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Approximate Relativistic Coulomb Scattering Wave Function*
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A relativistic scattering wave' function, which is valid to second order in eZ for all electron velocities,
is developed. The wave function has as its dominant term the Sommerfeld-Maue function. The computa-
tional simplicity of the closed form Sommerfeld-Maue wave function is retained in this modified Somrnerfeld-
Maue function.

Applications of the wave function to the calculation of cross sections for the scattering of polarized
electrons and bremsstrahlung production at the short wave limit of the spectrum are given. A large first-order
correction to the Sauter-Pano formula for the bremsstrahlung cross section is obtained.

I. INTRODUCTION

~CALCULATIONS of various electrodynamic proces-~ ses, such as electron scattering and bremsstrahlung
production, require the use of a continuum Coulomb
wave function. Because of the complexity of the exact
series solution of the Dirac equation, an approximate
solution is desirable. One such approximate wave
function is provided by the truncated Born series. As is
well known, the Born series solution for a pure Coulomb
field diverges. This difhculty is overcome by replacing
the Coulomb potential by a screened Coulomb potential
and allowing the screening to vanish at the end of the
computation. ' The criterion for the convergence of
the resulting series is nZ/P(1. For problems such as
the computation of the bremsstrahlung intensity at the
short wave limit of the spectrum, the velocity of the
outgoing electron is zero, and the Born series cannot be
used. On the other hand, the Sommerfeld-Maue wave
function provides a closed form solution to the Dirac
equation which is valid to order nZ for all values of P.

We shall give a modification of the Sommerfeld-Maue
wave function accurate to order n'Z'. For p—1, this
function is equivalent to three terms in the Born
series; it has the obvious advantage, however, that it
remains valid for low velocities. In practice, this wave
function retains the computational advantages of the
closed form Sommerfeld-Maue wave function.

Some examples illustrating the relative simplicity
of computations utilizing this wave function are given
in Secs. III and IV.

II. MODIFIED SOMMERFELD-MAUE
WAVE FUNCTION

An approximate Coulomb wave function which
behaves asymptotically like a plane wave plus an
outgoing spherical wave is given by' 4

psM =Ne'&'E1 —(i/2W)n Vj
XrFr(inZ/P; 1; iPr —ip r)u(p), (1)
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' R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951).
2 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935).
'H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954).
4A. Sommerfeld, Atornbau used Spektrallznien (F. Vieweg un@

Sohn, Braunschweig, 1951), 2nd ed. , Vol. 2, p. 408.

where
N=I (1 inZ/p) —exp(7rnZ/2p),

where p and W denote the electron momentum and
energy, respectively, and

&Fr�(a;

b; x) denotes the
conQuent hypergeometric function. This wave function
diGers from the exact Coulomb wave function' by
terms of order neZ'/r. It is the purpose of this paper to
modify the Sommerfeld-Maue solution to include
terms of order a'Z2.

Setting p=fsM+fo, the Dirac equation gives

where
(H W)go= ——R, (2)

Po(r) =— t G(r, r')R(r')dr', (3)

where G(r, r') is the Green's function for the operator
(H—W). Since we are interested in the n'Z' contribu-
tion to fo, we replace G(r, r') by Ge(r, r'), the Green's
function for the force-free Dirac equation. Thus

f(r) =ltsM(r) Jt Ge(r, r')R—(r')dr'

To evaluate P(r) explicitly, it is convenient to
introduce the Fourier transforms:

y(k) — t y(r)e ~k. rdr.
(27r)' "

Ge(k, r') = ~I Ge(r, r')e—*"'dr
(2e)' &

R= (H—W)fsM=Ne"'(inZ/2Wr)n VFN(p),

with F= &Fr(inZ/p; 1; ipr —ip r). Since the asymptotic
form of fsM gives an exact description of the distorted
plane incident wave, the n'Z' corrections are required
only in the particular solution of the inhomogeneous
equation (2). The solution to Eq. (2), subject to the
boundary condition that Po represent a spherical
outgoing wave, is given by
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Then @(k)=AsM(k)+dc(k), where

yo(k) = — Go(k, r)R(r)dr.

