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Reduction in Coercive Force Caused by a Certain Type of Imperfection
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As a Grst approach to the study of the dependence of the coercive force on imperfections in materials
which have high magnetocrystalline anisotropy, the following one-dimensional model is treated. A material
which is infinite in all directions has an infinite slab of 6nite width in which the anisotropy is 0. The coercive
force is calculated as a function of the slab width. It is found that for relatively small widths there is a con-
siderable reduction in the coercive force with respect to perfect material, but reduction saturates rapidly
so that it is never by more than a factor of 4.

I. INTRODUCTION

'HE theory of micromagnetics' has been suc-
cessfuP ' in explaining the experimental measure-

ments of magnetic properties of small ferromagnetic
particles, or other cases in which the magnetocrystalline
anisotropy energy is negligible. This theory, however,
failed to agree with experiment4 for particles large with
respect to the characteristic radius 80=3&/I, of
materials which have a relatively high magnetocrystal-
line anisotropy coefficient E.4 In particular, ' the theory
did not yield any stable domain configuration, and the
predicted coercive force was larger by orders of mag-
nitude than the experimentally observed one.

Recently, DeBlois and Bean' have found experi-
mentally that for the most perfect iron whiskers, a
coercive force approaching the theoretical value could
be obtained in certain parts of the samples. This
experiment strongly suggests that the micromagnetic
approach is fundamentally correct, but that the theory
assumes materials too perfect and ideal to be realized
experimentally. It seems therefore that the theory
should be modified to include imperfections in order to
fit the results in practical materials. The necessary
modifications can in principle be one or more of the
following types.

1. Finiteness

Up to now only an infinite circular cylinder was
studied' ' rigorously. For finite bodies (sphere'' and
prolate ellipsoid') only nucleation fields have been
calculated, and it is not known theoretically what
happens after nucleation. Now, while the whiskers in
the DeBlois and Bean' experiment can be regarded as
infinite cylinders when they are studied at some mid-

' W. F. Brown, Jr., J. Appl. Phys. BO, 62S (1959).' S. Shtrikman and D. Treves, J. phys. radium 20, 286 (1959).
3 A. Aharoni, J. Appl. Phys. 30, 70S (1959).
4 W. F. Brown, Jr. , Revs. Modern Phys. 17, 15 (1945).' E. H. Frei, S. Shtrikman, and D. Treves, Phys. Rev. 106, 446

(1957).
'R. W. DeBlois and C. P. Bean, Bull. Am. Phys. Soc. 3, 267

(1958); J. Appl. Phys. 29, 459 (1958); J. Appl. Phys. BO, 225S
(1959)

7 A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958).
8 W. F. Brown, Jr., J. Appl. Phys. 29, 470 (1958).' W. F. Brown, Jr., Phys. Rev. 105, 1479 {1957).

points, they can be regarded at best as semi-infinite
cylinders when studied near each end. It is therefore
possible that the finiteness of the samples is responsible
for the much lower coercive force near the ends of the
whiskers. The theoretical study of some Rnite, or at
least semi-finite bodies seems thus an essential part of
the theory and will have to be undertaken in the future,
It is, however, a rather complicated mathematical
problem and will be ignored in this paper.

2. Surface Roughness

For the theoretical study of the infinite cylinder it
is assumed that the surface is absolutely smooth, which
is never the case in practical samples. The high de-
magnetizing field due to scratches and other irregu-
larities of the surface might give rise to a local field
large enough to overcome the barrier for the formation
of a domain wall or of other con6gurations of mag-
netization reversal. There is some evidence that surface
irregularities are responsible, at least in part, for the
local variations of coercive force near the middle of the
whisker in the experiment of DeBlois and Bean.
Actually, when one of their samples was removed from
its capillary to check its diameter under the microscope,
then replaced and tested again, the first peak in coercive'
force was considerably reduced. " This might sound
like a scratch on the surface rather than any damage
to the internal structure. It should be noted, however,
that the bucking field has been reduced in the mean-
time so that the erst peak reduction might be due to
inclusion of a larger part of the low coercive force
material at the end. Also, DeBlois could not actually
And a correlation between rough study of surface and
local minima and maxima except in a few cases where
surface imperfection was severe as were the local
minima. " Anyhow, it does not seem reasonable that
this alone can cause the discrepancy between theory
and experiment, except probably for highly perfect
crystals such as whiskers, since the discrepancy between
theory and experiment is more severe for large samples
than for small ones, while any surface eGects are
expected to be less important, the larger the crystal.

