PHYSICAL REVIEW VOLUME

119,

NUMBER 4 AUGUST 15, 1960

Approximate Relativistic Coulomb Scattering Wave Function*

W. R. JounsonN aAND C. J. MULLIN
University of Notre Dame, Notre Dame, Indiana

(Received April 4, 1960)

A relativistic scattering wave function, which is valid to second order in aZ for all electron velocities,
is developed. The wave function has as its dominant term the Sommerfeld-Maue function. The computa-
tional simplicity of the closed form Sommerfeld-Maue wave function is retained in this modified Sommerfeld-

Maue function.

Applications of the wave function to the calculation of cross sections for the scattering of polarized
electrons and bremsstrahlung production at the short wave limit of the spectrum are given. A large first-order
correction to the Sauter-Fano formula for the bremsstrahlung cross section is obtained.

I. INTRODUCTION

ALCULATIONS of various electrodynamic proces-
ses, such as electron scattering and bremsstrahlung
production, require the use of a continuum Coulomb
wave function. Because of the complexity of the exact
series solution of the Dirac equation, an approximate
solution is desirable. One such approximate wave
function is provided by the truncated Born series. As is
well known, the Born series solution for a pure Coulomb
field diverges. This difficulty is overcome by replacing
the Coulomb potential by a screened Coulomb potential
and allowing the screening to vanish at the end of the
computation.! The criterion for the convergence of
the resulting series is Z/B<1. For problems such as
the computation of the bremsstrahlung intensity at the
short wave limit of the spectrum, the velocity of the
outgoing electron is zero, and the Born series cannot be
used. On the other hand, the Sommerfeld-Maue wave
function provides a closed form solution to the Dirac
equation which is valid to order «Z for all values of 3.
We shall give a modification of the Sommerfeld-Maue
wave function accurate to order o?Z2. For f=1, this
function is equivalent to three terms in the Born
series; it has the obvious advantage, however, that it
remains valid for low velocities. In practice, this wave
function retains the computational advantages of the
closed form Sommerfeld-Maue wave function.
Some examples illustrating the relative simplicity
of computations utilizing this wave function are given
in Secs. IIT and IV.

II. MODIFIED SOMMERFELD-MAUE
WAVE FUNCTION

An approximate Coulomb wave function which
behaves asymptotically like a plane wave plus an
outgoing spherical wave is given by*™

IPSM = ]\7eip~r[1 bt (Z/ZW)(! . VJ
XiF1(iaZ/B; 1; ipr—ip-n)u(p), (1)
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where
N=T(1—1iaZ/B) exp(maZ/28),

where p and W denote the electron momentum and
energy, respectively, and 1Fi(e;b;x) denotes the
confluent hypergeometric function. This wave function
differs from the exact Coulomb wave function® by
terms of order a2Z?/r. It is the purpose of this paper to
modify the Sommerfeld-Maue solution to include
terms of order a?Z2.
Setting Y=y sm—+¥¢, the Dirac equation gives

(H=Whpo=—R, (2)
where

R=(H—W)ysu=Ne®*(iaZ/2Wr)a-V Fu(p),

with F=1F1(iaZ/B; 1; ipr—ip-r). Since the asymptotic
form of Ysm gives an exact description of the distorted
plane incident wave, the a?Z% corrections are required
only in the particular solution of the inhomogeneous
equation (2). The solution to Eq. (2), subject to the
boundary condition that ¢ represent a spherical
outgoing wave, is given by

vo()=— [Gx)R()ar, @3)

where G(r,r’) is the Green’s function for the operator
(H—W). Since we are interested in the a2Z2 contribu-
tion to ¥¢, we replace G(r,1’) by Go(r,t’), the Green’s
function for the force-free Dirac equation. Thus

$(0) =P (r) — f Go(r,t)R(r)dr', @)

To evaluate ¢(r) explicitly, it is convenient to
introduce the Fourier transforms:

