NEUTRON SCATTERING BY FLUIDS

where seon”’4(%,w) is the coherent cross section of 4,
apart from the factors of scattering length and %/ (kk,),
@con? is the coherent scattering length for 4 atoms, and
the second term in the expression involves the corre-
sponding incoherent quantities. For B the scattering is
proportional to the same expression with A replaced by
B throughout.

Now by use of the principle of corresponding states,
Seoh’ B (x,w) can be expressed theoretically in terms of
Seon” 4 (¥,w), and sine’ "B (%,w), can be expressed in terms
of Sine’’4(%,w). Assuming that

(acohA/aincAV# (acohB/aincB)2,
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measurement of the scattering from both 4 and B
at corresponding conditions of temperature and pres-
sure allows immediate determination of both seon’’4 (¥,w)
and sine’’4(%,w), rather than just their weighted sum.
Fourier inversion then determines G and G, for sub-
stance 4.

The corresponding substances liquid argon and liquid
krypton would seem to be well suited for an experiment
of this type. Theoretical approximations which have
been suggested! for G, and for relating G, to G could

be tested most effectively by such a determination.

11 G. H. Vineyard, Phys. Rev. 110, 999 (1958).
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It is shown that certain analytical properties of the propagators of many-fermion systems lead rigorously
to the existence of sharp discontinuities of the momentum distribution at absolute zero. This discontinuity in
the momentum distribution is used to define a Fermi surface for a system of interacting fermions. It is
shown that the volume of this surface in momentum space is unaffected by the interaction. The same analytic
properties are shown to lead, by direct statistical mechanical arguments, to simple expressions for the low-
temperature heat capacity, the spin paramagnetism, and the compressibility of the system. These expressions
are very analogous to the corresponding expressions for noninteracting particles. Finally, it is shown how the
whole formalism may be generalized when an external periodic potential is present (band case).

I. INTRODUCTION

N this paper we shall be concerned with the existence
and characteristics of the Fermi surface (FS) for a
system of interacting fermions, as well as some simple
equilibrium properties of such a system. Usually such a
surface is introduced into momentum space only for a
system of noninteracting fermions. In that case this
surface represents the limit of occupation of the different
single-particle momentum states in the ground state of
the system. All the states with momentum contained
within this surface are occupied, all those with mo-
mentum outside this surface are unoccupied. As soon as
one considers interaction between the particles the
above definition of the FS becomes meaningless. None
the less, we shall show that with a suitable definition,
and under certain conditions, such a surface can be
given a rigorous meaning for a system of interacting
fermions. This possibility was first pointed out by
Migdal,! who noticed that under some circumstances it

*This work was supported in part by the Office of Naval
Research.

t Now at: Dept. of Physics, Columbia University, New York
Y

,N. Y.
LA. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 399
(1957) [translation: Soviet Phys.—JETP 5, 333 (1957)7]. See also

could be so that the mean occupation number of differ-
ent single-particle momentum states in the true ground
state still possesses a discontinuity. Migdal’s argument
can certainly not be general, i.e., it cannot be valid for
all systems of interacting fermions. Consider, for ex-
ample, a collection of interacting deuterium atoms.
These obey Fermi statistics. However, the ground state
of this system is certainly a molecular crystal made up
of D; molecules, and has no trace of a FS in its momen-
tum distribution. Therefore the existence of a FS de-
pends on the nature of the forces between the fermions.
We shall investigate the problem here under the as-
sumption that the forces between particles are such as
to allow a power series expansion in their strength to
give a good representation of certain properties of the
system. We cannot expect that such a power series will
be truly convergent, but rather that it is at most an
asymptotic expansion. This was already clear from the
difficulties which arise in the theory of supercon-
ductivity when one has even arbitrarily weak attractive
forces. More recently Van Hove? has indicated how

V. M. Galitsky and A. B. Migdal, J. Exptl. Theoret. Phys.
(U.S.SjR.) 34,139 (1958) [translation: Soviet Phys.—JETP 7, 96
(1958)].

2 L. Van Hove, Physica 25, 849 (1959).
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terms which cannot be represented by a power series
may be found in the ground-state energy, even in the
case of very weak repulsive forces. These terms are,
however, exponentially small (for weak repulsive forces)
so that in a case like this we would expect the power
series to give an excellent asymptotic representation.
Whether or not such expansions are good representa-
tions for practical cases (say He?, or electrons in metals)
is an open question.

