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Modulation-Effect Corrections for Moments of Magnetic Resonance Line Shapes*
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Stamford Urttpersity, Stanford, Califorlva

(Received August 10, 1959)

Corrections are derived for the calculation of the second and fourth moments of magnetic resonance lines
from experimental data, obtained by using the low-frequency modulation method. The results for 0' phase
shift between Geld modulation and the lock-in reference are
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Furthermore, it is found that no corrections are necessary for the calculation of intensities despite distor-
tion of the line shape resulting from modulation effects.

The equivalence of field and frequency modulation is proved for signals describable by Bloch's equations and
the discussion of the general case strongly supports the general validity of this equivalence.
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Since the output of the lock.-in detector gives, in first
approximation, a signal S(co) proportional to dx"/de,
the formula usually employed to calculate the experi-
mental moments' is

(co, „")A,
"=M„"/MP",.

M„"= — '

co"+'S(to)dto/(st+1).
(2)

I. INTRODUCTION

SKVERAI years ago Andrew' derived formulas to
correct the experimentally-obtained second and

fourth moments for finite modulation amplitude. This
paper deals with this amplitude correction and, further-
more, with corrections needed when the modulation
frethttertcy is not negligibly small compared to the line
width. This analysis should be useful not only in
nuclear magnetic resonance experiments, but especially
in paramagnetic resonance studies which presently
tend to employ higher and higher modulation fre-
quencies to improve the signal-to-noise ratio.

II. CALCULATION OF EXPERIMENTALLY-OBTAINED
MOMENTS AND INTENSITIES

Let x(to) =g —ix" be the complex susceptibility,
where y" describes the absorption and x' the dispersion
curve; the frequency scale is assumed to be so displaced
that the center of the line is at co=0. The nth moment
of the absorption curve then is defined by

These moments will differ from the correct ones
LEq. (1)) if modulation effects are present.

If the field modulation is of the form H~ cos~~t, the
signal immediately before loc¹in detection can be
simply obtained from the expression':

A (~,t) = —P x(to+ttt(uM)
m=—oo

vvt, (E p COS(oMt+iE pp SintoMt), (3a)

, p=rrtJ~ (2tt)/tt; E,ps =d[J (2a)]/d(2tt);

2a =yHM/&oM. (3b)

(y=gyromagnetic ratio, J =Bessel functions of 6rst
kind. ) The imaginary part of Eq. (3a) represents the
signal corresponding to an absorption-mode hf (high-
frequency) demodulation (i.e., detection of the signal
component 90' out of phase with respect to the driving
hf field). The real part describes the signal obtained
for dispersion mode hf demodulation. It may be noted
that, for either absorption or 'dispersion-mode hf
demodulation, both y' and x" contribute to the signal
before lock-in detection because of the factor i of the
second bracket term of (3a).

The conditions under which Eq. (3) can be applied
to the present problem are that (1) the line width,
co~ and yH~ have to be small compared to the resonance
frequency, (2) Hi has to be so small that no saturation
effects are present, and (3) it is assumed that frequency
and 6eld modulation are equivalent. (This is discussed
in the Appendix. )

Assuming an absorption-mode hf demodulation and
0' phase shift between the field modulation and the
phase reference of the lock-in detector, the lock-in
output is

S(co) = Q X"(co+mPPM)K„„P,*Supported in part by the joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

f' This paper was prepared during a leave of absence from the
University of Freiburg, Freiburg, Switzerland.

' E. R. Andrew, Phys. Rev. 91, 425 (1953).' G. E. Pake and K. M. Purcell, Phys. Rev. ?4, 1184 {1948).

'K. Halbach, Helv. Phys. Acta 29, 37 (1956). (A more con-
venient expression for the discussion of the modulation-distorted
line shape is also given in this paper. )
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and M„"becomes

GO
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J „=-
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(tt+1)M„"=—Q M„+t „"( o»&r)pI—

X P E, mo/p(tt+1).