1 ikerJp.
¢(k)=2—2;“>—3 fl,b(r)e“z dr;
(5)

1
Golk ') =—— f Gol(t,t)e— s,
(2m)?
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Then ¢ (k)= ¢sm (k)+¢c(k), where

olk)=— f Go(k, )R (x)dr. ©)
Using the fact that
1 Hyk)+W
Go(k,r)= —————g kT

(2m)® k2—p*—id
where Ho= - p-+pm, and noting that
Vf(pr—p-1)=—(p/n)Vf(pr—p-1),
we find to lowest order in aZ:
o272

R(r)=N—-=-"?"q
2r?

d
-Vplim —1Fy(e; 1;ipr—ip-v)u(p). (7)
0 da

In this and subsequent expressions it is to be understood
that Vv, does not operate on the spin functions
u#(p). Thus we obtain:

a*Z* Hy(k)+wW ® d
——— lim @ V,lim—
16m3 k2— p2—15 +0 a0 dg

polk)=—N

X1 (p,a)dpu(p), (8)

where

eiq-k—yr
l(,u,a)=f Fila; 1;ipr—ip-r)dr
r

4 |" ©

q2+“2 :'u
q2+,u"’| ¢—2p-q—2iputp2l’
with q=p—k. Using Eq. (9) we may write,

b0l Na2Z2 Ho(k)+wW
cK)=—

————lim J(u(p), (10)
22 R pP—ip 0

where
° (i putpe- q)dp
6= Sl
w  P(@+u?) (¢*—2p- q—2ipu+p?)

(11)

We compute this elementary integral and use the
relations

(Ho(k)+W)e-pu(p)= (e ke p+p>)u(p),
(Ho(k)+W)e- qu(p)= (p*— k)u(p),
to find
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a?Z?
82 (k*—p*—1i6)k(pX q)*

i
—(e-ka-p+2?)
b4

¢C(k) =N

X lim
w0
2

X (rqu+ip~ qkln—
ki p*—2ipu

P kZ_pZ
+ip(p-q—¢) In )
: ? ! p—k+iu q

2

X (ﬂ'p- qk+ikpg In——
k= p*—2ipp

+ig(p? )1 brk )] (p). (12)
— . n-————- .
iqg(p*—p-q PRy u(p

We have retained p in ¢¢(k) in order to facilitate the
choice of phase of the In terms in the applications
given below.

The wave function which behaves asymptotically
like a plane wave with an incoming spherical wave
can be obtained similarly. Writing y=¢¥smu—+y¢, and
denoting the adjoint of ¢ and ¢f, we find:

Ysu'= N*u' (p)e=i» *[14- (i/2W)a-V ]
X1F1(iaZ/B; 1; ipr+ip-1), (13)

and

= f dk it (K), (14)

where
A

(k)= N*ut (p)
oc (k) u (9187r2(k2_j;2—i5)k(p>< q)°

1
X lim [—<«~p«-k+p2>
w0 [ p

2

X( k+ip- gk In———
i aking

k2__ P2

+ip(p-q—¢°) In bk )J
p—k+iu q

2
X (1rp- qk+ikpg In—o T
K= p'—2ipu

+k
Fig(pi—p-q) 1n~’3—-)]. (15)
p—k+ip

Equations (12) and (15) give the Fourier transforms
of the a?Z2 corrections to the Sommerfeld-Maue wave
functions.



1272 W. R.

1II. APPLICATION TO COULOMB SCATTERING
OF POLARIZED ELECTRONS

Using the modified Sommerfeld-Maue wave function
we can find the differential cross section for elastic
scattering of polarized electrons. For large 7, the
Coulomb scattering wave function has the form

¥ (r)=exp[ip- r—i(aZ/B) In2pr sin®(6/2) Ju(p)
explipr—i(aZ/B) In2pr]

7

+£(6)u(p) (16)