We shall deal with this expansion by means of a
propagator formalism introduced earlier.® In Sec. II it
is shown that certain analytic properties of these
propagators (which may be established by means of a
power series expansion) lead to the Migdal result. The
result is obtained not only for the case where the FS is
a sphere in momentum space, but also for the situation
(nonisotropic situation) where the FS is distorted by the
interaction between the particles. It is also shown that
the volume (in momentum space) of the FS is conserved.
That is, the true FS has the same volume as the FS for
the particles without interaction. In Sec. III, it is shown
that the same analytic properties of the propagators
lead to an expression for the low-temperature heat
capacity of the system which is quite analogous to the
expression for noninteracting particles. In Sec. IV, a
similar treatment is given for the spin paramagnetism.
Finally, in Sec. V, these results are all generalized for the
case where in addition to the interaction between the
particles there is also the external periodic potential of a
lattice present. This is the case of interest for electrons
in solids.

In a later publication we shall show (in collaboration
with W. Kohn) that the FS as defined here is the same
as the one obtained from studying the response of the
system to external electric fields (‘“Kohn effect”).
Similarly the response to a homogeneous external mag-
netic field (de Haas-van Alphen effect) also indicates the
presence of the same FS.

II. DISCONTINUITY IN THE MOMENTUM
DISTRIBUTION

In order to avoid complications we shall assume
initially that we are dealing with spinless fermions.
Therefore our single-particle states are labelled only by
a momentum k. (We choose units such that z=1.) Now
the momentum distribution function is defined as the
mean occupation number of the state k. This is*

7ix="Tr{ax ax exp[B(Q—3C+uN)]}. (1)

It is easy to see that 7ix may be expressed in terms of
the propagator Sy'(¢;) previously defined. From the
definition of the thermodynamic potential & we have

= aﬂ/aek. (2)

3J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
4 Unless otherwise specified we follow the notation of reference 3.
We shall refer to this paper as LW in the future.
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Using the expression (LW 55) for @, and remembering
that Q is stationary with respect to first order changes in
Gx(¢1), we get at once

1
ﬁk=§ Zz exp(£.01) (3)

Ci—ex—Gi($y)
(This expression may also be established immediately
from the expression for the propagator in terms of
Green’s functions.)

We shall only be interested in 77y in the zero-tempera-
ture limit (it is only there that a discontinuity can
occur). In this limit we have

1 ptico

di exp(§07) (4)

fg=— _—

2w Vi §—ex—Gi(()

In what follows we shall again assume the analytic

properties of Gy ({) which are summarized in (LW 58,

59, 60, 61).5 Then (4) may be written (by closing the
contour to the left)

1 K 1
g=—o dx{ —cc . (5)
27ri —0 x—-ek-—Kk(x)—iJk(x)

There is no reason not to expect Kx and Jyx to be
smooth functions of k. If this is so, then any discon-
tinuous behavior of the 7y as a function of k can only
come from a singularity of the integrand. Since Jy(x)
approaches zero only in the neighborhood of x=pu, any
possible discontinuous behavior must come from the
neighborhood of x=u. Now consider the k values which
satisfy the equation '

p— ex— Ky (u)=0. (6)

In general, they lie on a surface in momentum space.
If there is no interaction between the particles Ky is
zero, and (6) clearly becomes the equation for the FS in
the usual sense. We shall call the surface defined by (6)
the FS of the interacting system.® We next show that the
momentum distribution has a discontinuity as we cross
the FS so defined.

Let us consider values of k near the FS. Then the
equation

x— fk—Kk(x)=0, (7)

will in general have a solution x= Ey, with Ex near u.
We shall call Ey the true single-particle excitation energy
of the system. Call kq the point on the FS closest to k.
Then

k=ko+35,

where § is perpendicular to the FS at ko, and is small. We

5 In a latter publication we shall give the explicit proof of these
expressions, at least for the power series expansion of Gk ({1).

