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The anomalous spectra observed in conducting
crystals which is characterized by a large D value as
shown in Fig. 5 has not been satisfactorily explained. .
It may be due to Mn~ which is lodged near some defect
in the lattice which produces a strong axial field.

After this work was completed, we learned from
Professor %.Hayes that parallel and independent work
has been carried out at the Clarendon laboratory,
Oxford, and is being readied for publication. Results
obtained for CdTe are similar to the data reported here.
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The calculation of the magnetic iield dependence of ultrasonic attenuation in a semimetal is discussed on
a simple model of its band structure. The results are applied to the case where the electron and hole mean
free paths are large compared to the wavelength of sound. A series of oscillations and a large peak in the
attenuation as a function of magnetic field are derived. The oscillations are geometric resonances of the
type previously derived for metals, and the large peak is associated with the presence of density waves in
the electron-hole carrier gas. The theoretical results are discussed, compared with experimental data, and
found to agree semiquantitatively with the latter.

I. INTRODUCTION

ECENT experiments' ' on the attenuation of ultra-
sonic waves in semimetallic crystals maintained

at liquid helium temperatures have revealed a marked
magnetic field dependence over a wide range of field
strengths. Some features of the field dependence, in
particular the occurrence of geometric resonances, ' 4 are
shared by metals~' studied under similar circumstances.
The amplitude of the geometric resonances as well as
the mean level of attenuation in the region of geometric
resonances is significantly less in semimetals than in
metals. However there exists for semimetals an ex-
tremely large increase in the attenuation as the field is
increased past the point where the geometric resonances
are no longer observed. ' In some cases a subsequent
decrease in the attenuation has also been observed. In
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metals, on the other hand, the attenuation appears to
saturate' ' under these conditions. This effect consti-
tutes perhaps the chief difference between the be-
havior of metals and semimetals.

Blount" has given a detailed theory of the attenua-
tion applicable to semimetals in the absence of a mag-
netic field. However, theoretical studies'" " of the
magnetic field dependence of the attenuation have
confined themselves to a discussion of a free electron
model of a metal. It is the purpose of the present paper
to study the magnetic field dependence of the attenua-
tion in a simple model of a semimetal. The methods used
are based on those developed in CHH rather than those
of Blount. The model consists of the following. We work
in the effective mass approximation, and take both
electrons and holes to have isotropic effective masses.
We describe the modulation of the energies of these
particles by the passing sound wave in terms of de-
formation potential energies proportional to the local
dilation in the lattice. The electron and hole energies
are then respectively

E,=E,'+VD,V d,

+A +A ++DAV 'd)

where E,' and E~' are the corresponding particle en-
ergies in the unstrained crystal and d ~ expLi(I1 r—Iet) ]
is the displacement field associated with a sound wave
of wave vector q and frequency co. (1.1) then defines
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the deformation potential constants VD, and VD~. The
position dependence of (1.1) naturally implies the
existence of forces on the electrons and holes arising
from the acoustic strain in the lattice.

We focus attention on the role of the deformation
potentials in determining the acoustic attenuation and
take the simplest possible scattering mechanism, neg-
lecting any intervalley scattering e6ects. When the
mean free paths are much larger than the wavelength
of sound, we anticipate that the details of the scattering
are of secondary importance in marking the distinction
between a metal and semimetal compared with the role
played by the deformation potentials.

In Sec. II we consider the formal transport theory
which provides the basis for studying the ultrasonic
attenuation. In Sec. III we explicitly calculate the
attenuation in a representative semimetal as a function
of magnetic field. In Sec. IV we discuss our results and
compare them with existing experimental data. For pur-
poses of continuity and clarity we adhere to the nota-
tion and conventions established in CHH.

distribution functions in the usual manner;

fj,(r,t) = —e vf, (r, v, t) d'v,

jl, (r, t) =+e)r vfl, (r, v, t)d'v,

(2 3)

where f, and fl, are the electron and hole distributions,
respectively, and e is the absolute magnitude of elec-
tronic charge. In the absence of any sound wave the
distribution functions reduce essentially to a thermal
equilibrium Fermi-Dirac function, fo(V,E&), for de-
generate particles with Fermi energy Ep, and do not
depend explicitly on the static magnetic field Ho in the
semiclassical approximation which we employ (Bohr-
van Leeuwen theorem). In the presence of a sound wave
the distribution functions are determined from the
Boltzmann equations which they satisfy:

(4lri/(u)(v, /c)'
Sll = (4ll/M)e)jl[, Si = j&)

1—e(v, /c)'
(2 1)

where 8 is the electric field and j is the total current
density accompanying the sound wave. e is the di-
electric constant of the neutral background continuum.
The subscripts

~~
and J in (2.1) refer to components

parallel and perpendicular to q, respectively, and e, is
the sound velocity.

The total current density contains a contribution
from the electrons, je, and one from the holes, j~, .

