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This paper explores further the use of interelectron coordinates in constructing atomic wave functions. A
simple method is developed for constructing wave functions of this type which yields surprisingly good values
for the energy of a variety of atomic systems, in zero order. The Hamiltonian for the system is split into an
unperturbed part, which is separable and which contains the interelectron potentials as well as the electron-
nucleus potentials, and into a perturbing term which is always finite and which vanishes whenever an electron
is far from the nucleus. The zero-order energies corresponding to this splitting of the Hamiltonian are at least
an order of magnitude better for the light atoms than the energies given by the usual Thomas-Fermi theory,
and are considerably better than the energies calculated with hydrogenic functions alone in first order.

1. INTRODUCTION

EVERAL years ago, Pluvinage' illustrated, for
helium, a method in which interelectron coordinates

could be used to separate partially the Schrodinger wave
equation so that both the interelectron potentials and
the electron-nucleus potentials were taken into the
unperturbed part of the Hamiltonian. In the first paper
of this series' Pluvinage's approach was modified and an
approximation technique was developed so that varia-
tional values of the energy of systems beyond helium
could be accurately calculated. The ground-state energy
of lithium was calculated and the result obtained indi-
cated that Pluvinage's approach heM excellent promise
for other systems.

In this paper, the method of Pluvinage is modified in
a different way in order to obtain relatively simple zero-
order wave functions which include correlation. The
unperturbed Hamiltonian is separable and the resulting
differential equations are hydrogenic in character. Thus,
the ground-state or the excited-state energy of a variety
of atomic systems can be explicitly written down. The
results obtained are considerably better than those ob-
tained using hydrogenic functions in zero or in first
order, or using the Thomas-Fermi method. The zero-
order energies we calculate are surprisingly close to
variational energies calculated using the hydrogenic
wave functions without explicit r;, dependence.

The motivation behind this paper was to obtain a
separation of the Hamiltonian for atomic systems which

*The research reported in this document has been partially
sponsored by the Geophysics Research Directorate of the Air
Force Cambridge Research Center, Air Research and Develop-
ment Command, and by the Army QKce of Qrdnance Research.

P. Pluvinage, Ann. phys. 12, 10 (1950).
~ P. Walsh and S. Borowitz, Phys. Rev. 115, 1206 (1959);here-

after referred to as I. The material in this paper on the two
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leads to a solvable unperturbed problem and to a per-
turbing term which is truly small. In addition, of the
many possible solutions to the unperturbed Hamiltonian
only those are chosen which display the physical be-
havior expected of the system.

The actual method adopted was as follows. A full set
of dependent interelectron coordinates is introduced in
addition to the usual independent coordinates of the
electron with respect to the nucleus. We shall refer to
these electron coordinates with respect to the nucleus

simply as hydrogenic coordinates from now on. The
mathematical questions raised by the introduction of
additional coordinates, and the relationship of the new

problem to the original one will be discussed in an
Appendix. With these variables, the Hamiltonian can be
split into an unperturbed part and a perturbing part.
The unperturbed Hamiltonian is itself separable in the
various hydrogenic and interelectron coordinates. It
contains all of the potentials present in the system and is

exactly solvable. The perturbing Hamiltonian diGers

from that used previously' ' in that it vanishes whenever
an electron is far from the nucleus while still remaining
finite when any coordinate vanishes. Thi~ perturbing
term is small compared to the Coulomb interactions in
the neighborhood of the Coulomb singularities and is
comparable to the Coulomb potentials at large distances
from the atom where the Coulomb potentials and the
perturbing term are both small. We then hope that the
perturbing term, chosen this way, would be small
throughout all of space. The zero-order wave function
is a product of the individual hydrogenic and interelec-

tron wave functions while the zero-order energy is a sum

of the individual hydrogenic and interelectron energies.

To specify in detail the zero-order solutions, suitable

boundary conditions must be introduced. As usual, the

part of the wave function expressed in the hydrogenic

coordinates must vanish at infinity and be finite at the
nucleus. This leads to the bound-state hydrogenic func-
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Z is the nuclear charge and the summations run over the
X electrons present within the atom. The interelectron
potentials, 1/r, ;, prevent the exact solution of thi'
Schrodinger equation. The fact that these potentials are
singular and numerous prevents any great success in
treating them as perturbations. This difficulty can be
overcome to a large extent by introducing the interelec-
tron coordinates explicitly.

We now introduce the interelectron coordinates into
the problem according to the following procedure: In
the Hamiltonian for the system, expressed in spherical
polar coordinates in 2.1, we replace 8/gr, and / 8ggby
the formulas given by the usual rules of partial differ-
entiation, ' namely

8 8(g)gr;;
+I

gr; gr, t.gr;;) gr,
' P. Franklin, Methods of Advawced Calculus (McGraw-Hill Book

Company, New York, 1944), 1st ed. , Chap. 2.

tions for this part. We impose boundary conditions on
the interelectron wave functions to account for the
physical behavior expected of the system; namely, that
when an individual electron is far from the nucleus, the
nuclear charge is shielded by the remaining electrons.
The part of the wave function containing the interelec-
tron coordinates is required to account for this shielding
at large distances from the nucleus. This uniquely de-
termines this part of the wave function and leads im-
mediately to appropriate zero-order energies.

The method we have used does not have exact
mathematical validity. It does have, however, a certain
physical plausibility which we shall discuss in Ap-
pendix 1.