6If the interaction and the ek are isotropic, then Ky is a
function of the magnitude of k alone. In this case the FS will be a
sphere or several concentric spheres. We are not assuming isotropy,
however, so that in general the FS will not be spherical in shape.
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may write for such values of k
x— ek—Kk(x)=Zk_1(x——Ek)+bk(x—Ek)2+- vy (8)

if « is near Ex. The coefficient Z,! is given by

I e

Thus for x near u and k near ko, we can write the
denominator in the integrand of (5) as

x—ex— K (%) —iJ x (x)
=7y (x—Ex)—iCx(u—x)*+- -+, (10)

on making use of (LW 62). Let us write the integrals in

(5) in two parts
» 3 ]
[
—» By —0

For small but fixed 5 the second term cannot give rise to
discontinuous behavior for 7 since the integrand is
never singular. Writing

a
Zk‘1=———[x-— ek—Kk(x)]
dx

(11)

(12)

corresponding to (11), we have that 7x" cannot have a
discontinuity. For small 7 we may use (10) so that we
have

= =1y = I
x="Tx +7x",

1 p 1
iy =—o dxl cc.t. (13)
2riduy N\ Zx N (x— Ex) —iCrx(x—p)?
Putting
Ey= 2 Ak; (14)
and using

Ey= Exo+5= Exot | VigEko|=p== | VieExo|6, (15)

where the plus obtains if § is parallel to the normal to the
FS at ko, the minus if § is antiparallel to the normal to
the FS at ko. We have

Ak= + l Vk()Ekola. (16)
Writing y=pu—x, (13) becomes
1 p7 1
iy =—o dy{ ce. . (17)
2 0 A (Ak—y)—iCkyz
Let us put
=|Ax|/y. (18)
Then (17) becomes
- (/7).
= f ’ : 19
el (Z)P(F 1) Haid
where
ak=CkIAk|>0, (20)

and the minus sign in (19) goes with Ax>0, the plus sign
Wlth Ak<0.
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Now as we approach the FS, § approaches zero, and
therefore ax approaches zero. The integrand in (19)
then approaches a & function so that

0
= f a1 o[ 2| (1)1, 1)
0

(Tt is easily seen that the small values of ¢ near the lower
limit give us no contribution as & approaches zero. This
is because the a)? term in the denominator is negligible
compared to the first term in the denominator.) For the
minus sign the argument of the § function vanishes at
a point in the range of integration, for the plus sign it
does not. Therefore we obtain

=27, (22)

for k differing infinitesimally from ko, but in the direc-
tion opposite to the normal to the FS at ko, and

(23)

for k differing infinitesimally from ko, but in the direc-
tion parallel to the normal to the FS at ko. Finally,
therefore, we may state the result that as we cross the
FS at ko in the direction of the normal at ko the function
7ix’ has a discontinuous drop of magnitude |Zko|. Since
7ix’”’ 1s continuous, this shows that the entire momentum
distribution function has the discontinuous drop |Zo|.
Another way of stating this result is to write

fix=|Zx|0(u— Ex)+ g (24)
In (24) 6(x) is the step-function
6(x)=1 x>0
=0 %<0, (25)

and gx has no discontinuities as a function of the
momentum k.

Since the integrand in (5) is positive both 7" and 7"’
must be. Further from its definition 7%y must be between
zero and one. Therefore it follows that the discontinuity
must satisfy

leol <1. (26)

We shall next show that the F'S defined as above has
the same volume in momentum space as the original
unperturbed FS. Let us consider first the unperturbed
FS. This is defined by the equation

@n

where po is the unperturbed chemical potential. The
volume of this surface in momentum space (Vgg®) may
be written

€k = Mo,

Vad= f dk 0(uo—ex). (28)

On the other hand, the mean number of particles is
given by

N= = v dk 29
——Zk:G(uo—ek)—"(’z-;)—sf 6(po—ex), (29)
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where V is the volume of the fermion system. Therefore
N=VVgs/(27). (30)

In order to show that (30) still holds when we replace
Vs by Ves (the volume of the new FS), we shall
transform the general expression for N. The discussion
is identical with that of (LW 57), no use having been
made of isotropy in the argument. Therefore we have
[from (LW 69)]

N=§ 0(u—ex— K (1))
B 14
(2m)

fdk 0(u—ex—Kx(u)). (31)

Since the surface
p— ex— K (1) =0,

is by definition the FS, we may also write” (31) as

N=VVrs/ (7). (32)
From (30) and (32) we have
Ves=TVrs, (33)

which is the desired theorem. The interaction may
deform the FS, but it cannot change its volume. In the
isotropic case, where symmetry requires the FS to
remain a sphere, its radius must then remain k2 (the
Fermi momentum of the unperturbed system).

