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zero-prong events ar rest are about (2.5a1.2)%%u~ and at
80 Mev about 6% of the total number of events.
With improved statistics and a better resolution of the
m' events, we believe the above theoretical estimates
can be checked more correctly.

NP ANNIHILATION

For 1V7t annihilation, the values of S„/Ss for different
values of ) are given in Table VII. The values of n thus
determined are also given. As in the pp annihilation,
the selection rules change significantly the number
distribution of the outgoing pions without changing
the average multiplicity. If, as remarked earlier, we
ignore partial transmission in 'D3' and 'F4' states, then
the results at 140 and 260 Mev would be identical.

In the collaboration emulsion experiment, "the value
of n was observed to be 5.3~0.4. Here 35 events were
recorded out of which 2j. annihilations occurred in
Right at an average laboratory energy of 140 Mev.

"W. H. Barkas, R. W. Birge, W. W. Chupp, A. G. Ekspong,
G. Goldhaber, S. Goldhaber, H. H. Heckman, D. H. Perkins,
J. Sandweiss, E. Segre, F. M. Smith, D. H. Stork, L. van Rossum,
E. Amaldi, G. Baroni, C. Castagnoli, C. Franzinetti, and A.
Manfredini, Phys. Rev. 105, 1037 (1957).

In another recent emulsion experiment, ' n was observed
to be 5.36~0.3. There were 221 events recorded out of
which 95 events occurred in Right at an average
laboratory energy of 140 Mev, In the propane bubble-
chamber experiment, the n value was observed to be
4.7+0.5."Here there were 337 pC events recorded out

, of which 166 occurred in Right at an average laboratory
energy of 80 Mev.

We see that for ) 10 a good agreement with experi-
ment is obtained. It is interesting to note that X=e
also gives the multiplicity close to the experimental
values. This might suggest that there is a strong
pion-pion interaction in the final state. '
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The possibility of obtaining threshold anomalies in reactions leading to three-particle channels is studied
in detail. It is found that a threshold cusp or rounded step exists in reactions whose final three-body channels
have at least one particle in common. The effect appears as a function of the momentum of the common
particle while the total energy is fixed.

I. INTRODUCTION

'HE anomalous energy dependence of a scattering
or reaction cross section at the threshold of a new

inelastic process (the so-called "Wigner cusp'") has
been investigated in a number of recent theoretical
papers. ' ' The analysis of this eGect, apart from the in-

* On leave of absence from University of Trieste, Trieste, Italy.
~ E. P. Wigner, Phys. Rev. 73, 1002 (1948).
s A. I. Baz, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 923 (1957)

Ltranslation: Soviet Phys. —JETP 6, 709 (1958)j.
' G. Breit, Phys. Rev. 107, 1612 (1957).' R. G. Newton, Ann. Phys. 4, 29 (1958).
s R. G. Newton, Phys. Rev. 114, 1611 (1959).' L. Fonda and R. G. Newton, Ann. Phys. 7, 133 (1959).' L. Fonda, Nuovo cimento 13, 956 (1959).
R. G. Newton and L. Fonda, Ann. Phys. 9, 4j.6 (1960).' L. M. Delves, Nuclear Phys. 9, 391 (1958/59).

formation one can obtain about scattering phase shifts,
proves to be particularly useful for the determination
of parities and spins of the reaction products. ' "

It is now well understood that the physical reason
for the infinite energy derivative of old cross sections
at the threshold of a new channel is the sudden removal
of fiux from the incident beam due to the opening of a
new cross section which starts with an infinite slope.
There is consequently no such cusp (or rounded step)

' A. I. Baz and L. B.Okun', J.Exptl. Theoret. Phys. (U.S.S.R.)
35, 757 (1958) Ltranslation: Soviet Phys. —JETP 35(8), 526
(1959)j."R.K. Adair, Phys. Rev. 111,632 (1958).

'2 L. Fonda and R. G. Newton, Nuovo cimento 14, 1027 (1959)."J.D. Jackson and H. W. Wyld, Jr., Nuovo cimento 13, 85
(f959).
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if both particles in the new channel are charged; for
then the new inelastic cross section starts with zero
slope (in the repulsive case) or with finite slope (in the
attractive case) but with nonzero value. In the latter
case another type of anomaly is to be observed. It is
clear that no observable anomaly exists at the onset of a
continuum channel such as a three or more particle
production process, ' except in the second derivative
where it is not expected to be experimentally detectable. '

In the present paper we want to draw attention to
another type of cross-section measurement in which an
energy anomaly is to be expected, and derive the
quantitative details on quite general grounds. It is
perhaps simplest to describe the type of experiment we
have in mind by a special example which has been
recently discussed. '4