In Sec. 2 of this paper, the general form of the Hamil-
tonian is presented and discussed when the interelectron
coordinates are introduced in addition to the hydrogenic
radial and angular coordinates generally used. In Sec. 3,
the separation of the Hamiltonian into a perturbed and
an unperturbed part is presented. The boundary condi-
tions to be used on the hydrogenic and interelectron
parts of the wave function are given in Secs. 4 and 5. The
solution of the unperturbed wave equation under the
boundary conditions imposed is easily carried out and
the zero-order energy is obtained immediately. In Sec. 6,
application is made to various charged, neutral and ex-
cited atoms to illustrate the method and its results. The
results are discussed in Sec. 7 and comparison is made
there with other methods for calculating atomic
energies.

2. HAMILTONIAN WITH INTERELECTRON
COORDINATES

The Hamiltonian for the Schrodinger equation is
written in atomic units as

8
x( .;,' ~+—+~Z—

gr, , J r;; 'wi , r;r, , gr;gr, ,

r;y;, 80,8r, ,
1—-EZZ

r; sing, r;, gp, gr;,

r'~" &'i
(2.3)

~~~~'l

where 8; and P, are unit vectors given by

6,= cosg, cosg;i+cosg, sing, j—sing;k,

p, = —sing, i+cosp, j. (2.4)

The partial derivatives operate on the corresponding
coordinates only where they appear explicitly in the
wave function.

In principle we now seek a solution of the eigenvalue
problem of the differential equation involving the
augmented Hamiltonian. Actually we will find only an
approximate solution. Since we do not know what
boundary conditions to place on the r;; variables con-
sidered as independent coordinates which will lead us
back to a solution of the original problem, the introduc-
tion of the redundant coordinates causes some difFiculty.
The procedure we adopt is to construct an approximate
solution of the more elaborate equation which satisfies
some reasonable boundary conditions for the original
problem when the constraint r;, =

~
r,—r;~ is imposed.

This seems like a good physical procedure even if a
questionable mathematical one. The point is discussed
further in Appendix 1.

Note that the introduction of the dependent r;; does
not destroy the orthogonality among the r;, 8,, and P;
and, consequently, there are no terms coupling these
variables directly. The lack of orthogonality between
these variables and the r;, and among the r;;, account
for the coupling terms which are present.

Extending Pluvinage's idea, we can see from (2.3)
how the total potential energy could be included in zero
order. The first two summations on the right might be
taken to represent the unperturbed Hamiltonian (we
shall not do this exactly). The corresponding zero-order
Schrodinger equation is then separable in the r,, 8,, P,,

where .

r;P =r7+rP 2r;—r;fcosg, cosg, +sing, sing; cos (p;—g;)j
=(*—')'+(~ —&')'+( —.)'.

A relationship similar to (2.2) holds for the partial
derivatives with respect to 8;. The result is

1 1 8 ( 8) 1 8 |' 8)
n

2 r2gr;( gr;J r2sin8, 88, 0 88;J
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and r;; coordinates. The zero-order solution is a product
of the individual solutions for each of the coordinates,
hydrogenic and interelectronic, while the zero-order
energy is a sum of the zero-order energies obtained for
each coordinate when the proper boundary conditions
are imposed. The fact that the r;, are dependent vari-
ables would make it difficult to carry out integrations
involving this solution over all space to determine, say,
the normalizing constant. The element of volume is

g, »,2 sin8, d»,d8,dg;. The», , in the zero-order wave
function must first be expressed in terms of the radial
and angular variables as above and then the in-
tegrations performed. For any complicated system,
such integrations must invariably be done approxi-
mately and one particular method of doing so accu-
rately was described in I. This emphasizes the impor-
tance of obtaining the best zero-order solution possible
in the hope that accurate information can be obtained

by examining just the zero-order case.

1 1 8 rr 8i 1 8
a,=p ————]»,' [+—

2 f, Bf;E Bf;I f, sing, 80,

( 8 ) 1 8 Z
X(»n8,

88,)»P sin'8; 8/P. »,

1 8 2 8 1+-2 2 —(1+b',),—— +—
2 %we ~fij' fij ~fij fij

, (3 1)

( 1 8' r" r" 8'~'=-2 El b', —
2 8»,P»,»,, 8»,8»;,

80,8f,j f; sine, f,j 8@,Bf;j

1 rj r~ 82

(3.2)
2 ~~ . ' »;,»;, 8»;,8»;,)

The choice given above differs from that suggested in
the previous section by the addition of second derivative
terms, ,'b;;8'/8», in the unperturb—ed—Hamiltonian
and their subsequent subtraction in the perturbing part.
We use the freedom which we have gained by intro-
ducing the arbitrary constants b,, to make the perturba-
tion vanish in the asymptotic regions of space.

The zero-order wave function is then

+.=II' Lc"(»',8',4')Il &'~' (»' )3 (3.3)

3. SEPARATION OF THE HAMILTONIAN

A possible method of separating the Hamiltonian,
once the interelectron coordinates are introduced, was

suggested in the previous section. For reasons given
below, the actual separation chosen is somewhat diRer-
ent. Instead, we set H=He+H' where

The 4; are the hydrogenic wave functions' for an
atom of charge Z

4, (»,,8,,rb, )= Rn;~, (»,) Yi,m, (8,,rb;), (3.4)

where R represents the radial eigenfunctions while I'
represents the angular spherical harmonics. e, 1, and m
represent the appropriate orbital quantum numbers.

The u, j satisfy the following equation

d Qij 2 dQij Nij—(1+b,,) —— + =E;,—rr.„
dr, ,' r,; dr;; r, ,

(3.5)

The solution of this equation depends on what we
choose for the asymptotic behavior of the n, , We shall