) = jn+)n (2.2)

Both the electronic and hole currents excited by the
sound wave are obtained from the electron and hole

II. FORMAL THEORY OF THE ATTENUATION

A. The Constitutive Equation

As a model of a semimetal, we adopt a system con-
taining E electrons and E holes per unit volume moving
through a uniform neutral background which supports
the sound wave. The discreteness of the crystal lattice
in real semimetals is unimportant when the sound
wavelength greatly exceeds the interatomic separation.
A sound wave of propagation vector q and fre-

quency &o manifests itself as a velocity field u(r, t)
~ exp[i(q r &ut)] in th—e neutral background. In the
present model, interactions between particles are re-
placed by interactions of individual particles with a
self-consistent electromagnetic field derived from Max-
well's equations. For currents and fields varying as

exp[i(q r—&ot)] the latter may be reduced to

nfl nfl„Fi, nfl, nfl
+V +—'

at ar m/, av at „ll.

(2.4)

col l. 7e

fi f.l. — (2.6)

It is here that our previously mentioned assumption of
no intervalley scattering becomes explicit, This ansatz
is likely to have far reaching consequences, but we
expect that the main features of the magnetic field
dependence of the attenuation will not depend strongly
on the form of the collision operator. In (2,6) r, and rl,

In (2.4) the forces, F, and Fi„experienced by the
electrons and holes, respectively, are the sums of the
Iorentz force and deformation potential force acting
on each type of charge carrier.

F,= —e[8+ (Vil, /eire) qq u+ (v/c) XH]
(2.5)

Fi,——+e[8—(Vili/eire)qq u+ (v/c) XH$,

where the magnetic field H includes a part Hi associ-
ated with the sound wave in addition to the steady
field Ho. The quantities lit, and ml, in (2.4) are the elec-
tron and hole effective ~asses, respectively, because it
is these which determine the kinetic response of the
particles to forces in the effective mass approximation.
In (2.5) Vil, and Vill, are the electron and hole longi-
tudinal deformation potential constants defined above.

For the collision terms on the right-hand side of
(2.4) we make the relaxation time ansatz

f f-—
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are the electron and hole relaxation times, respectively;
f„and f,h are the corresponding particle distribution
functions after scattering. Since the impurities are
moving with velocity u, f„and f,h are local equilibrium
distribution functions centered in velocity space about
the impurity velocity u. Thus we have

We can now simplify the constitutive equations
(2.8) to

j,=a,'o, '.[8+(Vn,/eico) qq u m—u/er, ], 2.12
j j —crh oh' [8—(Ug)h/eicp) qq u+mu/erh]

by use of (2.10); where

f„(r,v, t) =fp[v u—(r, t), Er, (r,t)],
f,h(r, v, t) =fp[v u(r,—t), Erh(r, t)]

(2.7) o '= [I—R ]—'o /o p

oh = [I Rh] 'o'h/o'h
(2.13)

Ne = Jet [/e& ~ 1VI =j h~ i/eo (2 9)

The diffusive terms in (2.8) can therefore be written as

R,j„,=R, j,, ~a/nl l
= ~it jh) (2.10)

where R, and R~ are tensors which in our coordinate
systems have the components

(R,);,=R„8g,, (Rh), ,=Rh, bg, . (2.11)

for the distributions toward which f, and fh are locally
relaxing, where the Fermi energies Eh, (r, t) and Ehh(r, t)
are directly determined by the electron and hole
densities, N, (r, t) and Nh(r, t)

The transport problem involved in the calculatioii of
j, and j~ is now completely specified. After solving the
Boltzmann equations (2.4) with the collision terms given
by (2.6) and (2.7), we may calculate the current densi-
ties according to (2.3). This type of problem has been
considered and solved in CHH. The result of the calcu-
lation is an expression for j, and jI, in the form of a
constitutive equation. We may take over this result
essentially unchanged.

j.=o. [8+(VD,/eico) qq u mu/—er,] R,N—,'ep„
2.8

jh oh [8—(V——D~/eico)qq u+mu/erh]+RhNh'ep, .

In (2.8) o, and crh are the electron and hole magneto-
conductivity tensors, respectively, for frequency co and
wave vector p. They characterize the response of the
two carriers to the force fields accompanying the in-
cident sound wave in the presence of the steady field Hp.
The vectors R, and Rh characterize the diffusion of the
nonuniformly distributed carriers; N, '=N, (r, t) N, —
and Nh'=iVh(r, t) Narc the d—eviations of the carrier
densities from their equilibrium values. Collisions with
moving impurities have the effect of adding an apparent
drag m(u/r, ) and m(u/rh) to the force acting on the
carriers. It is the free electron mass, m, which appears
here because the actual momentum transfer to the
lattice in a collision involves the change in the expecta-
tion value of the linear momentum operator, which is
just the product of the free electron mass and the
velocity operator. The magnetic field H& associated with
the sound wave is not explicitly present in (2.8).

We now choose a right-handed coordinate system in
which q lies along the 1-axis, and Hp lies along the
3-axis. From the equations of continuity for electrons
and holes we obtain

B. The Attenuation Coefficient

The sound wave supplies both kinetic and potential
energy to the particles as it propagates. The electrons
and holes dissipate this energy to the neutral back-
ground through collisions. When the collisions suffered
by the particles are local and occur without any net
change of potential energy, it is possible to show by
straightforward manipulation based on the Boltzmann
equation that the average rate per unit volume, lV, at
which particles lose kinetic energy in collisions is
given by