Suppose one were to measure the process

(a) E +d~A+p+2r.
at a fixed total energy. One may then observe the pro-
duction process for various energies of the emerging
pion. Concomitantly to process (a), the process

(b) E +d +Z'+p+—2r

is also possible, but the energy of the pion has a smaller
maximum than for process (a). Therefore the pions
seen near the maximum energy for (a) must all come
from (a), but if we look at pions below the maximum
energy for (b) then they may come from either (a) or
(b). Thus there is a threshold in the cross section as a
function of the pion energy, with Pxed total clergy,
below which channel (b) is open, and above which it is
closed. One may expect a corresponding anomaly in the
dependence of the cross section for .(a) as a function of
the pion energy, the energy of the E beam being fixed.
Moreover, the total counting rate of pions from both
processes (a) and (b) will exhibit the characteristic
cusp (or rounded step) too.

The reason why an infinite derivative appears in the
type of cross section described above while it fails to
appear at the threshold of a three-particle process as a
function of the total energy' is that in the process with
fixed incident energy the threshold acts essentially as
a two-particle threshold, as though the pion acted only
to test the energy of the two-particle process

(c) A+p ~ z'+p.
It is therefore not surprising to 6nd, as we do, that the
cusp size depends on the size of the cross section for (c).
In other words, in the physically implausible event that
(c) (in which the pion does not partake at all) does not
occur, no threshold anomaly would exist in (a) as a
function of the pion energy.

Apart from phase factors which may be observed
by detailed cusp measurements, and to which discus-
sions as in references 2 and 5 are applicable, the cusp
observation may in principle be a tool for the observa-

'4 T. Kotani and M. Ross, Nnovo cimento 14, 1282 (1959).

II. FORMULATION OF THE PROBLEM

We work in the center-of-mass coordinate system
and introduce the customary set of coordinates for
three particles of masses m~, ms, ms, coordinates R~, R2,
Rs, and momenta Pt, Ps, P3..

rl (ml/Pl) R li

r2 ——R3—R2,

and their canonical momenta:

pl hkl Pl 121drl/4

p2 kk2 (m2P3 m3P2)/(m2+m3)

(dR3 dR2) dr,

~ dt d8 ~ dt

with the reduced masses

m2m3
P2=

m2+ms

mt(ms+ms)

my+ms+ms

Thus p2 is directly related to the relative velocity of
particles 2 and 3, and p~ is equal to the momentum of
the first.

We are interested in cross sections for reactions
leading from two particles to three, in which the first
particle obtains a momentum between pt and pt+dpt,
and particles 2 and 3 receive a relative momentum p2
in the direction between Q2 and Q2+dQ2.

(4)

with

The notation is such that g indicates the momentum,
the spin, and its s-component:

(= (k,s,v);

tion of relative parities. Since it is the S or I' wave in
the A —p system which leads to the S wave in the Z —p
system at threshold, depending on the h.—2 parity,
observation of the angular distribution of (a) near the
threshold for (b) may thus determine that parity. This
is admittedly a dificult experiment. We suggest that it
may be easier to look at (a) near the threshold for (b)
as a function of the proton energy. In that case the
cross section for the fundamental process

(d)

enters, in which the relative A.—x momentum is con-
siderably smaller at threshold and hence the I' wave
may be expected to be much smaller than the S wave.
It may then be possible to determine the h.—Z parity
without looking at the angular distribution of (a).
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~(d )~ *((r)eo(C,r) =&(E-E')~(fl.—~4)~..~...
X," being the appropriate spin function; P+~'&(() is the
complete wave function obeying the outgoing wave
boundary condition and with the incident plane wave
consisting of two particles of relative momentum and
spin ( in channel 2.

If we make an angular momentum expansion we
obtain

01;((1',(2',. g)

=—22rihk '(p, 1'k1') *

JM L1 L2 2172

F,M(~', g, ',g2')

XS» „"(E.',E'; E)F."*(~,~), (6)

with the following abbreviations:

X=—l, s for a two-body channel

7 ~= ll) $1) jl j 12) $2) jo
for a three-body channel,

F~M(X,()=—P„C1,(J,M; 212, P) F1"(k),

Fg (X/1,g2) =—Q C1112(J,M s M1,352)
3II1M2

x F ™(&1)(1)F12'(&2s(2)v

C1,(J,M; m, p) and F1" being the Clebsch-Gordan co-
eScients and the spherical harmonics in the notation
and with the phase convention of Blatt and Weisskopf. "