' R. W. DeBlois (private communication}.
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3. Crystal lmperfectiorj. s

Crystal imperfections such as dislocations, impurities,
cavities, etc. , seem the most probable explanation for
the success of the theory in the case of small particles
and its failure in the case of large particles, since one
would expect the probability of finding an imperfection
to increase with particle size. Of the possible imper-
fections, the suggestion of Rathenau et al."that domain
walls might nucleate at regions where for some defect
of structure the local anisotropy constant K is low, is
adopted for the study reported in this paper. As a first
approach extreme mathematical difficulties are avoided
by treating only a one-dimensional model with only
one region of imperfection.

More specifically, a ferromagnetic material infinite
in all directions which has a uniaxial magnetocrystalline
anisotropy E (x) is assumed. The external field H is
applied along the s axis, which is assumed to coincide
with the direction of easy magnetization. The easiest
mode for magnetization changes is evidently rotation
of the spins in the ys plane, so that the direction cosines
are

A 0) Qy slnco) Q cosQ)

where
t=x/d, h=HI, /2K, T=dK1A 1, (7)

/h/ &1. (9)

Starting as usual'' with a material magnetized to
saturation in the + s direction and reducing the field,
a value h is reached in which the saturation solution
co=0 is no longer the stable solution of (6). Since any
change starts by a small change, at nucleation one can
write (6) in the form

d'(o/dP —T'(1+h)a) =0, t & 1, (10a)

d2~/d~2 —T2h~=0 ~&~1. (10b)

co and its derivative are continuous everywhere (in
particular at t=1) and the boundary conditions are
evidently

~'(0) =~'(")=0. (8)

It should be noted that h is de6ned in terms of 2K/I„
which is the coercive force for perfect material. Since
the defined imperfection cannot make the magnetization
reversal more difficult than when it is absent, the
equations need be solved only for

It is readily seen that there is no continuous solution
of (10) and (8) if h&&0, except for ~=0. For h(0 only
the region (9) is of interest and in it the only solution of
(10) which fulfills (8) and is continuous at t = 1 is

(2)

where co is assumed to be a function of x only.
Neglecting demagnetizing eRects, the energy is

/ dec)E= A
I

—
~
+E sin'co HI, cos~—dx,

&dx) (u=C exp[—T(1+5)-:(t—1)j, t&~1,
(11)

&u= C cos[T(—h) it)/cos[T( —h) 1j, t &~1.where A is the exchange constant, l, the saturation
magnetization. In writing (2) is was assumed that

E(x)=E( x), —
This function should also have a continuous derivative

(3) at t= 1. This implies the following relation

so that only x~&0 need be considered.
In a preliminary report' the nucleation field was given

for the case

—h~= cos 'v~,

v= T(—h)'*.

(12a)

(12b)

and for the case

E(x) =0 for x~&d,
=E for x~&d,

K(x)=Kx/d for x~&d,

=E for x~& d.

In the following the complete study of the case
expressed in (4) will be given.

The solution of this transcendental equation is the
required nucleation field. This field, calculated from
(12), is plotted in Fig. 1 as a function of the reduced
defect dimension T.