insist that%'0 be square integrable. In Sec. 5, we shall see
that in order to account for the shielding of the ith
electron, we require an exponentially increasing solution
of (3.5), i.e., n,; exp(q, ,»,,), and that the shielding re-
quirement enables us to determine the q,;. The solution
of (3.5) is not an eigenvalue problem. However, in terms
of the still undetermined b;, and q;;, the energy is given
by (see Appendix 2)

E,,= —(1+b,;)q, 2. (3.6)

This can be seen directly from the asymptotic behavior
of Eq. (3.5).

The scheme for determining the b;j will be discussed
in Sec. 4. Thus we shall be able to determine the un-
perturbed energy knowing nothing but the asymptotic
form of the I;;.

The proper antisymmetrization of the zero-order
wave function in Eq. (3.3) is a simple generalization of
well-known procedures. ' As expected, the antisym-
metrization requires that no two electrons have all four
quantum numbers (spin included) the same. At most
two electrons, each of opposite spin, can occupy the
same atomic orbit. The only way in which we will make
use of the antisymmetrization is by applying the Pauli
principle in filling these atomic orbits. Otherwise, the
zero-order wave function will be used in its unsym-
metrized form. One result of this is that the unperturbed
Hamiltonian will not be symmetrical in all of the
electrons

4 H. A. Bethe and E. E. Salpeter, Baedbuch der Ehysik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XXXV,
p. 90 ff.

~D. R. Hartree, The Calculutioe of Atomic Structure (John
Wiley R Sons, New York, 1957), Chap. 3.

4. DETERMINATION OF THE b;,

The total unperturbed energy of the system depends
on the choice of two arbitrary parameters, b;j. and q, ,
The latter are fixed, as has been indicated, by the
asymptotic behavior of the wave function. The former
constants are at our disposal and we choose them to
minimize the effects of II'. The potential energy terms in
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our Hamiltonian

V= —Q Z/r, +(1/2)P P 1/r, i, (4.1)

"' ( O' r„"r, , 8'
H,'= Q i

b,—, -

Br;,' rr, , Br8r,;

Z ~' 1 Z+P, 1——
V= ——+E ——

ri j~i rij
(4.2)

where I', is the total number of electrons in all shells up
to and including the e;. In the perturbing Hamiltonian,
the portion containing the coordinate of the ith particle
1S

are singular at the zeros of ri and ri j Since the potential
energy is comparable to the kinetic energy, U cannot be
thought of as a small perturbation. The introduction of
the interelectron coordinates allows all of V to be taken
into the unperturbed Hamiltonian, Ho. We can hope to
obtain accurate zero-order results if the perturbing
Hamiltonian is now small compared to U. At the zeros
of r, , r, ~, we note from Eqs. (3.2) and (3.3) that H'+0 is
always finite. (This is obvious for the zero angular
momentum cases, where the angular derivatives are
zero. For other angular momenta the behavior of the
R(r,) cancels the r; ' in the angular derivative terms
near the zeros. ) As already mentioned, V+0 becomes
infInite at the points in-question and the effects of the
perturbing Hamiltonian are thus small compared to
the zero-order potentials in the regions of space near
the nucleus and near each electron, independent of
the choice of any arbitrary constants.

The problem is more complex, however, in what we
will refer to as the asymptotic region of space, where an
electron is far from the nucleus and its companion elec-
trons. In this region we will, of course, want to compare
H' with V. Then, by adjusting the b;;, we will make H'
vanish in a suitable manner. The first thing to be done
is to decide what region of space shall comprise the
asymptotic region. After this, we will be able to detail
the suitable manner in which H' must vanish.

In order to determine the asymptotic region of space
for each electro' we picture the atom as being con-
structed by bringing the electrons in from inanity,
filling the atomic shells (determined by the principal
quantum number, e) consecutively, starting from the
innermost. In our approximation, an electron in an inner
shell is not affected by any outer shell, but it is by the
electrons in lower shells or in the same shell. Such a
picture is simple to apply and allows a unique determi-
nation of the shielding requirement imposed as a bound-
ary condition upon the interelectron wave functions in
the next section.

Consider an electron, the ith, which occupies the e,
shell. The atom is built up to and including this shell.
The asymptotic region for this electron is created by
moving the electron outward from the vicinity of the
incomplete atom. The Coulomb potential acting upon
the electron becomes

r;r;, 88,8r;, r; sin8, r, , BQ,Br,,

1 ' r;q" r, i cP
+ E-i (4 3)

2 «~, ' r, ,r, , ar, ,ar, ,)

In the asymptotic region the opposing vectors ri and
r;j line up. The distance derivatives have the eGect of
multiplying 40 by the constants appearing in the ex-
ponents of R and I, while the angular derivative terms
become negligible because of the extra factor of ri in the
denominator. Then the operator H has the following
approximate numerical value:

H,'-P'~ b;,q; —q,, +—P—' q;, q—, i
~

e; 2«, ' )

+O( —
I, (4.4)

(1)
&r;)

'

where we have again assumed that u,; exp(q, ,r, ,) in
the asymptotic region. The sum is over all shells up to
and including the ei shell. This is indicated by the prime
on the summation sign.

The perturbation caused by the ith electron thus
behaves like a constant in the asymptotic region, while
the corresponding Coulomb potential found in the