The differential cross section for scattering of electrons
with spin orientations specified by ¢ (in the rest
system of the electron) is given by

do= (1/4W) Tr[fT (o)f(o) (1 _'iS;fYM'YS)
X (Ho(p)+W)]d2,

where S, is the 4-vector with components

p-¢ p¢

S={ (+———r,
(( m(W+m) B m

17

Using the modified Sommerfeld-Maue wave function,
we can write f(6)=fsm(0)+ fc(6) where fsm is the
contribution from the asymptotic form of the Sommer-
feld-Maue wave function and f¢ is the contribution
from the correction term. We use the asymptotic form
of the confluent hypergeometric function to find

B r(1—iaZ/B) aZ
 T(14iaZ/B) 44? sin2(6/2)

fsm(0)

aZ
X[Ho(p")+W] exp(i—é— In sin2(0/2)), (18)

where p’= pr/r.
In order to find f¢(f) we replace the Green’s function
Go(r,1’) by its asymptotic form

1 eipr
Go(r,t') — ——[Ho(p)+Wle» "—.  (19)
To® Ag 7
Thus we obtain:
1 eipr A
Vo = @)+ WI— [ r)r. @0
o0 A r
From Egs. (20) and (6) we find
Jo®)=2* Jim (F—plpe®). (@D
Consequently from Eq. (12)
a?Z?
f)=— (a-pa-pt+p?
fe(®) 5 ot /D) (a-p'e-ptp?)
X{w[csc(0/2)—1]+i1nsin?(6/2)}. (22)
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We write do=dosu-+doc, where dogm is the contribu-
tion from fsm and doc is the aZ correction and find:

a?Z?
T 4pE sin'(6/2)
a®Z?
ro=—"—
4432 sin*(6/2)
+6(1—62)% tan(0/2) sin?(6/2)
Xln sin?(6/2)n- }4dQ,

dosm [1—@?sin%(6/2) 142,

{mBsin(6/2)[1—sin(6/2)] (23)

where n= (pXp’)/|pXp’| is the unit normal to the
plane of scattering. This result is in agreement with
that obtained by use of an expansion of the exact
Coulomb wave function.® The well-known McKinley-
Feshbach® cross section for scattering of unpolarized
electrons follows immediately from Eq. (23) upon
averaging over spin orientations.

IV. APPLICATION TO THE SHORT WAVELENGTH
LIMIT OF THE BREMSSTRAHLUNG SPECTRUM

Recent calculations of the tip of the bremsstrahlung
spectrum using an exact wave function for the outgoing
electron and the Born approximation for the incident
electron show that to lowest order in «Z the cross
section does not vanish as might be expected from the
Bethe-Heitler formula but remains finite.” Using the
corrected Sommerfeld-Maue wave function we can
easily obtain the aZ correction to the formula given by
Fano for the intensity at the tip of the spectrum. In
order to obtain results which are mathematically
simple, we restrict ourselves to the special case Wi >m.

The bremsstrahlung cross section is given by

w
do=—— — pV kAR, | N:|?| N *
(2m)* py
X% Z IM21!21

where the subscripts 1 and 2 refer to the initial and
final states, respectively. The sum is over electron
spins and photon polarizations.

The matrix element occurring in Eq. (24) is given by

(24)

M21=f¢2*a~ee‘ik TYdr, (25)

and the common normalization factors have been
removed from the matrix element. The incident

8 F. Giirsey, Phys. Rev. 107, 1734 (1957); L. J. Tassie, Phys.
Rev. 107, 1452 (1957).

6 W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759 (1948).

7U. Fano, Phys. Rev. 116, 1156 (1959). The bremsstrahlung
cross section at the tip of the spectrum was previously obtained by
Nagasaka [F. Nagasaka, thesis, University of Notre Dame, 1955
(unpublished)], using the Sommerfeld-Maue wave function for
both incident and final electron states. A similar calculation has
been made by Mihailovic [M. V. Mihailovic, Nuovo cimento 9,
331 (1958)].
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electron state is represented by a plane wave plus an
outgoing spherical wave while the outgoing electron
state is represented by a plane wave plus an incoming
spherical wave. Writing ¢sm=v,+¢» the corrected
Sommerfeld-Maue wave function becomes ¥=vy,+ys
“+y¢¢, where:

Via=e"" " 171 (iaZ /B1; 1; ipwr—ip1- r)u(py),
‘l/lb: — (i/QWI)eier a 'V 1F1(iaZ/ﬁl; 1;

ipwr—ipi-r)u(py), (26)
1»010=-f e* ¢ c(k)dk,
Voo =u (pa)e 027 \F1(1aZ/B2; 1; ipar+ipe-1),
Yar' = (1/2W)ul (po)e 2 "a- v 1F1(iaZ/Bs;
U iprtinen), (27)

Yo' = f % Tyl (k)dk.

Equations (12) and (15) are to be used for evaluating
¢1c(k) and ¢acf (k), respectively.

We write Mo=MunP"+Mxn®, where MyB¥ is
given by

M21BM = fll/m;'r(! -ee ik 'rlpladl‘"‘ fpobT(X . ee‘ik"tlxladr

+f\//1aT0£'ee—ik TY1pdr. (28)

This is the matrix element used in the theory of
bremmstrahlung by Bethe and Maximon.? The correc-
tion term is given by

My®= f¢2bf(¥ ek dr- flhcfa -ee” kN dr

+f¢2;’a~ee‘ik"¢1gdr. (29)

M2 B contains both first- and second-order aZ
contributions while M@ contains second and higher
order terms. We may consider, however, only terms
through second order in M5,®™ and only the second-
order terms in My ®.

Writing the differential cross section as the sum of
two terms do=dopy~+doc, we find

dosv=[a/(2m)*J(W./p1)p:W kdkd:dQ,

X[ N1[*| N2 |5 2 | MaBM |2,
and
doc=[a/(2m)*J(W 1/ p1) p:W 2kdkd2dQ,

X|N1|2|N2|? 3 ReM oy @*M»®,  (30)
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where M@ is the leading term in the expansion of
M»BM in a series in aZ. From the work of Bethe and
Maximon?® we infer that

167?22
1

LT M| —
20 I 4t

4 ¢ k
Xsin20[—(m2——)+—](1—2MZ/61), (31)
¢ 47 mg?

where q=pi—k and cosf=p;-k/p:k. Here we have
retained terms to order o?Z? only.

In order to compute the sum occurring in dog, we
use

dral 2m 1
M@ =4 (p,) [“'e —‘"”*)
¢ ¢ m

eexq a-qa-e
]
1 , T

2mk ¢

]u@l), (32)

which is formed by expanding M3 for p,=0 in a
series in aZ. It follows from Eq. (29) that

1r2azZ2{ 1[ 2 la-qul-}-plq]
we—] —— e~ "7

My ® =’ (py)

mkL ¢ p1 p1-q+pg
2« (gptap)e-ee (gpitqp1)
+e-e—+
¢  p1g%(p1-q+p19)?

| a-eg’ta-qu-ea-q
¢*(p1-q+p19)

We expand the normalization factors in a series in
aZ for p,— 0 to find

N1 |2| Ny |2=2waZ (m/ p2) (1 +7aZ/B1). (34)

Using the results of Egs. (31) and (34) and integrating
over electron and photon angles, we find for Wi>>m

daBM=47ra2Z31'02(1—waZ)dk/k, (35)

with 7o=e€2/m. The results of Egs. (32), (33), and (34)
are similarly combined to give for W >>m

doo=— (16/15)ma*Z*r ¢dk/ k. (36)

From Egs. (35) and (36) we find that the brems-
strahlung cross section at the tip of the spectrum is

}u<pl>. (33)

19 dk
do= 41ra2Z27'02(1 —-—7rozZ)——. 37
15 k

The leading term in Eq. (37) agrees with the result
of previous calculations.” Because of the large coefficient
of aZ in the correction, this term will be important even
for light elements,