Kith these definitions and the time reversal
operator":

where E is the complex conjugation operator and 0„(&)

is the Pauli spin matrix for the jth particle if it has spin

~, or ig-„'&&=1 if it has spin zero, we have the simple
properties

yF M(y g)
—( )J+M+s+vF —M(g g)

PFgM(X, (1,(2)

( )J+M+sl+vl+ss+v2F +
—M p, —g1 —g2) (7)

~~.(c, )=(—)'~.(—&, )

provided that we use real spin functions X," and we mean

-~=(-k, , —).
"J.M. Blatt and V. F. Weisskopf, Theoreticu/ Eucleur Physics

(John Wiley and Sons, Inc. , New York, j.952}."E.P. Wigner, Group Theory (Academic Press, New York and
London, 1959), Chap. 26.

$0 is the "unperturbed" three-particle wave function;
in the coordinate representation,

$0(41 52 rl r2) 40($1 rl)$0((2 r2)

q4 (( r) = (pk/k') '*(22r)—lx,"e' '
which is normalized so that

Equation (5) then leads to the reciprocity theorem

O~'(g1', g2 ; g)
—( ) s+v+sl +vl +ss +vs O+ ( g

.
g

v

g v) (g)

if II» is invariant under time reversal. A similar rela-
tion, of course, holds for the two-particle to two-
particle reaction and scattering amplitudes. Comparison
of (8) with (6) shows that therefore the time-reversal
invariance of H» implies the symmetry of the matrix
S~), , ;y~ no matter whether the elements refer to two or
three particle channels.

For a given total energy E the S-matrix element
S01 „1 (E1',E2', E) leads to a continuous range of
energy distributions E&' and E2' of the three-particle
channel p, with E1'+E2'=E. Suppose then that there
are two different three-particle channels open with the
same particle 1, as, for example, in the case discussed
in the Introduction. One may then fix the incident
energy E and observe the number of particles 1 as a
function of their energy E&'. When Ej' is near its maxi-
mum then all observed particles 1 must come from the
lighter channel; but when E~' is small enough, some of
the observed particles 1 may come from the heavier
three particle channel. Thus there is a threshold, and
we may expect to observe a corresponding anomaly in
the energy dependence of the cross section. It is this
anomaly which we want to study in detail.

The approach to the proof is analogous to that of
reference 5. We first eliminate from each matrix element
of S its usual threshold energy dependence. It is well
known that there is a simple factor of k'+& if the channel
contains two particles. We show in the Appendix that
for three-particle channels the corresponding factor is
k~'1+'k2'2+:. Therefore we write in the angular mo-
mentum representation in simple matrix notation

where the matrix E», is diagonal and has a k~'+' if the
p channel is a two-body channel, and a k&~'1+'k&~'2+& if
the P channel is a three-body channel. If the interaction
Hamiltonian IIr is sufficiently well behaved then K is
finite at all thresholds.

III. THRESHOLD EFFECTS

The submatrix S+ of S referring to open channels
only is unitary; we can therefore introduce a real
symmetric matrix Q' so that

Kr,QKr, (S++1)= —i(S+—1), (10)

where the matrix multiplication for three-particle
channels includes an integration over one of the
energies. Comparison of (9) and (10) shows that

Kp iRK129ft~—= —22/.

We diBerentiate this equation with respect to the
momentum k2 of the three-body channel e and then
set k2 =0. In this process we keep the total energy
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fixed but set ki»=ki, the P channel being another,
lighter, three-body channel open at that energy and with
the same particle 1.This corresponds to the observation
of particles 1 from both channels n and &8. Thus ki,
kit& and k2s are all (even) functions of k2 . Other
channel momenta being quite independent of k2, we
get an effect only if we take elements of (11) whose
final states are in the n or P channels. The initial
channel is a two-particle channel for obvious experi-
mental reasons. Now it is shown in the Appendix that
the elements of R are even functions of all open-channel
momenta and that they are in general 6nite at thresh-
olds. Differentiation of (11) with respect to k2 at
k2 =0 thus would yield

(8/Bk2 )K+=0,
except for the possibility that 2 contains a term pro-
portional to 8(Ei—Ei'). For the differentiation then acts
on the corresponding element of K+ on the right-hand
side of (11).Such a b-function term is indeed contained
in Q, since the interaction Hamiltonian Hr undoubtedly
includes two-body potentials for particles 2 and 3 in
the n and P channels. These potentials are independent
of rl and one can easily see that consequently

g(E,',E,', E„E,)=g(E,—E,') 8,&, Q«&(E,)+ . (12)

where 2«& is the matrix 2 referring to the two-particle
scatterings and reactions of particles 2 and 3 of channels
n and P, in which particle 1 is entirely ignored. The
remainder in (12) is free of such l& functions. Thus we
obtain at k2~