unperturbed term vanishes like 1/r; The b. ,; we intro-
duced are now adjusted so that H, ' itself will vanish at
least as strongly as Vi in the asymptotic region. There-
fore we take

( Z 1
bq'' q., +-2' —q„q.—i )=-0. (4.5)

This is the prescription we use to insure that the
perturbation term is small in the asymptotic region. It
is, of course, applied to all the various shells comprising
the atom. Note that only e; enters into the formula, so
that all electrons in the same shell, but with diGerent
m, l values, are treated identically. The q's are deter-
mined by the shielding discussed in the next section.

We now have completed the description of the separa-
tion of the Hamiltonian and the determination of the
b;;. The perturbation introduced is small compared to
the Coulomb potentials near the origins of all the
coordinates. In the asymptotic region about each elec-
tron, the effect of the perturbation, although com-
parable to the Coulomb potential, decreases as 1/r. It is
then reasonable to expect that the eGect of the perturba-
tion will be small throughout all of the physical space of
each electron, and that the zero-order wave function,
Eq. (3.3), should accurately represent the system.
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The asymptotic behavior of II,' for the interelectron
wave function used in I is worthy of note. The q's were
all taken as zero in that paper and all the interelectron
wave functions became the same Bessel-Clifford func-
tion. The corresponding JI thus vanish asymptotically.
However, investigation of the Bessel-Clifford function
shows that

H; 4'ac 0(1, ')0'ao.

In addition, the shielding condition we impose in the
next section cannot be met by this wave function.
Nevertheless, the approach used in I resembles in part
the present method and the success found with the
Bessel-CliGord function partially validates the method
used here.

trons, and it must remain in its original orbit in the ~s,

shell. Therefore, in the asymptotic region of the ith
electron, the zero-order wave function must have a
separable part which represents the ith electron as
moving in its original shell in the field of a nuclear
charge Z—P,+1. This requirement cannot be met in
every detail. However, it is easily satisfied as far as the
exponential behavior of 4'0 is concerned by imposing the
following boundary condition on u;, at large distances:

' —(Z P;+1—)r;
C, ir;) g I;,(r;;)-exp . (5.1)

g~'

Thus

5. SHIELDING REQUIREMENT

The zero-order wave function has been given in Eq.
(3.3). In order to determine the wave functions C and

I;; completely, suitable boundary conditions must be
imposed. Actually in writing C as given in Eq. (3.4) we

have implicitly assumed one set of boundary conditions.
This is that the hydrogenic wave functions are finite at
the origin and vanish at inanity. In fact, they must
vanish so strongly at infinity that the total wave
function +o is quadratically integrable. Despite the
exponentially increasing behavior which we will demand
of the I;; the solution for +0 satisfies this boundary
condition.

What boundary condition shall we impose upon the
I,;? The choice, we have indicated earlier, must express
the shielding of the nuclear charge which occurs as one
electron is moved away from the nucleus.

I.et us examine the solution of the Schrodinger equa-
tion when the ith electron in the e; shell is in its
asymptotic region as described in the previous section.
Mathematically we do this by requiring that rz/r, be
very small, where the subscript h designates any electron
in the same shell or in an inner shell compared to i, while

requiring that rI/r, be very large where the subscript k

represents any electron in the outer shells. The cloud of
electrons located in shells outside of the e; shell will not
aBect the potential of the ith electron, assuming that
these electrons are uniformly distributed. We specifically
assume that such is the case, although there are errors
involved in this assumption due to the overlap of the
wave functions corresponding to different shells. The
inner electrons, h, however, will shield the nuclear
charge, changing its effective value to Z P,+1. —

That part of the Schrodinger equation corresponding
to the ith electron now separates out. If we impose the
usual boundary conditions on the solution of this part of
the Schrodinger equation, that it be finite at small r, and
vanish at in6nity, the corresponding wave function is a
hydrogenic wave function bound in some orbit to a
charge, Z P,+1.Under the co—nditions that rI/r, must
be small while rI/r, is large, the ith electron does not
have any possibility of interacting with the other elec-

since C, (r,) exp( —Zr;/e, ) as r; —+ ~.
In view of the equivalent shielding by all the inner

electrons, we take all of the q, , as equal. That is

(5.2)

Since the outer electrons do not shield the ith, we need
not impose any requirement on the q;;, e,)e;. The
argument given above is, of course, not a proof. How-
ever, it does establish the reasonableness of our ap-
proach. The reason, for instance, why we do not de6ne
the asymptotic region for the ith electron by moving
this electron out past all of the other electrons becomes
obvious from our argument. In passing the ith electron
through the cloud of outer electrons, the validity of the
original orbital assignment will be destroyed because of
the electronic interactions. We cannot say what precise
orbit the ith electron will now occupy around the
shielded nucleus of charge Z —IV+1. Again, the similar