W=-', Re{j,* [F+(Vn,/eico)qq u]
+jh* [8—(U&h/eico)qq u]), (2.15)

where we have again used complex quantities for con-
venience. Not all of this kinetic energy transfer is
irreversibly dissipated as heat; a part is coherently fed
back into the sound wave. Since the average electron
and hole velocities, (v, ) and (vh), respectively, before
collision in general di6er from those after collision, u,
there are net forces exerted by the electrons and holes
on unit volume of the moving neutral background.
These are

$.=(N /. )(( .)—),
gh= (Nm/rh) ((vh) —u),

(2.16)

where g, is the force exerted by the electrons and gh
is that exerted by the holes. In (2.16) m is the free
electron mass because the actual momentum transfer
to the moving lattice in a collision is again identical to
the change in the expectation value of the linear mo-
mentum operator. Energy is coherently returned to the
sound wave at an average rate per unit volume I'
=((p,+gh) u), . The net power dissipa, ted per unit
volume is then Q= IV—P. Noting that j,= —eiV(v, )
and jh ——eN(vh), and that Re(j'" 8) vanishes by virtue
of Maxwell's equations (2.1) we may write after some

are effective conductivity tensors which include diffu-
sion and are measured in units of the dc conductivities
of the respective electron and hole bands.

op =iVe'r, /m„o h'= Ne'rh/mh. (2.14)

We employ (2.12) in formulating an expression for the
acoustic attenuation, and take the required components
of o,' and e&,

' in any particular case of interest from
CHH.
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~=Q/l~ IuI"', (.218)

where p is the mass density of the semimetal being
represented by our simple model.

Our goal is now to render the calculation of currents
and fields self-consistent by combining (2.1), (2.2), and
(2.12), and to use (2.17) in investigating the possible
kinds of dependence of n on magnetic field and fre-
quency under the condition that the mean free paths
are much larger than the sound wavelength.

C. Syecial Cases

Ke consider the special case where m, =m~ ——m*, and
T =Tg= 7 ~ Under these conditions 0','=eg'. While this
assumption allows considerable formal simplification,
the special symmetry thereby established between elec-
trons and holes is likely to effect profoundly our final
result. Nevertheless we anticipate that eRects char-
acteristic of semimetals will not depend qualitatively on
relative values of eRective mass and relaxatioo time.

For the present we leave the values of VL, and V~~
unspecified, and obtain self-consistent expressions for
the total current, j=j,+jq, and for the difference of the
two currents, j,—jI,. In the coordinate system which we
have adopted (2.1) can be written in matrix form

a=F j,

where F is a diagonal matrix given by

(2.19)

0

manipulation

Q=——,
' Re{u* ((i/ea~)qq [)-', (VD,—VDa)

y(j.—j,)-', (v,+ v,)]+( / )

X [j-,'(1/, —1/, )+ (j,—j,)-', (1/,+1/ „)]
+ (1/r, +1/r@)lV mu)). (2.17)

The quantity of direct experimental interest is the
attenuation coefficient e, which gives the exponential
decay of sound intensity with distance. n is the power
density dissipated per unit incident energy Aux, or

neglected. From (2.19), (2.2), and the assumption of
equal eRective masses and relaxation times we may
transform (2.12) into

j.=o'e' [F j+(Vz,/eia)qq u —mu/e7], (2.21)

ji, o——'e' [F j—(Viii/cia&)qq u+mu/er],

where now a'=o, '=a~', and o'=We'r/m* is the dc
conductivity of either band of carriers by itself. Adding
the two currents in (2.21) and solving for the total
current, we obtain

o'( VD.—Vi)i )j=[l—e' (2a'F)]—'a' qq u, (2.22)

where I is the unit matrix. Subtracting the two currents
in (2.21) we obtain

(VD +VDi, ) 2m
j,—j&=o'a' — qq ——I u. (2.23)

CiQ) 87

Equation (2.22) reveals that when the effective masses
and relaxation times are equal the total current induced

by the sound wave responds only to the difference be-
tween the electron and hole deformation potentials.
The magnitudes and relative phase of VD, and VL)~ will

therefore have a profound effect on the resultant attenu-
ation. It is convenient to consider two extreme cases.
First we take VD, = VD~ ——VL), which corresponds to the
electron and hole energy bands moving in opposition to
each other, with variable overlap at any given point in

the crystal. Equation (2.22) shows that j =0, and conse-
quently no electric field develops in the system by virtue
of (2.19).Because of this, as we shall see, the ultrasonic
attenuation may become quite large and exhibit a
marked magnetic field dependence. Secondly, we take
VD, = —VDI, = VD. Here the electron and hole energy
bands move up and down together, with constant
overlap at any given point in the crystal. There exists
a tendency for the mutual separation of positive and
negative carriers. Thus a hnite j and 8 may develop in
the system, and therefore the attenuation remains
small for all values of magnetic field.

0 (v,/c)'
4i

0 (2.20) III. CALCULATION OF THE ATTENUATION

0 0 (a,/c)'. We substitute Eqs. (2.22) and (2.23) into Eq. (2.17),
and recalling that we have now set r, =v-~=a-, m,

after the e(o,/c)' in the denominator of (2.1) has been =mi„——m*, we obtain

28'LEO

p~'(Vi~. —Vi~a)' o'(Va.+Vr L) (Vz e+ Vna)
Q=-', Re u* —qq ~

[I—a' (2o'F)]—'e' qq+ e' qq — I
.e~ 2 AM er

a'm f (Vii,+VDi,) 2m ) 2Nm
+ a'

~

— qq — I ~+ I .u . (3.1)
er 4 ei~ er &

Equation (3.1) may be transformed by elementary manipulation into

Q= (iVm(u~'/r)8 S 8, (3.2)
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where 8 is a unit vector in the direction of polarization and

2e'(vEm

(UDe UDh) (UDe+ VDp) f(U'D8+ UDp)
I

1 —~' (2~'F)] '~' qq+- ~'
I

«q—
21M 2

|(VD+V») 2m q
qq — l I pl (33 )

2Ne'

where Jp is the Bessel function of order zero; gp(X) is
tabulated in CHH.