The question whether at nucleation the magneti-
zation changes continuously or discontinuously is
determined' by considering fourth order terms in ~

I.O-

II. THE NUCLEATION FIELD

The Euler differential equation, the solution of which
is the minimum of the energy integral given by (2) is,
when E is given by (4),

d'cv/dt' T'Ii sin&a —
~ T—sin2ru=0, t&&1, (6a)

d'ur/dt' T'h sinca= 0, t &~1,— (6b)

t 0.5—

X 0.2—

00
I

0.2
I

0.5
I

l,O 2.0
dlK/A ~ 5.0

0.25

lO.O 20.0

FIG. 1. The riucleation 6eld (dashed) and coercive force (full"G. %. Rathenau, J. Smit, and A. L. Stuyts, Z. Physik 133, curve) in terms of the coercive force of perfect material, HI, /2X,
250 (1952). as functions of the defect size, d.
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in (2). This gives for the energy change at nucleation and the general solution of (16) is

AE= B(v„tanv„+1 —3 cos'v„), (13)

where 8 is a positive expression. Equation (13) yields
a discontinuous jump of the magnetization at nucle-
ation for v„&0.732 and a continuous change at nu-
cleation for v )0.732. Using (12) the region
0&m„&0.732 is equivalent to 0& T&0.984.

T'h+C22 expf2(1 —h) lTth
co= 2 arctan (18)

2T(1—h) '*Cs expL(1 —h) lTtj
where C2 is a constant.

In each case cu and des/dt should be continuous at
t=1. For case 2, using (18) and (14) this implies

Ss2+T'hIII. SOLUTIONS OF THE DIFFERENTIAL EQUATION =2 arcsin$k sn(E —v, k)j, (19)2 arctan
25sT(1—h)'*

=—2T(—h)'*k cn(E —v, k), (20)

where v is given by (12b) and
14are=2 arcsinLk sn(u, k)$, t& 1,

u=E(k) —T(—h) &t,

S2=Cs exp[T(1—h)-', ]. (21)where
(14b) For k sn(E —v, k) = 1 the only solution is 52——0

which reduces (18) to the trivial solution (15). For
k sn(E —v, k)41 and for h&0, one obtains by using
the identity

E is the complete elliptic integral of the first kind and
sn is the amplitude sine" and k is to be regarded as an
arbitrary constant. The envelope singular solutions

tans= sins(1 —sin's) '*, (22)

At fields different from the nucleation 6eld, the
nonlinear equations (6) rather than (10) give the
stationary states. In this part the mathematical solu- 4T2(1 hb5 fg 2 Tsh)) 2I, 2
tion only will be given and the physical significance will

be discussed in part IV. Sg4+2 (2 h) T'Ss—2+T'h'
Equation (6b) is readily integrated and its general

solution which fulfils (u'(0) =0 is

co=0 and co=z (15)
in (19) and solving for S2

dn(E —v, k)'(de/dt)' —T'-h cosoo '—T' cos2oo =—22-, (16) (23)

are also possible for any value of t.
T(1—h)'*k sn(IC —v, k)+ Tt k' sn'(E —v, k) —h)'*

Equation (6a) can be readily integrated once to yield 2=

but further integration involves various types of func-
tions depending on the value of the constant A, so
that this constant needs to be evaluated erst from the

'value of the function at infinity. Two branches need
be considered.

Substituting this equation in (20)

vk cn{E—v, k)

+TLk' sn'(E —v, k) —hjl dn(E —v, k) =0. (24)

Substituting the identities"

( ) pC( ) ]
t&~1, 17

1 Cr2T'h expL2(1+—h)'*Ttl

2CrT 1+k ' ex 1+h iTt
co= 2 arctan

1. ~(~)=0
Substituting this value and {8) in (16) one obtains

A = —T'(2h+-,'),

and the general solution of (16), for the region (9), is

k' sn(v, k)
cn(E—v, k) =

dn(v, k)

cn(v, k)
sn(E —v, k) =

dn(v, k)

dn(E —v, k) =
dn(v, k)

(25)

where C& is a constant (the only possible solution for
h~&1 is (15), which is reasonable physically).