exponential behavior of different orbital wave functions
representing the same shell explains why the treatment
is identical for electrons in diferent orbits within the
same shell. Note that only the principal quantum num-
ber appears in our equations.

Once we have determined the value of the q's, the
equation in the last section which expresses the condi-
tion that H vanish asymptotically can be solved.
Following the above arguments all the b;; are taken as
equal when e, is less than or equal to e;. Then Eq. (4.5)
yields

—(1+b;,) = (2Z—P;)/2, n;&e, . (5.3)

Sy starting with the innermost shell and progressively
filling the outer shells, a set of numbers q;, and b,, are
easily generated. These q's and b's complete the descrip-
tion of Ho and +0. Useful properties of the system can
now be obtained by investigating Ho or %0 directly. The
zero-order energy, for example, is just the sum of all the
individual hydrogenic and interelectron energies. From
Eq. (3.6) and the properties of the C 's we have

(5.4)
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Various applications of this equation will now be
discussed.

TABLE I. Comparison of percentage deviations, ~OH, 60, of
calculated zero-order energies (in atomic units) from the experi-
mental energies using hydrogenic functions and using the method
of this paper.

Z&le Z&221(y») (6 1)

6. APPLICATIONS

Two-Electron Atoms

Helium and helium-like ions consist of two electrons
both in the lowest orbit surrounding a nucleus of charge
Z. These are the simplest many-electron systems which
are encountered. Only the ground-state energy is con-
sidered now.

The zero-order wave function is a product of two
ground-state hydrogenic wave functions times the
interelectron wave function. That is

System

Helium-like
He
I.i+
ae2+
+3+
C4+
N'+
0'+
Pj7+

Excited helium'
2 1, 3g
3 1, 3+
4 1,3g

I-'exp(a u )

—2.904—7.29—13.67—22.04—32.4—44.8—59.2—75.5

—2.162—2.065—2.038

g H

—37.9—23.5—17.0—13.4—11.1—9.4—81—7.2

—15.6—7.5—4.3

—3.3
+4.0
+4.9
+4.7
+4.3
+4.0
+3.7
+3.4

%hen one electron is far from the nucleus it moves in the
ground state of a nucleus of shielded charge Z—i. Its
radial coordinate, say, r2 becomes very close to the value
of r~~. The exponential form of I at large values will be
exp(qr») and in order that tfr0 display the p
shielding at larger r we demand

a The experimental values for excited helium are an average of the singlet
and triplet values.

Excited States of Helium

e,
—Zr&g—Zr2gQrl&~ g

—Zr&g—(Z—1)r2

Thus

in agreement with Eq. (5.2).
The perturbing Hamiltonian H2' for the second elec-

tron is given by Eq. (4.3)
+0 4'1 (rl)c (r2)ll (&12)~ (6.10)

At large distances this has the asymptotic behavior,
exp( —Zrtl ' —Zr22N '+qr»). When the outer elec-
tron is far from the nucleus, the shielding produced
by the inner electron requires the behavior,
exp[ —Zrrl ' —(Z—1)rsm ']. Therefore, q= 1/2N. There
is no equation to express shielding of the inner electron
because there are no electrons in still lower orbits than
it. The perturbation H2' has the asymptotic value [see
Eqs. (4.3) and (6.5)]

H2' (b+Z)/2222. ——

r) r2 112 c)
H2%0=

~
b

r2r y2 Dryer] 9

(6.4)

At large r2 the vectors r2 and r~2 line up and H2' ap-
proaches the numerical value

H2' bq'+Zq. —— (6.5)

In order to have II2' vanish asymptotically, we require

roper
An excited two-electron atom is the simplest atomic

system involving more than one orbit. Consider one
(6.2) electron in the inner /th shell and the other electron in

the outer mth shell. The inner electron shields the outer
(6.3) electron from the nuclear charge but sees the full nuclear

charge itself. The zero-order wave function is

6= —Z.

This agrees with Eq. (5.3).
The total ground. -state energy in zero order is the sum

of the separate nuclear and interelectron energies. Thus,
using Eq. (3.6),

1 (Z2 Z') (Z—1)
~.=—

~

—+—I+
~2) m2

(6.12)

As in the unexcited case, we must choose b= —Z.
The total zero-order energy now becomes

/

(6 7) The corresponding zero-order hydrogenic energy is

1 (Z2 Z')
&0"= ——

(

—+—
/.

2 ( P 2112)

E0 —Z' —(1+b)q' =———Z'+ Z—1,

in view of Eqs. (6.3) and (6.6). The corresponding zero-
order energy using only the hydrogenic functions is just

(6.13)

Ground State of Neutral Atoms

Ke now treat the ground state of neutral atoms
(6.9) within the periodic chart. The atoms are treated by&= 1OO(&expt &cate)/&expt

Ep — Z e The deviation of these energies from the experimental
values are presented in Table I for the singly excited
states of hehum.Table I presents the zero-order energies calculated using

interelectron functions, and also using only hydrogenic
functions. These results are given in terms of the
percent deviation, 5, from the true value:
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—Z (I2—2)
&02=

2 & 4

1( P2) (P, (P,—1)
+-f Z ——

ff
—1

f (6.14)
)

When this shell is 6lled I'2=10 and Eo~ has the value
—Z'+11Z—55. In a similar manner, contributions from
the outer shells can be calculated rapidly. For instance,
the third shell contributes the energy

—Z' pP3 —10'
!&O3=

9

1( P» (P3(P3 1)—
+-~ Z—)~

—45 ~, (6.15)

while the rth shell has the energy

—Z')P„P, &~ 1 t
—P, q

I+)
(P„(P„—1) P, )(P„ i—1))

(6.16)
2 2 i

The total zero-order energy is the sum of the various
energies of the ulled or partially 6lled shells. The
corresponding zero-order contribution using only hydro-
genic functions is, of course

Eo,n ———Z'(p, —p, g)/2r'. (6.17)

The energies calculated with the above formulas are
given in Table II, in terms of their deviation from the