From (3.7) and (3.8) we calculate S~~ and obtain

3 (v,/v p)'(go —1)(m/m*)
(3.4) Sgg = 1+Q= (Nm

I
uj'/r)Sgg.

(go—1)'+(~.)'
It is instructive at this point to investigate the orders

of magnitude of the various parameters entering the ex-
pression for the attenuation coefficient. From (2.18)
and (3.4) we obtain

X go(1 —(Vo/mv~')'(v~/v, )'(ql)')

Since I is polarized along the 1-axis in the present
discussion of longitudinal sound waves, we need only
the 11 component of S in order to obtain the power
dissipation,

n= (2Nm/pv, r)Su. (3.5)

iVDr
Sn ——1—(m/m*) Re 0„'j 1+ —q'

I
. (3.7)

~m )
The tensor component 0-»' in the coordinate system

which we have adopted is given in CHH. For magnetic
fields such that the classical orbit radius is of the order
of or smaller than the sound wavelength one has

3i~r(1 —i~r) (1 —gp(X))—
1

&11
q'PI 1—ivor —gp(X)]

(3.8)

where X=ql/pp, r, l=vFr is the mean free path for
particles with the Fermi velocity, vp, and ~,=eH/m*c
is the cyclotron frequency. The function go is given by

p vr/2

go(X) = ~ Jp'(X sine) sinedg, (3 9)

n, by its nature, is the reciprocal of the mean free path
L of the sound wave in the semimetal,

L= (pv, r/2Nm) (1/ S„) (3.6)

For example, in bismuth, "E is 5.5)&10'7, and with a r
of 10 'o, (pv, r/2Nm) is about 10P, so that L=10 /PS~~

for bismuth. Ease of measurement and the general
order of magnitude of background attenuation require
that I. be of order 1 cm and perhaps somewhat less.
This implies that we must have S~~& 10' for the attenua-
tion to be readily observable in a typical semimetal.
We employ this estimate in subsequent discussion of
out final results.

We now consider the case where VD, =V~q= V~.
From (3.3) and therelation p.o= eN'r/ mwethenobtain
after straightforward manipulation

I
Vo ~ I very'

+2j I I

—
I (1—go+~'") (3 1o)

(tp&p ) Ev, l

Further approximation is based on the comparison
which we ultimately wish to make with bismuth. Ex-
periments indicate" that mvp'=0. 35 ev for bismuth if
we assume an average mass ratio (m/m*)=10. The
deformation potential, VD, has not been measured in
bismuth, but we may assume it is the same order of
Inagnitude as that measured in germanium, ' and
possibly even larger. As a reasonable estimate we take
Vn to be the order of 10 ev and set (V~/mv~') = 20 as
a value pertinent to a discussion of bismuth. " Then,
neglecting terms of order (UD/mv F') in comparison with
terms of order (Uo/mv~')'(ql)' in (3.10) we obtain in
the limit (q/)))1

l Ur q'
f m q gp(1 —gp)

S =1+3j
I (ql)'I —

I
(3»)

( mv F') (m*) (1—gp)'+ (cur)'

Equation (3.11) is plotted in Fig. 1 versus qR(=X) as
abscissa, where R= pFc/eH is the orbit radius of a
particle at the Fermi surface. As the field is increased
the attenuation goes through a series of oscillations, and
then rises to a rather large maximum. For the present
choice of cur=0. 1, Fig. 1 indicates that the maximum
occurs at about qE.=0.5. The amount of rise is more
than an order of magnitude greater than the amplitude
of the oscillations occurring at lower field values. As
the field is increased still further the attenuation begins
to drop, and continues to do so throughout the high held
region, in which quantum e6ects render the present
theory inadequate.

The existence of the maximum becomes more trans-
parent if the Bessel function Jo is expanded in a Taylor
series and the lowest nonvanishing power of X= (q//&v, r)

G. Smith, Phys. Rev. 115, .1561 (1959).
' D. Shoenberg, Trans. Roy. Soc. (London) A245, 1 (1952).' H. Fritzsche, Phys. Rev. 114, 336 (1959).
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is retained in the expression for go. This leads to an
approximate form for S» when X&&1.

From (3.3), (3.14) and the relation rr'=fI/e'r/m*, we
find that in the present case S» is given by

Equation (3.12) is not quite valid for the case illus-
trated in Fig. 1, but is a fair representation of S&~ in the
in the neighborhood of the maximum when it occurs at
a value X somewhat less than 0.5. Equation (3.12)
leads to the following approximate relation determining
the position of the large maximum in S».