2. ~(~)= ee

Substituting this and (8) in (16) one obtains

A = —T'(—2h+-', ),

'2 P. F. Byrd and M. D. Friedman, FIandbook of Elliptic Integer als
for Engineers and Physioists (Springer Verlag, Berli-n, 1954).

i.e.,
k'$1 —sn'(v&k) j= 1—k' sn'(v, k) =0,

k'= sn'(v, k) = 1. (27)

"See reference 12, p. 20.

in (24) and rearranging, one obtains

k' cn'(v k) —h dn4(v, k) =0. (26)

Since h&0 the two terms in (26) are non-negative and
to be zero each shouM be zero which implies
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—h= (1—k') cn'(v k) dn '(v, k). (28)

Substituting the value k=O in (28) one obtains the
nucleation field formula (12). Moreover, using the
following approximations'

But for k —+ 1 sn(v, k) —+ tanhv and can be 1 only for
v~ ~. It is therefore seen that (18) cannot be an
analytic continuation of (14). On the other hand, if
one tries co (1)=0 in ('18) the only possibility is C2=0
which reduces (18) to (15). The solution (18) cannot
therefore be an analytical continuation of (15) either,
and the only possible solution for t~& 1 is (15) or (17).

The continuity of (17) and (14) at t=1 implies
relations similar to (19)—(20). Using again (22) and a
procedure similar to the previous case, one ends in this
case with the equation

—h= sn'(IC —v, k) dn'(E —v, k),

or by using (25)

2kT=F(k, p) (30a)

is +1 (and its only other value is —1 for ~=~r). The
magnetization curve is therefore rectangular with the
coercive force identical with the value of h at which
there is no longer any k satisfying (28).

The solutions of (28) were plotted, for various values
of T, and it was found that in every case, there was only
a single jump. In the region T&0.984, discussed in part
II, the coercive force is identical with the nucleation
field. For higher values of T the coercive force is larger
than the nucleation, and its numerical results are plotted
in Fig. 1 (full curve). The nucleation field is shown
dotted on the same figure. It should be noted that while
the nucleation field decreases considerably for large
defect size T, the coercive force saturates very rapidly.
In fact, it is always larger than 4, as can be seen from
the following argument.

It is very readily seen by plotting the elliptic integral
of the first kind F(k,ti) that the equation

cn(v, k) =cosv+~~k' sinv(v —sinv cosv),

dn(v, k) = 1——,'k' sin'v)

which are valid for k&(1, in (28) it is found that for a
constant T

(&k'/&
~

h ~) a=o=C/(v„ tanv +1—3 cos'v„), (29)

has a solution k(&1) for every value of T and for

p = arcsin((2k' —1)'/kf.

Equations (30) can be joined to read

sn(2kT, k) = (2k' —1)l/k.

(30b)

where C is positive. This is the same expression as in

(13), and actually if at nucleation Bk'/8
~
h~ is positive

there is a continuous change and vice versa, as will be
explained in part IV.

IV. THE COERCIVE FORCE

It has been shown that the only possible solutions
are (15) and (17). Since before nucleation M=O, at
nucleation the spins will follow the solution (17) if it
is possible and if it is stable. Otherwise there will be
a complete reversal to &u=v. . In order to follow (17)
for a certain value of h and T there should be a value of
k satisfying (28) and (12b). Supposing one plots the
solutions of k as a function of h for a constant T. As
long as Bk/B~h~ is positive, increasing ~h~ there is still
a solution. However, when k(~h~) starts to reverse,
this can no longer be followed; and there is a jump
either to the next branch on k(h) curve if any, or to the
solution co=+ if there are no more possible values of k
for the larger ~h~. In particular, at nucleation the
solution of (28) is k=O for any value of T, Therefore,
there is a jump at nucleation if and only if (&k/8

~

h
~ ) &=0

is negative.
It is readily shown by integration that in the case

(17), as well as for ~=0, the average magnetization

g
= lim —, cos+ds

L~~ L 0

'4 See reference 12, Eq. (127.01}.

Using these values of k and T in (28) and (12b) one

gets the solution

(32)

It is therefore shown that for every value of T, there is
a solution k of (28) and (12b) for the field (4k') ' and
therefore a solution for the 6eM ~, since k'&~1. Since
the coercive force has been shown to be the value of
h from which there is no solution k, this is certainly
larger than 4.