experimental values.

starting with the innermost shell and filling the shells
successively. Those orbits with the same principal
quantum number are considered equivalent. Once an
inner shell is filled no further change occurs in the
manner of treating that shell.

The first shell is filled with helium. The contribution
E01 to the zero-order energy from this completed shell
as we progress along the periodic chart changes only
because of the variation in Z. This contribution has
already been given by Eq. (6.7) as —Z'-+Z —1.

Consider the electrons in the second principal orbit
e= 2. As one of these electrons is moved to infinity, the
electrons remaining in the second and first orbit shield
the nucleus. Since the q2; a,re all identical, Eq. (5.2)
yields q2, = —,', m, &2.

The perturbation terms linking this shell to lower
shells must vanish asymptotically. The requirement is
fulfilled by Eq. (5.3). There are LP2(P2 —1)—2]/2
interelectron coordinates linking the second shell to
itself or lower shells. Therefore, the zero-order contribu-
tion to the energy from the second shell is

TABLE II. Percentage deviations for neutral atoms: Ap

are the zero-order, first-order, and variational results using
hydrogenic functions; 6 and Ap are the Thomas-Fermi results
and the zero-order results of this paper.

system L',„ala u l' 60. .H g H Dp

He 'Sp
Li 'Sp)
Se 'Sp
8 2Pp)
C 'Pp
N 4SI(
O 3Q
I» 'EI)
Mg 'Sp
Al 'Pp)

—2.904—7.49
—14.68—24.67—37.9—54.6—75.2—99.9—200.3—242.7

—37.9—35.2—36.2—39.3—42.6—45.7—49.0—52.0—52.1—51.0

+5.3
+6.7
+7.8
+9.8

+11.5
+12.9
+14.2
+15.2

+1.9(1)b
+0.9(3)
+0.8(4)
+0.6(4)
+0.6(4)
+0.6(4)
+0.8(4)
+1.0(4)

—33.5—33.3—33.0—33.3—32.7—32.0—30.9—29.7—26.6—25.9

—3.3
+1.5
+1.2—0.3—1.6—2.7—3.7—4,6—0.3
+0.2

a Experimental values (in atomic units) are from Atomic Energy Levels,
edited by C. E. Moore, National Bureau of Standards Circular No. 467
(U. S. Government Printing Ofhce, Washington, D. C., 1952), Vol. II as
extended somewhat by R. Cowan and J. .Ashkin, reference 10.

b The numbers in parenthesis are the number of variable parameters used.

P P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev. 48,
948 (1935).

7 A. Tubis, Phys. Rev. 102, 1049 (1956).

'7. DISCUSSION

Table I presents the comparative energy deviations
calculated in zero-order with the use of hydrogenic
functions and with the method as outlined in this paper
for various excited and ionized two-electron atoms. As
noted in Appendix I, our method is not applicable to the
case, Z= 1.The introduction of interelectron coordinates
together with the proper shielding requirements pro-
duces a very substantial gain in accuracy. This is
illustrated more forcibly in Table II where results for
various neutral atoms are given. It is apparent that
hydrogenic functions do not yield satisfactory energies
for neutral atoms in zero order.

In order to yield improved answers with hydrogenic
functions, recourse must be made to first order, or still
better, to variational calculations with a consequent
large increase in computational effort at each stage. Ke
also present in Table II, these first-order and variational
calculations for the hydrogenic functions. The varia-
tional results are available and were obtained with the
antisymmetrized Morse functions. 6 7 These Morse func-
tions are just the hydrogenic wave functions in which
the constants, such as the nuclear charge, are treated as
variable parameters. The Morse function calculations
are representative of the many different variational
calculations in the literature and, furthermore, have
been extended over most of the range for which energy
values are available. The first-order energies given in the
table were obtained by using the formulas given in
reference 6 and by taking the wave function as a product
of unsymmetrized hydrogenic functions.

Table II shows that the zero-order energies obtained
with the introduction of shielded interelectron functions
are considerably better than the first-order hydrogenic
energies. This is so despite the fact that the zero-order
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results are enormously more simple to obtain, involving
only algebra and no integration. Indeed, our zero-order
energies are surprisingly close to the variational energies.

Another widespread and relatively simple method for
obtaining the energies of neutral atoms is the Thomas-
Fermi calculation. This calculation is based on a varia-
tional approach'; however, because of the mathematical
approximations introduced within the theory, ' accuracy
in the energy values comparable to usual variational
calculations cannot be expected. Table II presents the
deviations calculated by the usual Thomas-Fermi ex-
pression, ET+——0.769Z'13. These results compare very
poorly with our zero-order calculations for the light
atoms given in Table II, the Thomas-Fermi energy
deviations being an order of magnitude larger than the
zero-order deviations. The experimental energies for the
light atoms have been extended analytically to heavier
atoms by Mayer and these energies have been reported
by Cowan and Ashkin. '" Figure 1 compares the Thomas-
Fermi energies and our zero-order energies with the
experimental values over the extended range of Z up to
those values of Z where relativistic corrections become
important. No significant improvement of the Thomas-
Fermi results over the zero-order calculations is found
within this range.

Some words should be said here about the appli-
cability of the type of shielding we introduced as a
boundary condition upon the interelectron wave func-