(3.13)

We now consider the case where VD, = —VDJ —Vg).
It is first convenient to introduce the diagonal matrix
B= (20'F) ' with diagonal elements 811 2p, 822 883
= —ip, where

I&»
I

0

I

022

0
0

0'33

(3.17)

Using (3.17) and the expressions for the diagonal com-
ponents of B in terms of the y and P of (3.14) we find
after some (manipulation that (3.16) may be trans-
formed into

For the present orientation of magnetic field and choice
of coordinate system, the structure of o' is given in
CHH as

p =eie/8rl tT )

p= eic'/81rir'1I, ' (3.14)
(3.18)

Employing a matrix identity we may then write

[1—ir'. (2Ir'F)] 'ir'=[[I —Ir' B—'j '—1].B. (3.15)

l000 I
f

I
)

)
[ I

)
I

qR
I 0 ]2

Fxc. 1. The solid curve represents the relative attenuation as
given by Eq. (3.11) for the parameter values (ql)=10, (m/m*)
=10, car=.1, and (Vn/mIIp ) =20, where (Vn, +Vnil=ZVg&. The
hollow circles represent experimental data' on the attenuation of
a 60 megacycle per second longitudinal mode propagated along
an x axis of a single crystal of bismuth, with thd magnetic
field directed along the corresponding y axis. The solid circles
represent data' on the attenuation of a 60 megacycle per second
longitudinal mode propagated along an x axis, with the magnetic
6eld directed along the s axis of a single crystal of bismuth. Both
sets of data are normalized at the crossed point on the theoretical
curve, and the other points plotted accordingly.

7[(Irll Ir22 +Ir12 )+Zpirll j
X &il

[1(Irll Ir22 +Ir12 ) PIrll + (Ir22 +1P)rj

We must now investigate the orders of magnitude of
y, P and the components of e' in order to establish a
basis for approximate evaluation of (3.18). For a
typical semimetal of the highest purity which is in
practice obtainable, we may take 0-' 10" cgs. With

10, which is characteristic of bismuth, " v, 10'
cm/sec and a sound frequency of 50 megacycles per
second we get y 10 ", and P 10' upon evaluation of
the defining expressions (3.14). We can make P smaller
only by decreasing the frequency and hence the wave
number, q. But such a decrease would in practice lead
to a violation of the requirement that q/& 1, which
corresponds to the case of greatest interest to us. For
instance, in the case of bismuth, if we take a relaxation
time of ~=10 ' sec and an average Fermi velocity
1Ii;=10' cm/sec, we obtain /=1Ii r=10 ' cm. With a
frequency of 50 megacycles per second and a sound
velocity of 1I, 10' cm/sec we have q 3.0X10' cm '.
Thus we obtain ql 3.0, and any decrease in frequency
by several orders of magnitude in an attempt to make
p(1 surely results in the unwanted consequence that
q/(1. In light of the above considerations we evaluate
Eq. (3.18) in the case that P))1, keeping in mind the
representative values P 10' and y 10—'.

With elementary manipulation we can write Kq.
(3.18) as

&8~. S. Boyle and A. D, Brailsford, Report on International
Conference on Electronic Properties of Metals at Low Tempera-
ture, Geneva, New York, 1958 (unpublished), p. 58.
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where 2 and 8 are real quantities de6ned by

0-22 Z

=A+zB.
)&11&22+&12 +zP&»]

(3.20)

At moderate magnetic 6elds, such that co,v=q/, the
components of the dimensionless tensor e' do not
differ from unity in absolute value by more than a few
orders of magnitude. Since Eq. (3.20) is of degree zero
in P, the quantities A and B also cannot di6er from
unity by more than a few orders of magnitude. Further,
since y 10—~ for conditions of practical interest, we

may take (Ap)'+(1+By)'~1in (3.19).The first term
in the bracket of (3.19) is then proportional to y'.
Using Eq. (3.8) as an expression for o.ii' when cv.r =q/
we may then write down an estimate for (3.19).

(m~ ( VD''
s»=1+I —

I
«

I

Em*) Emvpz&

fvp) A'P
(3»)

L v, & (Ap)'+(1+B7)'

sentative mass ratio (m/m*)=10, the value of Sii
under our present assumptions concerning deformation
potentials and magnetic field range is therefore only of
order of magnitude unity, S~~ 1. This result gives rise
to an exceedingly small attenuation, since as we have
observed above, we must have S~~ 10' for semimetallic
values of E in order to have a readily observable
attenuation.

However, in view of the result of CHH that the
sound attenuation in metals undergoes an enormous in-
crease at very high magnetic fields, we explore the
behavior of the attenuation in our model of a semimetal
at magnetic 6eMs sufIiciently high to realize the condi-
tion co,r))q/. This is the only limit we need consider in
detail for the case where VD, = —VD~, =VD. In this
limit the components of o' are given in CHH as

1 ZGOT

((o,r)'+'p(q/)z/(vr

1 2 (l)'
azz =— — +1 zu)r-

(&e,r)z 51 icor—
(m'-(VD' (v"s -1+I —

I I

&m»'& E v. &

(v, ' gp(1 —gp)

& L(1—go)'+ '"3-
(3.21)

'is(q/)z/(or

DM~T) +zz(ql) /(dr](1 ztdr)

—((u, r)
I

(~. )'+rzs(q/)'/"r

(3.22)