Using the identities

(4)

For or,l~ =0, these results are in agreement with
Andrew' s. This agreement is not completely obvious
because Andrew derived his formula via a Taylor
expansion of the shape function p" which for arbitrary
functions x" is not justified for all values of II~. Since
our Eqs. (6a) are valid only for small Hr an&i one might
be interested in the intensity or moments of the Hi-
broadened line, we give a method for rigorously deriving
Andrew's result. I.et gi" be the Hi-broadened line

shape of the absorption line. If co~ is small enough so
that the signal is all the time determined by the
instantaneous value of the applied s field, the lock-in
output is given by

IvI2 K

S(kc) = i X& (&d+'yHsr coskv&oct) coskc&&rtd (&d&&rt) v

and

=1 for r=0
J„J„~,

=0 for r QO,

mJ (2a) =aLJ„&(2a)+J„+„(2a)j,

and M„"becomes

~oo ~2@

(o&+ /Hsr cosy)G&
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BIO"=yH~3f 0",
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+ Skv&hf +4kv&M ( YHv&r) +a (7HM)

(6a)

4 It can be shown that the relation between the experimental
and true intensities and moments has the same structure as {6b)
even for arbitrary periodic modulation, as Professor Bloch
kindly pointed out to the author. The following is a brief outline
of the derivation of the correction formulas for this more general
case.

The procedure for obtaining A (&e,t) is the same as in reference
3. We represent the hf field by H& (t) =Re expt[kvt+n (x)g.
cx{x)=o.(co~t) describes the effect of the field modulation and is
therefore proportional to yHJ)~/co~, where H~ is a measure of the
modulation amplitude and so~ the fundamental frequency of the
modulation. If we represent e'~( ) through

feria (a) — g ~ ~t'one

m

we obtain, for the signal B(co), after lock-in demodulation (it is
assumed that the lock-in detector responds only to the funda-

are easily calculated:

80=1,
82= 28 )

B4——2a'(3a'+1),
B,=2a'(10a4+ 15a'+ 1),

-82~i= 0

Thus, the experimental intensity Mo", the seco d
moment and the fourth moment are related to the true
values by

4 x "0
Xcosydydkc/(tt+1),

which can be verified to confirm Andrew's result.

mental frequency ~~, i.e.,
2trl o)M

B (ke)~ A (ke, t) coskesrt&d&&cdt):
0

B (&e)= Z X(ke+»tketr)Cm(em+1 +Cvv —& )~

Using M„= j'"„B(&e)~"+'d—~/(I+1) and M =J'-" x(~)~"d~,
we obtain

-+& (et+11
Z M. „+,(—~~) &p)

Dp= Z c (c,„+&*+c &*)mp

It can easily be shown that D„can be expressed by
f&2%' dp

Dp= cosxe ' &*& e' &*&dx/vr(t')p. —
Jp dye'

Since n(x) is proportional to yH»r/&e&&k= 2&&, Dp can be represented
by

D~= 2 Bbt Ct').
ft=l

where the coefficients bp, are independent of H~ and co~. Using
this in the last expression for M„, it is clear that M„can be
represented by

n r

M„=yH&vr Z {M„' Z ves&v'(yH&e)" ~eb„„„'
r=p

+M." & ~sr" (vH&&r)"
t&t=p

with H~- and co~-independent complex coe%cients b„,„', b„,„".
Because Mp'=0, we get, particularly for the intensity Mp.
Mp =pH~bppp Mp . Assuming again sinusoidal modulation and
0' phase shift between field modulation and the phase reference
of the lock-in detector, the integrals in the expressions for the
coe%cients D„are easily calculated and lead, of course, with a
D„=B„+&,to a reproduction of Eq. (5).



1232 K. HAL BACH

It may be worthwhile to mention that, except for a
trivial proportionality to H~, the experimentally-
obtained intensity 3fp" is completely independent of
H~ and co~. Hence, the intensity is invariant even
though the line shape may be wildly distorted by
modulation eRects.

The eRect of a mixture of absorption and dispersion-
mode hf demodulation upon the experimentally-
determined moments is sufficiently simple that no
discussion is necessary here. The results are more
complicated when a phase shift P between the field
modulation and the lock-in phase reference is present.
If we assume absorption-mode hf demodulation, the
experimentally-obtained eth moment is

M„"cosP+M„,pp" sing
("~,-p")A =

Mp" cosP+M'p, pp" sing

where M„"is given by Eq. (4) and M"„pp is determined

by
x+t ("+1'l

M-,pp" ——Q M„+t „'(—(vsr)
~

E p

&-,ppmp/(n+1).