III. HEAT CAPACITY

We now consider the problem of finding the heat
capacity of a system of interacting fermions at low
temperatures. Consider the thermodynamic potential
Q=Q(u,V,T). The entropy is given by

S=—(09/9T)u,v, (34)
and the heat capacity at constant volume
Cy=T(3S/oT)y. (35)

In (35) it is understood that not u but the number of
particles is being held fixed. As we shall see below, at low
temperatures we may expand € in even powers of the
temperature

Q=Q(,LL,V,0)—%’Y(M,V)T2+ Tt (36)
Then

S=v@,V)T+---. (37)

Thé quantity u is the chemical potential at the tempera-
ture 7". Writing

p=ptut -, (38)

where u® is the chemical potential of the interacting
7 The FS divides momentum space into two parts: those regions
for which u—ex— Kk (u) is greater than zero, and those regions for

which it is less than zero. We define the former region as the
interior of the FS.

LUTTINGER

system at 7’=0, u’ is of order 72, etc., we have

S=y@W,V)T+---. (39)
Therefore, since u is a function of N and V alone,
Cy=y@,V)T+---. (40)

The heat capacity will therefore be a linear function of
temperature at low temperatures, just as for the ideal
Fermi gas. It remains to evaluate the coefficient v (u°, V).

The expansion of © in powers of T is obtained most
directly from the expression (47, 48, 55) for @ given in
LW. This is

1
Q= —5 Zk: ZL exp(C0N{Inlex+Gu(¢ ) —¢ 1]

+Ge(E)SK (F)} 2, (41)
Q= [Contribution of a closed linked skeleton dia-
grams but with Sk(¢;) replaced by S/ (¢)]. (42)

We also know that the expression (41) for Q is stationary
with respect to changes in the proper self-energy part
Gx({7). Therefore if we are just interested in the first
correction to ©, we can neglect the explicit temperature
dependence of the G(¢;) and replace them by Gi°(¢)),
which is the value calculated at 7=0. Thus the first
correction to the T=0 value of (41) comes only from the
difference between the / sums in (41) and what we would
get if we replaced them by integrals according to
(LW 62).

Consider €. Since each line of a skeleton diagram
contains an / sum, the total first correction to @' is
obtained by correcting the computation in each diagram
for a single line, using (LW 62) for the other / sums of
the diagram, and finally summing over every line. This
will clearly give us for @ correct to the first order

1
P=- %
Bx 1t i—a—G()
since in a vth-order skeleton diagram opening up the 2»
lines just gives the proper self-energy part to the »th

order.
From (43) and (41) we get, to first order,

G5, (43)

1
Q= —5 % ZL exp ({0 {In[ex+Gu(C)—¢u]}.  (44)

Using the technique of reference 3, Appendix A, we
may write the / sum as an integral

Q=—3 —

k 2

1
| 45 exp(§0%) In[ex+Gu(§)—{]
7 YTy

X———, (45)
eﬁ(i‘_.“) + 1
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where I'y is a contour which goes from 4+« to —
immediately above the real axis, and from — o to 4
immediately below the real axis. Therefore we may
write

0

1
Q= -y — f da{In[ext K () — 34-iJ10(2) ]

k 27 J_,
1

eBla— 41

—c.c.} (46)

The term in (46) proportional to 7?2 is obtained by the
usual Sommerfeld technique

dx
ff(x)——*%eﬂ(x_‘“)+1=ff(x)ﬁ(u—~x)dx
+%(kT)2f'(#)+---. (a7)

Combining (47), (46), and (36) we have at once

1 72 9
v, V)=——k 3 —{In[ex+ K\ (x)
2 ox

m 3k

—x+iJ (%) ]—c.c.} (48)

=l‘0

From (LW 68) one has [since x is near u°, J,0(x) is a
positive infinitesimal ]

(1/2m8) {In[ex+ K1 (%) — x+iJ 2 (x) ]—c.c.}
=0(x—ex— Ki"(%)).