V. DISCUSSIGN

The results given in Fig. 1 are not so encouraging
as they seemed when only the preliminary results were
known in the former report. ' The fact that the reduction
in the coercive force is never by more than a factor of
4 with respect to the perfect material cannot explain
the experimentally observed reduction of some orders
of magnitudes. It should be noted however that a
reduction of .2 is obtained for a rather small dimension
of the imperfection. This is especially noted for materials
which have high magnetocrystalline anisotropy, like
MnBi. Taking for this material A =10 ' erg/cm and
E=10' erg/cm' one obtains that the reduction of the
coercive force to ~ at T=1 is for a defect 30 A wide.
This might suggest that dislocations may reduce the
coercive force, provided a further study will show that
a number of small defects of the same type can reduce
the coercive force much more than the reduction to ~

which is the maximum for ore imperfection of any
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dimension. It might also be possible to obtain larger
reductions for slow local decrease in E instead of the
step-function (4).

At nucleation something similar to a domain wall is
found in the case studied but this has not freedom of
movement and therefore does not change the magneti-

zation. It seems that in the case (5) a wall nucleated
might move more easily, but in that case the nucleation
6eld is' rather large for reasonable defect dimensions.
A combination of (4) and (5) might therefore give an
easy nucleation of movable wall and therefore a much
higher decrease in the coercive force.
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Etch Pits on Dendritic Germanium. A Clarification

P. J. HOL1KES
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Previous reports by Billig and Holmes of the orientations of etch pits on the main faces of germanium
dendrites are not at first sight consistent with those recently reported by Bennett and Longini. It is shown
that this discrepancy arose because the orientation of equilateral pits on {111}surfaces depends on the
etchant used. A check on the earlier work confirms that there is in fact no contradiction: ferricyanide and
WAg etches produce pits which point upwards on "perfect" faces grown in a "G direction, "while superoxol
and similar etchants give pits pointing downwards.

A RECENT publication by Sennett and Longini'
has brought to light some confusion, concerning

the directions in which triangular pits point on etched
dendritic germanium, in the reports originally published
from this Laboratory. ' ' These contained an error which
is attributable to the fact that, at the time, it was not
appreciated that the direction is also dependent on the
actual etchant employed. On {111)surfaces, the WAg
and ferricyanide etches form equilateral pits which
appear, in plan, as if they were bounded by facets of
{111)form, although they are actually much shallower. '
The No. 2 (Superoxol) etch, and others with the same
components, give equilateral pits which resemble, in
plan, {100)facets. The edges of these two types of pit
are both (110) lines, but their apices point in opposite
directions (Fig. 1).

The structure diagram in reference 2 (p. 357) does, in
fact, show clearly what the orientation of "{111)"type
pits should be on the "perfect" and "imperfect" faces:
they should always point upwards and downwards, re-
spectively. The directions illustrated are, however, cor-
rect for "(100)"type pits. Likewise in reference 3, the
drawings of x-ray diffraction patterns are correct for
the faces illustrated (one (111) point would be 70-,"
above the center on the "perfect" face, indicating an
upwards tilt of this plane), but the etch pit directions
shown are only correct for "(100)"pits. The results of
Bennett and Longini, whose dendrites contain an odd
number of twin planes and therefore have two faces
grown in the orientation corresponding to our "perfect"
faces, are thus in accordance with this scheme: the WAg

' A. I. Bennett and R. L. Longini, Phys. Rev. 116, 53 (1959}.
~ E. Billig, Proc. Roy. Soc. (London) A229, 346 (1955}.' E. Billig and P. J. Holmes, Acta Cryst. 8, 353 (1955).
~ P. J. Holmes, Acts, Met. 7, 283 (1959).

etch gives pits pointing upwards on both sides of the
specimen.

Our use of the term "imperfect" to describe the de-
velopment of faces of the opposite orientation is a rela-
tive one, and careful reading of reference 2 reveals no
mention of asterism in x-ray photographs, which were
all taken by the present author; no distortion of the

(a)

(b)

F1G. 1. (a) (above} Ge dendrite, "perfect" face, etched with
1 IIF:1 H202. 64 H20 for 10 min. (b) (below} Same area, re-etched
with ferricyanide etch for 1-', min. (&&280).