Evaluating these expressions, using (3b) and (5),
we finally get [with M„'=J'"„x'(cu)a&"d&u]:

The equivalence of field and frequency modulation
can be proved very easily for signals which can be
described by Bloch's equation. ' If one applies a hf
field of the form H, =-Hi cosy,. H„= —H~ sing, the
Bloch equations in the coordinate system in which
this 6eld is at rest contain the s component of the
original magnetic field minus j/y. These equations are
therefore identical, whether one applies a modulated
s field, Hp =Bpp —H yl cosM.pit and a hf field with
constant frequency p=cop or a constant s field Hp=Hpp
and a frequency-modulated hf field with y =~p

+lH~cos~~f. ' To the extent H~/Hp«1, field and
frequency modulation are therefore completely equiva-
lent for signals describable by Bloch's equations,
contrary to a statement of Primas. '

Next, we consider the general case. Let

ABC= A/IpHp —AyHt(I,—cosy —I„sing)+AXp,

represent the Hamiltonian of the total system under
the inRuence of a magnetic field IIp in the s direction
and a hf field rotating in the x-y plane. AI, AI„, AIp are
the operators of the x, y, and s components of the total
spin angular momentum for the species under observa-
tion. LK', p is the sum of the lattice, spin-lattice, and
spin-spin Hamiltonians, which are assumed to be
independent of the amplitude of the amplitude Hi of
the hf field. If p is the density matrix of the total system,
the equation of motion is

3fp, gp =0,
(cop,.„p')A„"——((u, p')"+ ((a~lVIt'/Afp") tang,

(~g,exp )Av (&exp )Av + (2"MM8
+~~Mt'[~~'+-,'(yH ~)']) tang/infp". (6b) where

(4)=Tr(~4)

ip=[x,pj

and the signal can be simply obtained from

Since Mi'/Mp" can be expected to be of the order of
magnitude of (Ms"/Mp")', the phase of the reference
signal has to be correct whenever co~ is large enough to
produce significant modulation eRects. The phase
setting is, however, unimportant for intensity com-
parisons (as long as the phase setting remains constant)
because Mp, gp" =0.'

III. APPENDIX. EQUIVALENCE OF FIELD AND
FREQUENCY MODULATION

Equation (3) was originally derived for frequency
modulation. ' Since it is the author's experience that
the equivalence of 6eld and frequency modulation is
often questioned or not clearly understood, it may be
useful to make a few remarks on this subject.

The condition under which (3) is correct for field
modulation is that the signal components with a phase
shift of 0' and 90' with respect to the driving hf field
are the same for either field or frequency modulation.
Another way of expressing this equivalence of the two
modulation methods is to say that the signal, in that
rotating coordinate system in which the applied
rotating hf field is at rest, is the same whether field or
frequency modulation has been used.

I~=I,&iI„.
Introducing a new density matrix r =5 'pS through
the transformation matrix S=exp[i(Ip+Lp) pj, where
ALp is the operator of the s component of the total
lattice angular momentum, we finally get

ir=[Xr,r],
Kr = 'rIp(H p j/y) rHt—I,+ (pLp+—3Cp. —

Use has been made of the relations 5 'I+S=I+e '&

and [~p, Ip+Lp]=0; the latter holds because of the
conservation of the s component of the total angular
momentum in the absence of the hf field.

If we introduce r into the expression for (I~), we see

~ F. Hloch, Phys. Rev, 70, 460 (1946).
Although there is no di%culty in dealing with an arbitrary

time dependence of the modulation field, we use the cosine form
for simplicity.

7 The inhomogeneous term in the equation for the s component,
describing the equilibrium polarization in the s direction )Eq.
(42c) of reference 5j has, in principle, a small time-dependent
contribution for field modulation, whereas this term is constant.
for frequency modulation. This eR'ect is at most of the order
H~/IIUO and has therefore been neglected in all calculations
known to the author.