Using the fact that

1 Hp(k)+8'
Go(k, r) = ~

—ik r

(2z») ' k' —p' —ib

where Ho= zz p+Pnz, and noting that

~f(p» yr) =— (p/») —&.f(p» pr), —

we find to lowest order in O,Z:

0! Z
R(r) = V e'i"e

2r2

~~ lim —iF, (a; 1;ip» ip r—)u(p). (7)
dQ

In this and subsequent expressions it is to be understood
that V„does not operate on the spin functions
u(p). Thus we obtain;

a'Z' Ho(k)+W t
" d

gg(k)= —X hm ' n V„hm-
16zr' k' pz i—b &~—J I 0 d

Xf'(1,~)dl u(P), (8)

where

0! Z
yc(k) =E

8%'(k' —p' —zb) k(y Xq)'

1
X lim —(e 4.P+p')

p,—+P

X
~

z» pqk+i p qk ln
r qz

k' —p' —2ipp,

p+k ) k' —p'
+ip(p q —q') ln

p k+z,&z
—& q

q2

X
~

z»y. qk+ikpq ln
l k' —p' —2ipp,

p+k
+zq(p' —y q) ln

) u(p). (12)
p k+—z)z &

We have retained zz in po(k) in order to facilitate the
choice of phase of the ln terms in the applications
given below.

The wave function which behaves asymptotically
like a plane waoe with an incoming spherical wave
can be obtained similarly. Writing iP=fsM+fc, and
denoting the adjoint of f and Pt, we find:

/sit=Ã*ut(p)e ' i' L1+ (z/2W)n Vj
X iFi(inZ/p; 1;zp»+zy r), (13).

dk e-'" 'yet (k),

~gg k—
&J.r

f (z,~) = iFz(a; 1;ip» iy r)dr— where

Q Z

q2+~2

q +zz . q 2p q 2zp/l+p,

with q= p —k. Using Eq. (9) we may write,

cPZ' Ho(k)+ w
Qe(k) = —X lim J(zz)u(p), (10)

2zr' k' —p' —ib ~-o

lot(k) =&*u'(p)
m8'( 'kp' ib—)k(P—X q)'

I
X hm —(n ye k+p')

p~o

X~ z»pqk+iy. qk ln
k' —p' —2ipzz

where

(zn pzz+pn q)d&z
J(zz)= ' — . (11)

p(q'+p, ') (q' 2.q 2pj»+„')— —

p+k ) k' —p'
+ip(y q —q') ln- ~+

p k+ilz& —
q

r
X( zrp qk+ikpqln—

k' —p' —2ipzz

We compute this elementary integral and use the
relations

(H (k)+~')~ Pu(P)=( k .P+p')u(P),
(Ho(k)+W)e qu(p) = (p' —k')u(y),

p+k
+iq(p' —p q) ln

~
. (15)

p k+izz &—

Equations (12) and (15) give the Fourier transforms
of the o.'Z' corrections to the Sommerfeld-Maue wave
functions.
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III. APPLICATION TO COULOMB SCATTERING
OF POLARIZED ELECTRONS

Using the modi6ed Sommerfeld-Maue wave function
we can And the differential cross section for elastic
scattering of polarized electrons. For large r, the
Coulomb scattering wave function has the form

We write do.=dosM+do. c, where do.ssr is the contribu-
tion from fsM and d~c is the rrZ correction and 6nd:

do'sM = L1—P2 sin2 (8/2) jdQ,
4P2P2 sin 4(8/2)

f (r) =exp$iy. r 2—(aZ/P) ln2Pr sin'(8/2) )u(p)

expLipr —2 (nZ/p) In2prj
+f(8)N(u) (16)

do o—— {2rP sin(8/2)L1 —sin(8/2) j
4P2P2 sin4 (8/2)