tions. This discussion may help us to understand how

the results we obtained can be adapted to other types of

quantum-mechanical systems. It should be remembered
that the outer shells were neglected in treating the
asymptotic shielding of any orbit, while all subshells in

the same shell were treated identically. Such a procedure
will be expected to work well whenever the atomic

system possesses well separated shells together with an
approximately central field. The characteristic of the
Coulomb potential is that it does, indeed, produce well
separated shells and the central field approximation is
certainly excellent for all the filled shells within the
atom. Thus our approach should describe very well the
behavior of the inner shells in an atom and these shells,
of course, contribute the major part to the total energy
of the atom. The presence of p, d, shells outside of
filled shells shouM disturb the results somewhat, but
such inaccuracies will disappear once the shell is filled.
A glance at Table II confirms these expectations in a
general way. Note the extremely good results once a
shell is completed in comparison to the progressive
worsening while the shell is being filled.

A final note will be made concerning the applications
of first-order perturbation theory with our zero-order
wave functions, N(). Because of the interelectron func-
tions, the wave functions, %'0„, generated by allowing the
individual electrons to fill all of the possible orbits are
not completely orthogonal among themselves. This is so
because H' is not zero. If it were, we would have Ho= H
and the set, 0'o„, would be orthogonal simply because
of the Hermitian properties of H. However, our method
of approach has been aimed at making H' small com-
pared to Ho and the results obtained certainly indicate
that this aim has been accomplished. We can then be
fairly confident that the set of functions, %0„, is quasi-
orthogonal in the sense that (%s„Ps,) is much smaller
than either (Vs„gs„) or (4s,Ps,). This, plus the fact
that Ho H will allow us to take over the usual first-
order perturbation formulas directly for use with the set
+O„with the expectation that any inaccuracies will
affect the results in second-order only.

APPENDIX 1
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ooo Experimental
~ ~ ~ Zero-Order—Thomas -Fermi

a(x)y(x) =Ey(x). A(1.1)

We shall illustrate the basic procedure we have used
in this paper by introducing redundant coordinates in a
one dimensional problem. Using this as a model it will
become clearer what the mathematical content of the
more complicated problem treated in the body of the
paper is.

Suppose the Hamiltonian of our system is II(x)
= ——',d'/dx'+ V(x) and the original equation is

l i l i I t f

2 5 5 IO 20 50 50
Atomic Qharge, 2

FIG. 1. Comparison of the Thomas-Fermi energies and the zero-
order energies of this paper with the experimental energies of
neutral atoms (in atomic units). The experimental values for Z
up to 13 are as given in Table II while the last three experimental
values are actually analytical values due to Mayer as reported in
reference 10.

By imposing suitable boundary conditions, we can
specify the solution of A(1.1) corresponding to a par-
ticular energy. Figure 2 shows a curve which might be
a portion of such an eigenfunction. We next parametrize
a portion of p(x), by substituting y=y(x) in it, so that

P. Gombas, EIundblch der I'hjsi k, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. XXXVI, p. 120 B.

'N. H. March and J. S. Plaskett, Proc. Roy. Soc. (London)
A235, 419 (1956).I R. D. Cowan and J. Ashkin, Phys. Rev. 105, 144 (1957).

This procedure is not unique, but its lack of uniqueness

is unimportant for our considerations. We now can plot
the function P(x,y(x) ) in the x, y, P space and the effect
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()t,y(x))

reasonable representations of the eigenfunctions of the
problem corresponding to A(1.1).

We might add that we have used this technique for
solving approximately the one-dimensional harmonic
oscillation with success comparable to that quoted in
this paper for atoms.

APPENDIX 2

The solution to the equation of the interelectron wave
function,

has the form

dQ 2dQ Q

(1+b) +—— +Fu=0,
dr' r d'r r

A(2. 1)

y= y(x

FIG. 2. Relationship of g(x,y), @(x), and y= y(g).

is to deform the plane curve p(x) into some space curve.

@(x) is the projection of f(x,y(x) ) onto the x—g plane.
We now require that the derivatives of the plane

curve p(x) be equal to the derivatives of the space curve

f(x,y(x)). This means that

d f(x+hx, y(x+Dx)) —f(x,y(x) )
L

dx Ax

8$ 8$ dy+, A(1.2)
8$ Bf ds

which is the chain rule of differentiation we have used.
The original Hamiltonian H(x) is thus replaced by a
Hamiltonian II(x,y) which is equivalent to it on the
curve f(x,y(x)). This Hamiltonian is not unique, de-

pending as it does on the parametrization y(x) we have
used but again its lack of uniqueness is irrelevant.

I et us now consider the larger problem in the three-
dimensional space

(2q —1 2
tF,I, ,

—2p I, A(2.2)
E2q(1+b) 1+b i

where q=&[—E/(1+b)]* and tFt is the confluent
hypergeometric function. "At large values of r and for
real q, e&" tFt has the dependence exp(+ ~q~r) This .is
the exponentially increasing solution in r at infinity
which is needed to fulfill the shielding requirement.

For the hydrogen negative ion, (b+ 1) has the
value 0. The solution of Eq. A(2. 1) for that case is

n(0) exp[(Er'/4) —(r/2)]. This does not have the ex-