——0 from (11)

(1 ik«&—Kr, ') (8/Bk2 )Kp ——ik«&P& '&K+, (13)

where E( ') is the projection on the l2=0 part of the
channel n At the. same time g«& satisfies the two-
particle equivalent of (11):

(1—ik«'Kz')K+ "&= 2iR"'—

We conclude therefore that at k2 =0

(8/Bk2.)K+= ——,'K+«&P& '&Kg (14)

for elements leading to the n or P channel. The meaning
of this is that the part of the matrix element that
refers to particle 1 is the same for K~ on both sides of the
equation, while the parts that refer to particles 2 and 3
in channel n or P are the matrix multiplied by K+«&.

The argument proceeds as in reference 5. We infer
from (14) that in the vicinity of the threshold k2 =0
the linear term in the Taylor expansion of an element
of K+ leading to the n or P channel is"

&.K:K K i, =o

» We will drop hereafter the subscript "+"since we shall be
concerned with the open-channel part of PP only.

where the "1"is used above the threshold (as a function
of E~) and the "i"below.

The threshold anomaly arises from the linear term
in k2, as it does in the two-particle case. We are in-
terested in the behavior of the elements of 5 leading
to the n and P channels as functions of ki =kit&, with
the total energy E 6xed. The momenta k2 and k2p are
then functions of kla.

A2k2 2 A2kl '

2P2a 2@la

kla P2a
)

Ik2~l Via

which is in6nite. Therefore the leading term in the
derivative of K is

K = K
okla &2a -o ~klP &2a -o

Pla

depending on whether the derivative is evaluated from
above or from below the threshold as a function of El.
(Recall that as a function of Ei the a channel is open
below the threshold and closed above. )

If we choose the direction of the incident beam as the
s axis (i.e., axis of quantization) then we obtain from
(6) and (15)

xe..(»',»..;»), (»)
where the amplitudes on the right-hand side are evalu-
ated at the threshold, O~& "' is the two-particle amplitude
from the (2,3) part of the e channel to the (2,3) part of
the Gnal channel; the j sum runs over the total angular
momenta of particles 2 and 3 in the n channel, i.e.,
their total spin; and the upper value, —1, is used where
the a channel is open, the lower value, i, where it is
closed.

Equation (17) immediately yields the linear term in
the three-particle cross sections:

d .'(».',».'; »)

d'kl'dQ2

(Re)=—2lk-1(~i-/~i')'I I 2 eg,*(»i',4'; »)
&1m) ..

xe~."'(»2',»2.)8.,(»i', »2. )») (18)
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dg'f;($1, S2 v S)

dE1'

lrml' 2J+1
k I2l1+1k ~2l2+1k2l —1

1 2

tll &&i4& 2s+1
X I~f1 .'"I'.

Equation (15) then leads to the following linear term
in the spectrum:

dof; XnS1
I

dE1 2P, 1 J lil~l S

2J+1
k ""+'k "'~'k" 'Ik -I2+1

( Im
X

I I [KfV, lvRf2X2', u20v~ Rull'Ova vt, ] (20)
(—Re)

E1' here is the energy of particle 1:
El' ——fi'kl "/2ml'.

The essential feature of the result (18) and (20) is

that the cusp size depends on the three-particle cross
section to the threshold channel as well as on the two-

particle cross section from the threshold to the final

channel in which particle 1 is entirely ignored. Ordinary
selection rules thus tell us immediately what kinds of
reactions can or cannot exhibit the infinite derivative.
For example, in the case of reaction (a) at the threshold

for reaction (b), as given in the Introduction, in which

the incident energy is kept fixed and the energy of the

pion observed is varied, the two-particle matrix element

involved is that of A-proton collisions leading to Z

production at threshold. If the relative A —Z parity is

even, this matrix element is confined to the S wave;
if it is odd, to the I' wave. Hence the threshold anomaly
as a function of the pion energy comes from the S wave

of the A-proton system if the A —Z parity is even, from
the P wave if it is odd.

From the point of view of experimental application
the' above-described case is of limited significance.
Since the Z-proton threshold in the center-of-mass

system lies at about 80 Mev for the A-proton system,
the relative momentum is high enough so that the
I' wave cannot be expected to be small compared to the
S wave. Hence the experimental determination of
whether the cusp (or rounded step) occurs in the S or
I' wave would have to rely on the angular distribution
of the A and proton, which is very difficult. On the
other hand, the same system could be analyzed using

provided that the reference axis of the spin projections
is the incident beam direction.