Again, since the solution of the equation
x—ex— K (%) =0,

(49)

is just the true single-particle excitation energy Ey, we
may write
0(96—' ek—KkO(x) )=0(x—Ek)

Finally, therefore, we obtain

(50)

w? d
YO, V)=—k? 3. —0(x— Ex)
3 k Jx

z=p0

STy s(w—EY. (51)
3 k

The expression (51) for the coefficient of the linear term
in the heat capacity is to be compared with the result

2

T
’)’0=—3—]€2 2 8(u’— ex), (52)
k

for the unperturbed system of fermions. All one need do
to obtain the correct result is to replace the unperturbed
chemical potential by the true chemical potential and
the original single-particle energies by the “true” single-
" particle excitation energies. The expression (51) has

INTERACTING FERMIONS 1157

been suggested and semi-intuitive grounds by Gell-
Mann® and by Landau,’ but we are not aware of any
derivation which proceeds from the general principles of
statistical mechanics.

IV. SPIN PARAMAGNETISM

We must consider the zero-temperature paramagnetic
susceptibility arising from the spins of the fermions. We
leave out of consideration the effect of the external
magnetic field on their orbital motion. Strictly speaking,
this applies to a collection of uncharged fermions (like
He?) and not to electrons in metals. However, even for
electrons in metals it will be part of susceptibility, and
actually it can be measured approximately under some
circumstances.

We now have to discuss the effect of introducing spin
into our formalism. For simplicity we limit ourselves to
spin % fermions. The single-particle states must be
labelled by an index 7 which gives the momentum k and
the spin direction ¢ (¢==1). We imagine that there is
an external magnetic field H in the Z direction, and take
the axis of quantization of the spins also to be in this
direction. Let the particles have an intrinsic magnetic
moment p. Then the unperturbed single-particle energy
is

e&,=ex— pHo. (53)

We now use (41) with the index k replaced by r. A
word of justification is necessary, however. In the
derivation of (41) given in LW we made use of the
isotropy of the situation. This was used only in order to
establish the fact that in a propagator diagram the
entering line and the emerging line must represent the
same state. (See the discussion at the beginning of Sec.
IIT of LW.) In order to preserve this simplicity we shall
again assume isotropy for the interactions and the ey.
Total isotropy cannot be present, however, because of
the magnetic field. Still, for spin } fermions the emerging
line of a propagator diagram must represent the same
state as the entering line. One sees this as follows.
Represent all possibilities of changing the spin state by
a two by two matrix, which must be linear in the Pauli
spin matrices o;. By isotropy this matrix must be a
rotational invariant, if we also rotate the magnetic field.
The only invariants involving ¢; that we can construct
from the vectors which are available (o,k,H) are
o-k, (6XXH)-k and o-H. The first of these is not pos-
sible by space inversion, the second is eliminated by
time inversion. This leaves us only with the third, which
is diagonal if we take the direction of quantization to be
along the field.

In order to calculate the susceptibility we need to
know the mean magnetic moment M. This is given by

M=—-900(V,T,H)/0H. (54)
8 M. Gell-Mann, Phys. Rev. 106, 369 (1959).

9 L. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 1058 (1956)
[translation: Soviet Phys.—JETP 3, 920 (1956)].
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Differentiating the expression (41) for @ and making
use of its stationary property with respect to variations
in G.(¢;) we have at once

Jder 1
M—— Z > exp(fzm)(—gg)m
1—€—0Ur\( 1

1
=[—3 > Zl exp(¢0%) (55)

Gr (g‘ l).

(This expression may also be written down at once by
noting that the magnetic moment is p times the mean
number of spins up minus the mean number of spins
down.)

It is convenient to rewrite (55) as follows

1= €

1 d
M=E 22 po eXP(fzm)—ag_ In[e,+G.(¢1)—¢ ]+, (56)
r 1 1

1 aGr(g‘l) 1
=-3 po ¥ exp(;0t) . (87)
B ! 1 Si—e—GH($)

We now discuss J. In (57) we can pass to the zero-
temperature limit in the usual way (LW 62). [In fact
the discussion which follows here is very closely related
to the one in LW for N, leading to (LW 69).]