For ~r=0.1 and (v,/vp)=10 ', the maximum value of
the second term in the bracket of (3.21) is approxi-
mately 10 '. With the above values for (v,/vp) and
"r=(v,/vp)q/, and a reasonable value for (VD/mv~')
such as that previously employed, say 20, the value of
the first term in the bracket of Eq. (3.21) is approxi-
mately 10 if we take A ~1 and y~10 ~. Kith a repre-

We substitute Eqs. (3.22) into Eq. (3.18) and make the
approximations q/))1, (~,r)))q/, and q/))cur. In the
process of making our approximations, we employ the
representative values co7. &0.1, g/&10, y 10, and
P 1P. After a lengthy but straightforward calculation
we obtain

(v')'( . )'( m 'l ( VD ) (v»' (a),r)
s-=1+I —

I I I (q/) I

—
I

& & /3'+a1+/' +~/'(. )'&' (.)'+-,'(q/)'/( )'.
(3.23)

Inspection of Eq. (3.23) shows that in the present

case S~~ indeed exhibits a maximum at sufficiently high

magnetic 6elds in addition to a slight minimum at the

same value of magnetic field where a large maximum

occurred in the case V~, ——V~~. However further in-

spection of (3.23) using the same values for all pa-

rameters as previously quoted again leads to the con-

clusion that for all values of field S~~ is here too small for

the attenuation to be observable. The interpretation of
this result is deferred for later discussion.

It is well to note at this point that our procedure of
giving separate consideration to the two cases, V~,
= VD~, and VD, ———VD~, was more in the interest of
convenience than necessity. We obtain a general ex-
pression for S~~ for arbitrary values of V~, and VLI~ by
substituting Eq. (3.15) into Eq. (3.3) and using the
relation o'=1Ve'r//m*. After some manipulation we find

(m ) (vp)'(VD, Vox)'— zr(Va. +VDa)
S»-—1+I —1«(q/)'I —

I I I B»(Ll —"B '7 '—&)»—~»'I 1+ q'
I . (3.24)

Em*& kv, & ( 2mvp' &

Our detailed discussion of the two separate cases indi- (3.24) dominates the first term by many orders of
cates that for reasonable values of the deformation magnitude, provided (Vz&,+Viz)~0. We may there-

potential constants the second term in the bracket of fore neglect the contribution of the first term in calcu-.
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lating the attenuation. Figure 1 is then an accurate
representation of the total attenuation under the condi-
tion (VD,+Un'„)/map') 1, which we expect is satisfied
for bismuth. The significance of the far greater im-

portance of the term containing the sum (VD,+Uzi')
is that to a good approximation both charge neutrality
and vanishing electric current are achieved.

p UD q' (my go.
S„=1+3] I (V~)'f —

I

I mvp'i (m*) 1—
go

(4 1)

Differentiation of Eq. (4.1) shows that the maxima and
minima in S~~, and therefore in 0., correspond to those
values of X=qR for which go' vanishes; these are listed
in Table I of CHH.

Since an ellipsoid can always be transformed into a
sphere by a coordinate transformation, the present
work can readily be generalized to apply directly to
actual semimetals. Such features as locations of ex-
trema would remain essentially unchanged by this
generalization. Thus the magneto-attenuation should
be a powerful tool for exploring the band structures of
semimetals, as has already been demonstrated by
Reneker's work.

It is instructive to consider the ultrasonic attenuation
in semimetallic crystals from a simplified physical view-

point in order to obtain a qualitative understanding of
the phenomena involved. In the presence of an applied
sound wave electrons and holes experience deformation
potential forces measured by the parameters V&, and

V», respectively. In the steady state a total current j
is set up which depends on these parameters only
through their difference, (VD.—VD~), as we see from
Eq. (2.22). However, the discussion in Sec. III implies
that the total current, and hence the self-consistent
electric field, is very small indeed. This result corre-

IV. DISCUSSION

We interpret the oscillations in S~~ coming from the
term containing (Vzi, +VD~„) as the geometric reson-
ances observed by Reneker in bismuth. Their physical
origin may be understood along the same qualitative
lines which are useful in understanding the effect in
metals. The geometric resonances in the attenuation
enter the theory through the Bessel functions appearing
in the conductivity tensor. These have to do with the
strength of interaction between individual orbits and
the force fields in the system, rather than with the
resonant absorption of energy. Inspection of Fig.
shows that the troughs in the attenuation are very
nearly spaced z apart, in units of qR. The spacing de-
parts most from m the higher the magnetic field and the
closer to the first geometric resonance peak. The loca-
tion of the minima are closely given by qR=ex. In the
lower field region, where qR)1, the (cur)' in the de-
nominator of Eq. (3.11) can be neglected so that we

may write

sponds to the frequently invoked assumption of charge
neutrality. It is the difference current, j,—j&, which re-
sponds to the sum (Vz,+U&z), as we see from Eq.
(2.23). The sum of deforma, tion potential parameters
essentially represents an unscreened external force act-
ing on the system without modification by long range
electric fields. This is why we can observe acoustic
attenuation in semimetals despite the low carrier con-
centration. Each carrier responds to this force symboli-
cally as j, 0, ,'(V—D,+VD~) and j& O.

A,
-', (VD,+UDGE, ).

