a formula for ns'(W), but not an
explicit one. It involves the amplitudes fr~ which are,
of course, the quantities which we are trying to deter-
mine. Thus a complete treatment of the pion-nucleon
problem will involve coupled integral equations similar
to those encountered in pion-pion scattering. '

A serious complication of the pion-nucleon problem
appears in Eq. (5.6). The quantity Li(W') becomes
infinite at 8'= 0, permitting contributions to n~'
from intermediate states of arbitrarily high energy.
In the equal-mass case this does not occur for finite 8'.

Ke shall now calculate the discontinuity across the
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a4&+&(t,s) = P ( J+-', ) (84r/p ') (ip q)~
J=O

1 t' t" P((x)aa'+&(t', W')
A i&+& =— dx dt' +.. .

, (5.9)
t'+22(1 —x)

X[Pq(cos84) Imf+~(t) —[J(J+1)] '

circle 8'=re@', where r'=m' —1, in terms of the process notation de6ned there, that
4r+4r ~N+N. This discontinuity arises from the last
term in Eq. (3.5), whose contribution to A ~ is

k [(r~a)e'4]= k (re'4) ~is sjn2p.

Now from Eq. (5.9) one finds that for k' & —1,

1—[A &'+& (k'+ ie) —A &'+& (k' —ie)]
2j

(5.11)

~
—4km

dt P)l 1+ la4'+& (t,w'). (5.12)
2k' 2k'

The corresponding equation with B~ and b3 is identical.
Using the two equations above, we are now able to
calculate the discontinuity n3'(P) across the circle,
where

1
n3'~+'(P) —=—(h~&+&[(r+ 4)e'4'] —hi~+& [(r—e)e'4]) (5.13.)

2i

We And that

e(sin2y) t
—'"' ( t )

n3«+&(y)= dt k—2tP&l 1+
32m.k2 "4 2k')

where k' is, of course, a function of W. From Kq. (2.5)
one finds that for any point on the circle, k'(W) takes
on the value

k'(re'4) = 4 (2r' cos2$ —Z), (5.10)

whereas at points just inside or outside the circle
k'(W) has the value

Xcos83mPs'(cos83) Im f '(t)], (5.15)

b,&+&(t,s) =84r P (J+-',)[J(J+1)] l(—ip q)
J=1

XPs'(cos83) Imf s(t),

where 03 is the scattering angle for process III, namely,

cos84= (s p—'+q')/2ip q . (5.16)

For the superscript (+), the sum runs over even J;
for (—), odd J.

For S' on the circle, cos03 is complex, and we must
investigate the convergence of the series in Kq. (5.15).
Since a function f(x) that is analytic inside an ellipse
with foci at x= ~1 can be expanded in I egendre
polynomials, we must find out from the Mandelstam
representation which singularity limits the size of
the ellipse. This singularity can be seen to come from
the vanishing of the denominator s —s in the region
where a»(s, t) QO. The boundary of this region is given
by Eq. (4.10) and Fig. 2 of reference 6. We find after a
numerical calculation that the expansion converges on
the circle only for those values of W for which —33'&P
&33' or for which —33'&4r—/&33'. The expansion
would, however, be of little use even if it were to
converge in a larger region, since we can see from the
upper limit of integration in Eq. (5.14) that at g 33'
energies as high as t m' become important. The range
of the angle g in which a given value of t contributes to
the discontinuity across the circle is given by

X[a,~+&(t,W2)+ (W—Nt) b,&+&(t,W')]
cos2& & (Z —t)/2r'. (5.17)

t'
+(8—rN)'k " 'P~il 1+

2k'&

X[—a,&+& (t,W')

Finally, let us calculate the discontinuity across the
imaginary axis, W=iy. In this region both the last
two terms in Eq. (3.5) contribute, giving

+ (W+r&t)ha~+'(t, W')] . (5.14) —[A&&+& (iy+e) —A&~+& (iy —e)]
2i

It should be remembered that in this equation the
quantities k', P., and W are functions of tt, since
W = re'&

We evaluate a3(t, re'4) by recognizing that for the
range of the variables in Eq. (5.14), it follows from the
considerations of Sec. III that as= ImA for process III,
w+x —+N+N. This process has been calculated in
terms of phase shifts for pion-pion scattering in reference
6, for the low-energy range of t. In order to use these
results directly, one must make an expansion of us
in states of definite total angular momentum and
helicity. From reference 6 we And, retaining the

= e(y)e(y' —r')
2k' ~4

4

dt P&l 1+
2k')

e(y)
Xaa'+&(t —y')+ ds

2k + (m+1) 2

~+y'-
&

XP&l 1+ la&'+'(8 &+y' —s), (5 18)
)

where

k'= —Ly'+ (m+ 1)'][y'+ (r&4
—1)']/4y'.
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The same holds for B~, but with the & on the last term
of Eq. (5.17) inverted. We could now substitute into
Eq. (4.11b) to obtain an expression for the discontinuity
(24'(y), defined as

a4'(y) = (1/2i) [h&(iy+ e) —hi(iy —4)j. (5.19)

We shall-not write down the resulting formula,

because it is dificult to see how to put it to any im-

mediate practical use. One difhculty is that the momen-

tum transfer variables in both a& and a3 lie in unphysical

regions. Analytic continuation by Legendre polynomial

expansions is impossible, because an analysis of the

type described above shows that the expansions of

Eqs. (5.8) and (5.15) converge only for y2&3. A second

difhculty is that the energy variables in both a& and a3

range through very high values, at which we have no

reliable means of calculation.

VI. CHEW-LOW EFFECTIVE-RANGE FORMULA

where

2 k2 cot522 8+m
2

3 co W

M= 1 +I(A)

Pco2 1-" 0"(E'+2)2)dW', (6.5)
2r "~i W'(W —m) '(W' —W)

neglecting corrections of order 1/2)2.

Following Chew and Mandelstam, ' we set h22(W)
=E(W)/ D(W), and require E(W) to contain the
pole while D(W) contains the physical cut. Then
writing a dispersion relation with three subtractions
for D(W), and using the unitarity condition to deter-
mine the imaginary part, one finds

4 k' cotb33f'-
3 M

(6.6)
(6.1)h22(W)

—=hi(+'(W) —hi( ) (W).

where co=8'—m. In the static limit the erst two terms
One aPProx'mate solut'on o t e Partia -wave on the right-hand side give the Chew-Low effective

disPersion relations can be written down very easily. ran e formula4.
We designate by h»(W) the amplitude for the (3,3)
state i.e.7

CO

Moreover we observe, following CGI.N, that the short

branch cut can be approximated by a pole:

P 1 (
" Imh»(W')

+— ' dW'
nz —8' m ~ +g 8"—8" (6.3)

Let us consider the low-energy approximation of

neglecting all but the closest singularities to the

physical region; i.e, , the physical cut and the short

branch cut coming from the pole in 8. The resulting

truncated dispersion relation is then

~(m+2)& (221(+)(W&) (221(
—)(W&)

h22(W) =— dW'
~ "m—i(m W' —8'

1 t™ ImI222 (W')
+— dW' . (6.2)8"—8'

It will, of course, be possible to go beyond this
approximation, by including singularities which are
farther from the physical region. In principle it will be
possible to derive improved effective-range formulas
and to give theoretical explanations of such quantities
as the S-wave scattering lengths and the position of
the (3,3) resonance. This paper is intended primarily
as a tool to be used in such investigations, which are
now in progress.
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