H. Primas, Helv. Phys. Acta 31, 17 (1958).
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that the amplitude of the signal and its phase shift
with respect to the hf field are determined by Tr(rI+):

(I~)=e '&Tr(r I~),
or, since

Tr (rI~) =
l
Tr (rI~) l

e+*:

I.= ITr(r4) l cos(i —~)

I„=—
l Tr(rI+) l

sin(p —cr).

The two modulation methods can therefore give
different results only if BC& is not the same in each case.
Introducing again HO=HOO —H~ cosco~t and j =coo for
field modulation and Ho=Hoo and j =o&o+yHir cosresrt

for frequency modulation, we see that all contributions
to 3Cy remain the same, except Joj, which becomes

Lsoip for the first, L&(&u&+pH, & cosro, &g) for the second
case. Since these terms concern only the lattice and
since yH~ is assumed to be very small compared to
Mp with no chance of compensating I.~o considerably
by parts of 3CO, it seems justified to neglect I.p+HM

)&costs.~It. Although a more detailed and complicated
calculation appears to be necessary to prove fully the
equivalence of field and frequency modulation for this
general case, we believe our discussion supports this
equivalence strongly when pH &+(cop.
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Cross Relaxation in Ruby

W. B. MIMS AND J. D. MCGEE
Bell Telephone Laboratories, 3/Iurray Hill, New Jersey

(Received April 6, 1960)

A pulsed microwave method has been used to study paramagnetic relaxation in synthetic ruby at Cr/Al
concentrations from 0.02% to 0.3%, and over a wide range of Gelds and angles with respect to the crystal
axis. The experimental frequency was 7.17 kMc/sec. At settings for which one interval between energy levels
was twice as large as another, decay traces with two characteristic periods were observed. The more rapid
decay was independent of temperature, and is attributed to a cross-relaxation process involving three spins.
Similar behavior became apparent at all concentrations whenever two intervals approached the same value.
At 0.3%, two period decay traces were observed for any arbitrary Geld and angle setting, indicating at this
concentration, a general cross relaxation between the Zeeman levels in times of 0.3 millisecond and less.

INTRODUCTION

'HE classical treatment of paramagnetic relaxation

by Casimir and dupre' assumes two systems,
spins and lattice oscillators, physically interspersed but
weakly coupled with each other. The coupling within
each system is assumed to be strong, so that each is
in a state of internal thermodynamic equilibrium char-
acterized by a temperature, and relaxation is depicted
as a kind of heat conduction whereby energy given
initially to the spin system becomes transferred to the
crystal lattice. A number of experiments have turned
on the question of temperature equilibrium in the in-

teracting systems, in particular on equilibrium within
the spin system which, until the recent extension of
acoustic techniques into the kilomegacycle range' was
the only one open to direct observation. De Vrijer and
Gorter' modified the spin equilibrium concept to account

C. J. Gorter, I'aramagnetic Relaxation (Elsevier Publishing
Company, Inc. , Amsterdam, 1947).

s C. J. Gorter, Progress sss Lore TemPeraiure P-hysics (North-
Holland Publishing Company, Amsterdam, 1957), Vol. 2.

'H. Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234
(1958).' F. W. de Vrijer and C. J. Gorter, Physica 18, 549 (1952).

for a "third" or "intermediate" relaxation e6ect which
appeared in their experiments on the chromium alums.
This e6ect was too slow to be due to simple spin-spin
interaction and yet considerably faster than lattice re-
laxation. It was independent of temperature in the
hydrogen to helium range, could be seen only in those
salts where the spins were clearly separated into two
classes due to the presence of two different magnetic
complexes, and was explained in terms of transfers be-
tween subgroups within the spin system. Similar effects
were later observed by Verstelle, Drewes, and Gorter5
in magnetically dilute materials.

These experiments were made by the nonresonant
method. Magnetic resonance has made it possible to
study the behavior of spin groups in more detail, and
to observe different types of "intermediate" or "cross
relaxation" between them. In the simplest case, where
two spin groups have the same resonance frequency,
energy transfer will take place in the spin-spin time, and
for most purposes the spins will behave as a single group.
If groups have a small frequency separation, as in the

5 J. C. Verstelle, G. W. J. Drewes, and C. J.Gorter, Physica 24,
632 (1958).