Thus the power dissipation will schematically be given
by Q~o. (UD, +Uzi&)', which may be compared with

Eq. (3.7), or more generally with Eq. (3.24). Since
relative extrema in Q and therefore in n then corre-
spond to extrema in cr, the attenuation varies as the
response of the system to the unscreened part of the
deformation potentials, namely (VD.+UDGE). For ex-
ample, if the magnetic field has a value such that the
orbit radii are given by 2R=nX, then the total mo-
mentum communicated to a particle around an orbit
averages to zero. The response to the external force
represented by (Vzi,+VD&) is therefore a minimum,
and the attenuation should pass through a minimum.
This qualitative result agrees with the calculated at-
tenuation as presented in Fig. 1, the condition 2R=mA
being equivalent to qR=em.

An analogous discussion can be given of the term in
the attenuation containing the difference combination
(Vz,—Vz A), which is the quantity giving rise to the
current. The procedure of rendering the fields and cur-
rents self-consistent now implies that the force repre-
sented by (VD,—UDI„) is very well screened. The effect
of the residual long range electric field is to reduce the
efficacy of (V&,—Uz&) by the factor p=coe/Sma', as
can be inferred from Eqs. (2.22), (3.15), and the defini-
tion of B. The corresponding power dissipation and
contribution to the attenuation are then proportional
to p' at all except the highest fields, and consequently
are very small. At very high magnetic fields, where

(a&,7)'& 1/y, inspection of Eq. (3.23) indicates that the
contribution to the attenuation arising from (Vo Vg)Q)

becomes of degree zero in y while decreasing with field

like 1/(co, r)' from an unobservably small and broad
maximum. The screening of (VD,—Vial, ) is in fact re-
duced in the presence of very high fields, but the in-

crease in the corresponding part of the attenuation is

insufficient to make any perceptible contribution.
One can obtain some insight into the physical sig-

nificance of the great peak appearing in Si~ by following
a direct kinetic approach. When complete screening is
realized 8=0, and the only forces acting on a given
particle species are the magnetic force and a deforma-
tion potential force F. We multiply the Boltzmann
equation by velocity, then integrate over velocity, and
after some manipulation obtain an equation of motion
for the average velocity v at a point when the cyclotron
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orbits are much smaller than a wavelength;

Bv v —tl pq&VD—= ———co,vt(z+ uS —i——v.x, (4.2)
Bt v mQ) 3 GO

&u„= (v p/v3)q. (4 3)

When H is 6nite, transverse motion of the electrons
and holes occurs as well.

Such a sound wave may be excited by a longitudinal
perturbation of the same wave number, q, whose fre-
quency is some co. Suppose we consider H to be fixed
and imagine that ~ can be arbitrarily varied. Then
there will be a certain frequency dependent absorption
of energy by the carriers. In the absence of collisions,
the absorption is a 8 function centered about co„. If we
now suppose that collisions occur, the absorption versus
co curve will broaden, and the frequency of peak ab-
sorption may shift away from co„. Thus far we have con-
sidered only fixed field H and have discussed the shape
of the absorption versus ~ curve for 6xed H. Let us now
consider the dependence of the shape of these curves
on H. The resonant frequency co„ increases as H in-

where u is the lattice velocity amplitude of a longi-
tudinal disturbance of wave number q and frequency co

moving in the direction of the unit vector i. The mag-
netic field is taken perpendicular to i and along the
direction of the unit vector 9. In obtaining Eq. (4.2) we
neglect for simplicity the distinction between the true
electron mass and its effective mass in the crystal.
Further, we do not yet necessarily require that co= qv„
as would be the case for an applied sound wave of
velocity e,. The first term on the right hand side of Eq.
(4.2) represents the frictional force experienced by the
average velocity and the second term is of course the
Lorentz force due to the magnetic field. The third term
represents a deformation potential force, and the fourth
term is a hydrodynamic contribution arising from the
nonuniform carrier density. The latter term is in fact
equal to —&p/mX, where E is the local density and p
the scalar pressure in a degenerate Fermi gas of particles
with mass m whose density fluctuates harmonically in
position and time with wave number q and frequency co,

respectively.
Let us now neglect collisions by sending 7. —+ ~, and

take the deformation potential force to be zero, VD ——0.
The resulting equation of motion possess a solution of
the form v e'(~~ """provided

~ = [(»'/3) q'+~.')''. (4.3)

We interpret Eq. (4.3) as giving the natural resonant
frequency of a sound wave of wave number q in the
carrier gas in the presence of a magnetic field. For
H=O this collective oscillation becomes a pure longi-
tudinal mode of wave number q, and corresponds to a
wave of density Auctuation in the electron-hole gas.
The resonant frequency and wave number are then
related by

creases, and in general we anticipate a change of shape
of the absorption versus co curve. Let us now cease to
suppose that the relation between q and cv is arbitrary
and make the perturbation specifically a sound wave in
the background medium with co=qe, . Then for any H
and or in the megacycle range we shall be sitting on the
low-frequency tail of the absorption versus frequency
curve. The resonant frequency given by Eq. (4.3) is
far higher than any applied ultrasonic frequency of the
same wave number q.