+P (1—P2)
'
*tan(8/2) sin'(8/2)

Xln sin'(8/2)n ()dO,

(23)

The diGerential cross section for scattering of electrons
with spin orientations speciled by ( (in the rest
system of the electron) is given by

d =(1/4~) T~Lf'(8)f()(1—'s;, )
X(Ho(p)+W)7d&, (17)

where S„is the 4-vector with components

( 12' ( 12' (i
S=l H- Ps

m(W+m) m )
Using the modified Sommerfeld-Maue wave function,
we can write f(8)=fsM(8)+fc(8) where fsM is the
contribution from the asymptotic form of the Sommer-
feld-Maue wave function and fc is the contribution
from the correction term. We use the asymptotic form
of the conQuent hypergeometric function to find

I'(1—inZ/P)
fsM (8)

I'(1+inZ/P) 4P' sin'(8/2)

( uZ
XLao(y')+ Wj exp( i lil siil'(8/2) [, (18)

E p
where y'= pr/r.

In order to find fo(8) we replace the Green's function
Go(1',1') by its asymptotic form

1 gtgf

Go(r, r') -+ ——LHo(p)+8'ge'&"'
1.—+oa y

Thus we obtain:

where n= (yXp')/~ pXp't is the unit normal to the
plane of scattering. This result is in agreement with
that obtained by use of an expansion of the exact
Coulomb wave function. ' The well-known McKinley-
Feshbach' cross section for scattering of unpolarized
electrons follows immediately from Eq. (23) upon
averaging over spin orientations.

IV. APPLICATION TO THE SHORT WAVELENGTH
LIMIT OF THE BREMSSTRAHLUNG SPECTRUM

Recent calculations of the tip of the bremsstrahlung
spectrum using an exact wave function for the outgoing
electron and the Born approximation for the incident
electron show that to lowest order in o.Z the cross
section does not vanish as might be expected from the
Bethe-Heitler formula but remains finite. ' Using the
corrected Sommerfeld-Maue wave function we can
easily obtain the nZ correction to the formula given by
Pano for the intensity at the tip of the spectrum. In
order to obtain results which are mathematically
simple, we restrict ourselves to the special case O'J))m.

The bremsstrahlung cross section is given by

n 8'g
poled'Ad&df)odf)y I »2

~

')»r
)

'
(27r)' pi

X-,' P jM»~2, (24)

where the subscripts 1 and 2 refer to the initial and
anal states, respectively. The sum is over electron
spins and photon polarizations.

The matrix element occurring in Eq. (24) is given by

j. e'~'

fc ~ ——L&o(p')+Wj "e '2"'R(r')-dr' (20).
y

~21
J $2 rr 'ee fldr, (25)

From Eqs. (20) and (6) we find

fc(8) =22r2 lim (k2 —p2)yc(k).
g~p I

Consequently from Eq. (12)

(21)

fc(8)= (~ P'~ 1+&')
Sps cos'(8/2)

X{2rfcsc(8/2) —1]+2 ln sin'(8/2)). (22)

and the common normalization factors have been
removed from the matrix element. The incident

~ F. Gursey, Phys. Rev. 107, 1734 (1957); 1.J. Tassie, Phys.
Rev. 107, 1452 (1957).' W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759 (1948).' U. Fano, Phys. Rev. 116, 1156 (1959). The bremsstrahlung
cross section at the tip of the spectrum was previously obtained by
Nagasaka [F.Nagasaka, thesis, University of Notre Dame, 1955
(unpublished)), using the Sommerfeld-Maue wave function for
both incident and final electron states. A similar calculation has
been made by Mihailovic [M. V. Mihailovic, Nuovo cimento 9,
331 (1958)g.
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electron state is represented by a plane wave plus an
outgoing spherical wave while the outgoing electron
state is represented by a plane wave plus an incoming
spherical wave. Writing IBM