GA())
% Je—e—G.(t)

Dropping the exp(¢0+) factor (which is not necessary
for convergence in this term) and integrating by parts
we obtain

J——Zzw f & exp(ro+>( .(58)

’l'l"er

*——Z;bfds“G(f)——l— (59)
2mi - ot t—e—Gil(t)

If we were simply summing on 7 without the weighting
factor o, then this would be identically zero by the
argument immediately following (LW 63). We have to
be a little more careful in the present case because of the
factor ¢. First we note that all diagrams for G, () may
be obtained by “opening” any line of the closed, linked
irreducible skeleton diagrams (Q’), which bears the
index o, and then taking the sum of all these contribu-
tions. Therefore we may write

——Z

27t k

M G’“’@ar ¢~ exo—Gieo(9)

= [derivative of the integrand of @’ with respect
to the { in every propagator which bears the
index o] (60)

For any propagator which contains a { which is
integrated over independently, we get no contribution

M. LUTTINGER

to (60), since we may integrate by parts. We therefore
have to consider those {’s which are connected by the
“energy conservation” condition (LW 30). This gives
rise to a term in (61), the ¢ integrations of which have
the form

4

fdi'ld?zdﬁ'adfﬁ(fl““fz $3— §‘4)(Z 5.
=1 i

X Skio1' (§1)Skaos (£2)Sksos' ($3)Skaod' ((),

where the prime on the summation means that we are
only to take a derivative if the corresponding .S” bears
the index o. If all the o;=¢ then (61) gives nothing by
the same argument as (LW 64). If three of the ¢;’s were
o and the other one was not, then (61) will certainly not
vanish by itself. To avoid this complication, we shall
assume that the interaction is spin independent. Then
o1=03, 02=04. The only case left to study is where (say)
g1=03=0, cs=0470. Then we have

(61)

4 0 e ad
i1 9f: Ot ¢y

Integrating (61).by parts with respect to ¢; and {3, and
using

Ja
(_-'P'~~ 31— 8s—5a) =0,

a1 ¢

we again obtain zero.
For the case of spin-independent forces we have
shown that /=0 and therefore that

1 i}
M=-33% poexp(t0t)—In[e~4G,({)—¢]  (62)
ﬁ r 1 (")g'l

Passing to the zero-temperature limit in (62) we have at
once (LW 65-69)

M=P g ao(ﬂ_ékv_Kkv(I‘))- (63)

Just as in the spinless case, we define “true single-
particle excitation energies” Ex, by

Eka— 6ko'_—I(ka(Ejko)=0- (64)

There will be two Fermi surfaces defined by Ex,=pu for
o==1, and discontinuities in the momentum distribu-
tion will occur at each. In terms of Ex, (64) becomes

M=p T otuExy). (65)

To calculate the susceptibility we need the term pro-
portional to H. Let us write

Exo=Ex—py(k)Ho+0(H?), (66)

where Ey is the true single-particle energy without the
field (it is spin independent under our assumptions), and
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v(k) is a measure of the modification of the effective
magnetic moments of the particles due to interaction
between them. It is to be calculated from (64). Inserting
(66) in (65) and expanding, we obtain for the sus-
ceptibility?

M2
x=——=—2 7(k)s(u—Ey), (67)
VH V & ,

where u is the chemical potential of the system in the
absence of the field.

Thus the low-temperature spin susceptibility like the
low-temperature heat capacity depends only on the true
single-particle excitation energies. As a result of the
factor v (k), however, these two quantities are no longer
simply related as they are in the case of noninteracting
fermions. In this connection we may mention that the
zero-temperature compressibility (K) of the system
may also be put in a similar form. We start with the
thermodynamic identity

D),
r N? v.T
From our old work, at zero temperaturé,

N=2x0(u—Ex(w), (69)

(here we drop spin indices for simplicity and also indi-
cate explicitly that the true single-particle excitation
energies will depend on ). Therefore

(). 2 =(50) omrir o

We thus have

=J%§[1—(ai‘;("))v]a<u—zzk). (1)

The zero-temperature compressibility therefore may
also be written a function of Ex. However, because of
the factor {1—[9Ex(u)/du]v} it is not simply related to
the spin paramagnetism or heat capacity, as it is for a
system of noninteracting fermions. Related formulas for
the spin paramagnetism and compressibility of a system
of interacting fermions have also been discussed by
Landau® from the point of view of his semiphenomeno-
logical theory of Fermi liquids.