Let H now increase and consider what the depend-
ence of the absorption on 6eld might be at the fixed
frequency co=qv, . One can discern two possible effects.
First, as the magnetic field begins to increase the ab-
sorption versus frequency curve can either broaden or
increase in over-all height or both without a major
shift of the line center. This would account for the
initial increase in the attenuation occurring as qR
becomes less than unity. Second, as the field becomes
inde6nitely large, the position of peak absorption corre-
sponding to the line center shifts to higher frequencies
further away from the applied frequency co=qv, . When
this shift begins to dominate the effects of broadening
and enhancement which increased H brings about, the
attenuation will finally decrease with increasing field.
Thus the field at which the absorption or attenuation
is greatest for fixed co=qv, has nothing directly to do
with the resonance frequency for the type of collective
motion described by Eq. (4.2). Instead, it relates to the
magnetic field dependence of the low-frequency tail of
the general absorption versus frequency curve associ-
ated with the existence of the collective mode. Because
the tail of a resonance is involved, we infer that re-
laxation effects will play an important role.

The above remarks may be compared with the re-
sults of direct calculation based on Eq. (4,2). In the
presence of an applied sound wave, co=qv„we seek a
solution of (4.2) of the form v e '"'. The velocity
amplitude in the direction of propagation is then
given by

(1+i&orUD/mv, ') (1 mr)u—
(4.5)

[1 i(or+ ((u,r)~—+ (v p2/3v, 2 —1)(i+(ar) cur]

This result for e can be inserted into

g=-',—ReP v,*J —X~[(v.—u)*/r]uj, (4.6)

where F=iq(Ur u/v, ) is the deformation potential force,
and 5» can be calculated directly in the range of
interest, qR(1. The result is

(qi)'( /. )'(U / ~ ')'( ~ )'
Sgg ——1+,(4.7)

[(~.r)'+-;(ql)']'+-'(v p/v )'(q/)'

where we have made approximations employing the
inequalities (v p/v, )))1,cur/ql= v,/vs((1, and (Ur&/mvv')
)1 which characterize the crystal, and also the in-
equalities q/) 1, ~,v-))1, and qR(1 which characterize
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the values of wavelength and magnetic field in the
region of interest. Neglecting the (ql)'/3 compared to
(a&,r)' in the first term of the denominator of Eq. (4.7)
we obtain Eq. (3.12) for the case m=m*. Thus, from
the above derivation of the attenuation coefFicient in
the range qR(1 we see that the high field peak repre-
sented in Fig. 1 is a manifestation of a collective motion
in the carrier gas, and is associated with a wave of
density Quctuation induced by the applied sound wave.
Differentiation of Eq. (4.7) shows that its maximum
occurs at a value of magnetic field given by

From Eqs. (4.7) and (4.8) we see that the collision
time or mean free path dominates both the position
of the peak and its shape in a complicated way. Since,
for practical purposes, q/(((»/v, ), Eq. (4.8) may be
replaced by

which is identical to Eq. (3.13). However, if the colli-
sion time were so long that ql))(»/v, ), the effects of
relaxation would be negligible and Eq. (4.8) would

imply a peak at

&v,r = q//i/3, or &u, = qual/K3. (4.10)

We have seen above in Eq. (4.4) that (1/%3)gal, is
precisely the natural resonant frequency, co„, of the
carrier gas for a density fluctuation of wave number q
in the absence of collisions, magnetic field, and applied
sound wave. Although the case of such a long mean free
path is unattainable in practice, it is of some physical
interest to note the connection between the value of ~,
at peak absorption and the value of co„at zero field
when collisions are negligibly rare.

The general level of ultrasonic attenuation in semi-
metals is less than that in metals and the geometric
oscillations are less marked, for given gl. However,
although their amplitude is relatively lower than in
metals, the detection of the oscillations is facilitated by
using a field modulation technique, such as was em-

ployed by Reneker. This would be difIicult in high
purity metals, for, because of their high conductivity,
one cannot get a suitably modulated magnetic field to
penetrate them at low temperatures except at very low
modulation frequencies.

The behavior of S~~ as presented in Fig. 1 bears con-
siderable resemblance to the measured attenuation of
60 megacycle longitudinal sound waves in bismuth. '
The measurements show a series of relatively weak
oscillations (geometric resonances) in the attenuation
as the field is increased, followed by a large rise whose
magnitude is an order of magnitude greater than the
amplitude of the low field oscillations. The data indi-
cate, though perhaps not conclusively, a subsequent
decrease in the attenuation. For the one orientation at
which the onset of the rise took place at a significantly
lower field, there is definite evidence of a subsequent
decline in the attenuation as the field is further in-
creased. Extended measurements at higher fields are
clearly desirable for a variety of orientations. Experi-
mentally, the large increase begins in bismuth at about
H 100 gauss. For r=10 ', ql=10, and (m/m*)=10,
which were the values used in constructing Fig. 1, the
large maximum in S~~ occurs at a value of qR corre-
sponding to II 125 gauss. The values of relaxation
time and frequency employed are intended to typify
the values attained in the experimental work. Since the
effective mass ratio (m/m*) = 10 is roughly comparable
to an average mass ratio for electrons and holes in
bismuth, we tentatively identify the large increase in
the attenuation observed in bismuth with the high field
peak in S~~ here derived.

V. ACKNOWLEDGMENTS

The author is very grateful to Professor Morrel H.
Cohen and Professor Andrew W. Lawson for their con-
tinued encouragernent in many valuable discussions and
for calling his attention to this problem. The work has
been supported in part by a grant from the National
Science Foundation.