——iP,+go the corrected
Sommerfeld-%blaue wave function becomes P=P,+imp

+Pc, where:

1Pi~=e o~' iFi(zuz/8i, ' 1; zPir zyi —1')u(yi),

idio ———(i/2Wi) e'2" n. & iFi(iuz/Pi, 1;

where 3f2~"' is the leading term in the expansion of
3f2~™in a series in o.Z. From the work of Bethe and
3/laximon' we infer that

16m''Z'
BMl2 p 2

&2 ' mS gq4

4 ( qzq k
&& sin2|t —

l

mz ——l+ (1 22ru—Z/Pi), (31)
q4 ( 4) mqz

0'ic= t e" 'pic(k)dk,

ip, r —iyi r)u(yi), (26) where 41= yi —k and cos8=yi k/Pik. Here we have
retained terms to order o.'Z' only.

In order to compute the sum occurring in do.~, we
use

$2, =u (y2)e '&" iFi(iuz/pp; 1; ipzr+zyz r),

ipzo ——(z/2W2)u (yz)e &"n V' iFi(z«/pz)
4zruz (2m 1 )

M»(o&=ut(y2) n e
q' & q' m&

e
—'" '4tizct (k)dk.

1; iPzr+iy2 r), (27)

g2

eCeg eqeC
+ + u(yi), (32)

2mk

Equations (12) and (15) are to be used for evaluating
4ic(k) and Qzc (k), resPectively.

We write Mzi=M2i +Mzi ", where Mzi M is
given by

MziBM= ~iP2tn ee '~'iPi, dr+ $2otn ee '~'iPi, dr

+~~iPi zn ee ' 'Piodr (28).

This is the matrix element used in the theory of
bremmstrahlung by Bethe and Maximon. ' The correc-
tion term is given by

M21 ip2b n'ee iplbdr+ $2c n'ee ill

+)l F2.'n ee-' y, cdr. (29)

which is formed by expanding M» for p2=0 in a
series in uZ. It follows from Eq. (29) that

zr'u'Z' 1 2 1 n zion yi+piq
Mzi&'~ =ut(y2) —n e

2 mk q Pi yi 41+Piq

2 n (qy, +qpi)n en (qyi+qp, )
+n e—+

q piq (yi'41+ piq)

n eq'+n. qn en q
u(y ). (33)

q'(yi a+piq)

We expand the normalization factors in a series in
uZ for pz —+ 0 to find

l fail
'

l
v2 l'= 2zr«(m/P2) (1+zruz/P, ). (34)

Using the results of Eqs. (31) and (34) and integrating
over electron and photon angles, we find for S'~&)m

dg BM= 42ruzzorp2 (1—zruZ) dk/k, (35)

with r p e2/m. The——results of Eqs. (32), (33), and (34)
are similarly combined to give for t/t/ &))m3f2~~ M contains both first- and second-order o.Z

contributions while 3@2~&'& contains second and higher
order terms. We may consider, however, only terms
through second order in 3f» and only the second-
order terms in &2~").

Writing the differential cross section as the sum of
two terms do-= do BM+do. c, we find

(36)d&c———(16/15)zruzz4r o'dk/k

From Eqs. (35) and (36) we find that the brems-
strahlung cross section at the tip of the spectrum is

19 i dk
dc=4zru'Z'ro'l 1—~uZ

l
—.

15 )k (37)
d&BM Lu/(22r)'j(Wi/pi)p2W2kdkdOQQ„

&& l&ilzl&2122 Z fM»'"l'
and The leading term in Eq. (37) agrees with the result

of previous calculations. ' Because of the large coeKcient
d~c= Lu/(2~) $(Wi/pi) p2W2kdkd&2dQ, of o,Z in the correction, this term will be important even

X l%l'l &zl' 2 ReM2i' '*Mzi"', (30) for light elements.