We may integrate the cross sections over angles to
obtain the spectrum:

k1 dk1 f'
d&fv' Q I Ofv((1 v(2 v $) I

d+ldf12v (19)
2s+ 1 vvl'v2'

or

the proton as particle 1 instead of the pion. One would
then observe the cusp as a function of the proton
energy and it would come from the A —x S wave or
I' wave depending on the relative A —Z parity. Since
the reduced mass of the A —m system is much smaller
than that of the A —p system, the relative momentum
at the Z threshold is much smaller and one may expect
the I' wave to be small compared to the S wave. In
that case the observation could rely on the cusp in the
spectrum. If details could be measured, one could also
obtain interesting information on the Z production
cross section by h.—m collisions.

APPENDIX

We first want to derive the threshold k-dependence
of the S-matrix as stated in (9). For the case of two-
body —two-body transitions this is well known and need
not be rederived here. For the case in which either or
both sides refer to three-body channels the dependence
on the over-all energy and that on the individual mo-
menta k1 and k2 has been given by Delves. ' Our de-
rivation is somewh& diferent. The proof we give is
heuristic and holds provided the interaction has the
requisite properties, e.g., if it vanishes beyond finite
values of r1 and r2.

Comparison of (5) and (6) shows that

~J (~v6) Ff (~ vhlv62)Sf 1',A (El vE2 v E)
=—2~2(40"'I&f I4/"') (A.1)

for the case of two- to three-particle transitions. We
expand the free three-body wave function &0&f&:

$0 ((1,(2,' rl, r2)
= (2/irk') (tllklt12k2) l p j11(klrl) j12(k2r2)

X I'f *(X,gl, )2)'tiff (r, ,r,), (A.2)
where

JJf1 (rl r2) =p Cflj2(J M' Ml M2)

X'Jjf1),1 '(rl)'JJg2&, 2 2(r,),

'tiff" (r) =p C&,(j,M; m, v) F& "(r)X "21.

Consequently we obtain

Q Sf). ..), (El',E2', E)I'f *(X,g)

(2/lr2@ ) (tel kl p2 k2 k) ' (drl) (dr2) j11(kl rl)

x jt2(k2'r2)'Jjfl' (rl r2) (rl r2I +?
I
1'"'), (A.3)

in which the dependence on k1' and k2' is explicitly
visible, It follows immediately from the behavior of the
spherical Bessel functions that, provided the r1 and r2
integrations converge,

Sf1 „1 (El',E2', E)=O(kl"~+'k2"v+l) (A.4)

as either k1' ~ 0 or k2' ~ 0. Clearly nothing is changed



THRESHOLD EFFECTS IN TH REE —BODY CHANNELS 1399

Xp,i,pi,~(E,r) Fg~*(X,))kp' (A.7)

for the two-particle case. The radial "principal value
(A.S) wave function" then satisfies the integral equation:

in this argument if the initial channel is a three-body (2ppkp) &

channel. All that remains is to recall the symmetry of 0' p(6~r) =
I I 2 '5»' (r)

mh'the S-matrix and we arrive at (9).
We now write the S-matrix in terms of the k' matrix

defined by

where

fP $0 +GP+IQP

&-~,p~""(&r)=&-pji(kpr)kp '

and G~ is the "principal value Green's function"

G~= ReGp.

We then have the Heitler integral equation,

where the matrix multiplication includes summation
over discrete channels as well as integration over angles
and energy distribution for three (or more) particle
channels. Angular momentum analysis leads to

2 I'~ *(lI,6) I'~ (~',5')@i~,'i"(~)
= —l(4 "'(C) l&. lk "'(()) (A6)

for two-particle matrix elements, and analogous equa-
tions for three-particle elements.

We want to show that once the threshold energy
dependence k'+& is taken out of each element, the re-
maining matrix is an even function of all real k's. Since
the proof of this fact for discrete channels was given
in reference 5 using the special methods of reference 4,
we give a more direct proof here for two-particle
channels which is directly generalizable to three-
particle channels.

We make an angular momentum expansion of P in
terms of radial functions:

dr' r"k ji (k r&)u &(k r&)

X&ai, ~""'P ~" pi («'). (A.8)

Since j&(kr)k ' and k j&(kr)n&(kr') are both even func-
tions of k, it follows that f i;,pi, &~&~ is an even function
of all open-channel wave numbers. (The k's of closed
channels must not change sign; they must remain in
the upper half plane. ) A moment's reflection shows
that the same argument applies also to a three-particle
wave function.

If the angular momentum expansions of Po and Pip'
are inserted in (A.6) we are able to conclude the desired
result. The matrix function,

in the angular momentum representation is an even
function of all open-channel momenta.
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