ponential behavior we need and our method is not
applicable in that particular instance. This result is not
surprising since we have neglected the polarization of
the atom by the added electron and the binding of H
depends wholly on this polarization.

It is worth noting that the integrals necessary to
obtain the atomic energies from the variational formula
E= (4's, H+s)/(4's, +s) can be carried out in closed form
for two electron systems when A(2.2) is used as the
interelectron wave function. For these systems the
Hylleraas" variables are introduced and integrals of the
following types are found' ':

J„(Z)= Ie " '&{tFt[—1/2(Z —1),

—2/(Z —1'), —2r])'r dr. A(2.3)
&(x,y)4 (*,y) =F4 (*,y), A(1.3)

If the surfaces P(x,y) contain the curve P(x,y(x) ), then

f(x,y(x))=p(x) is an eigenfunction of the original
problem corresponding to the energy associated with

g(x). For the larger problem we have no way of speci-
fying a suitable boundary condition in the y variable to
ensure that the surface contain the curve P(x,y(x)).

The procedure we have followed in the text is to guess
at reasonable, approximate solutions of A(1.3) which
contain a curve corresponding to an approximate
P(x,y(x)) which in turn satisfy reasonable boundary
conditions when projected onto the x—P plane. Since
our approximate solutions in the larger space have this
property when projected, we consider that they are

These are evaluated by the formulas given by Alder
and Winther. I3 The final result is

—1
F2 e+1,

[2(Z—1)]"+' 2(Z —1) 2(Z —1)

—2 —2 —1 —1
A(2.4)

Z—1 Z—1 Z—1 Z—1

"P. M. Morse and H. Feshbach, iVIethods of Theoretic aI I'hysics
(McGraw-Hill Book Company, New York, 1953), Vol. I.

'2 E. A. Hylleraas, Z. Physik 54, 374 (1929).
'3 K. Alder and A. Winther, Kgl. Danske Videnskab. Selskab,

Mat. -fys. Medd. 29, 18 (1955).



APPROX' MATE ENERGY LEVELS OF ATOMS

where Ii2 is the generalized hypergeometric function in
two variables. '4

An approximation technique was given in I for

'4P. Appell and J, Kampe de Fbriet, Fonctioes Hypergeoese-
triques, etc. (Gauthiers-Villars, Paris, 1926).

evaluating integrals containing many interelectron func-
tions. For greatest accuracy, the technique depended
upon the evaluation of integrals of the type, J .
Equation A(2.4) thus allows this approximation tech-
nique to be used with the wave functions of this paper.
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The Hulthen-Kohn variational method is applied to the elastic scattering of electrons by hydrogen atoms.
The trial function used is of a nonseparable form, allows for the virtual excitation of the 2s and 3s states, and
contains a scaling parameter which is allowed to vary. The resulting scattering lengths and S, I', and D
singlet and triplet phase shifts are compared with the results of other calculations, and reasons are given for
expecting them to be of improved accuracy.

II. HULTHEN-KOHN VARIATIONAL METHOD

In the atomic units in which length is expressed in
Bohr radii and energy in double rydbergs, the Hamil-
tonian for the electron-hydrogen atom system is

The asymptotic boundary condition for a given trial

partial wave function satisfying the Schrodinger equa-

tion,
(H I:)+=0, —(2)

' H. S. %. Massey, Revs. Modern Phys. 28, 199 (1956); 8, H.
Bransden, A. Dalgarno, T. L. John, and M. J. Seaton, Proc. Phys.
Soc. (London) 71, 877 (1958); F. 8, Malik, Z, Naturforsch. 14a,
172 (1959).

I. INTRODUCTION

~ 'HE elastic scattering of electrons by hydrogen
atoms is the simplest example of atomic scattering

involving a composite system. As such it is not tractable
by exact analytic means, and has been the subject of
numerous successively improved calculations involving
various approximation techniques. As there have re-
cently appeared several papers' containing excellent
reviews of the subject, we will not attempt to include
one here. This paper is concerned with a Hulthen-Kohn
variational calculation for the 5, I', and D phase shifts,
making use of a more flexible trial function than has so
far been used. It is expected that this will substantially
improve the existing values in a manner similar to the
rapid improvement of the bound-state energy of a two-
electron system when more elaborate trial functions are
used in the Ritz variational procedure.

may be expressed as

4'0(r~) y to(rr)ri

b, sin(krt —sl7r)+a~ cos(krt —slsr)
or

(t', sin(krt+rt, ——',isr),
(3)

in which 0'~ satisfies all the preceding conditions and
contains the additional variational parameters c1, c2,

~ . c„.The Hulthen-Kohn stationary expression is

bL(= O,"kurt g
——kLb(ba( —a,bbgf.

The variation in L & is performed with respect to all other
parameters that may be contained by 0'~ as well as the
asymptotic parameters, p&, a&, and b&. As we may choose
the asymptotic amplitude to be 8=1, the two phase
parameters a& and b& cannot be varied independently.
Choosing a~= 1 and ha&=0 leads to the second Hulthen
methods (called this to differentiate from the original
Hulthen method), with the condition

bL, = —kgb,

s I, Hulthen, Arkiv Mat, Astron. Pysik 35A, No, 25 (1948),

where Ps(r) is the ground-state hydrogen wave function
e r/+sr, and I'ts(rt) is the normalized Legendre poly-
nomial L(2l+1)/4sr)~Pt(coset); r=r/r. In addition to
the above asymptotic condition, the trial function must
(1) be symmetric or antisymmetric in r& and r&, (2)
satisfy the boundary conditions at the origin of r1 and
rs, and (3) be an eigenfunction of the z component and
square of the total angular momentum.

Consider the integral

Lt,= t ~%((H E)+tdrrdrs, —
g J