V. THE BAND CASE

We now want to generalize the previous results to the
case where in addition to the interaction between the
particles, each moves in an external periodic potential
(of a lattice, say). The unperturbed single-particle

10 We wish to emphasize that this formula has only been derived
here under the assumption of spin § fermions, isotropy, and spin-
independent interactions between the particles.
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f3
r
F1c. 1. (a) The gen-
eral structure of a propa-
gator diagram. (b) A
proper propagator dia- 2
gram.
rI
" (b)
'l
(a)

energies will then be labelled with a band index %, a
quasi-momentum k (which ranges over the first Brillouin
zone of the lattice), and finally a spin index o. Let us
again denote all these quantum numbers by 7. The
general formalism of LW is unchanged, up to the point
where we introduce propagators. The difference comes
because general conservation rules no longer tell us that
the entering line of a propagator diagram represents the
same state as the emerging line. Even if there is suffi-
cient isotropy so that the spin index does not change,
the band index will change in general. (The translational
symmetry of the interaction between the fermions in-
sures conservation of k.) The most general propagator
diagram then has the form given in Fig. 1(a). Let us call
a diagram of the type in Fig. 1(b) a proper diagram. We
denote the contributions of all proper diagrams by

G (fl) )
{l— €r C1— €

the quantity G,~(f:) again being referred to as the
proper self-energy part. The total contribution of all
propagator diagrams will be denoted by S, (7). Then
clearly

1 1
Grr'(fl} !LZ
Ci—er " {1—é€r

1 1
XGrro(§1) G ($2) +---

Ci—e e

(72)

Introducing the matrices e, G(¢), S'(¢) defined by their
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matrix elements
(9) = frarr’,

(G)rr=Grr, (73)
(sl)rr'= Srr’ly
we may write (72) as
S'(¢)= (74)

ci—e—G(ry)

Since G and S’ have nondiagonal matrix elements the
expression for € [Eq. (41) of this paper] upon which
most of our work has been based is no longer valid. It
is easy to see what takes its place, however. We shall
show that @ is given by

1
Q=—— Zl Tr{ln[e+G( ) —¢1]

+8' ()G} exp(G 0N+, (75)
o =[contributioﬁ of all closed linked skeleton
diagrams, but with S,(¢;)8,~ replaced by
S (§0) ] (76)

In (75), Tr means the trace with respect to the matrix
indices 7, 7’. The definition (76) is best illustrated by an
example. Consider the skeleton diagram of Fig. 2. Apart
from numerical factors (the same ones which would
appear if the particle lines were free propagators) this
gives a contribution

> > Sutls, btll(rire|v|rary) (r3'rd | v|rird)
viverars  Lilolsly
r1'ra'ri’re’

XSrl’rll(g‘lll)Srz’rg,(g‘lg)Srgr;;"(g‘lg)Sum” (fl‘;). (77)

That is, the rules for computing Q' are just the same as
those given before except that each line is provided with
fwo indices (an initial and a final one) which tell what
matrix element of S'({;) to take.

We proceed with an outline of the proof of (75), which
follows that of the analogous expression in LW almost
exactly. We note first that in analogy to (LW 40) we
may write

G (§1)=[contribution for all possible skeleton
diagrams for G,,+({7), but with Sr1(¢7)dr1re

replaced by Sriro’ (¢7), just as in (76)]. (78)

This is simply because there is a unique way, for the
self-energy part, of making the reduction to skeleton
diagrams.

Regarding ©Q, as defined by (75), as a function of all
the G, (1), we next show that it is stationary around
the correct value of G, (¢1). Consider

o2 1

_ 6Srm’(§‘z)
867'1-(‘(1) ﬁ 172 aGr’r(§ l)

o’
Gron(C)+———— (79)
aGr’r(g‘l)

LUTTINGER

In (79) we have used the identity (valid for two not
necessarily commuting matrices 4 and B).

3
——— Trf(A+B)=[f'(A+B) .. (80)

r’'r

Now from the definition of @', and making use of
exactly the same reasoning that went into the derivation
of (LW 51) we have

aﬂl 1 E)Srm’ (f‘ 1)

= Grars (5.
6Gr’r<§‘ l) B T1r2 6GT'7‘<§‘1) T

(81)

Therefore, the right-hand side of (79) vanishes, and we
have the required stationary property

99/ 0G 1 (¢ 1) =0.

Next consider AdQ/ I\, u held fixed. Then by the sta-
tionary property (82) we can ignore the dependence of
the G, on A, and the only contribution comes from the
explicit N dependence of the interactions in ©@'. This
gives, just as in LW,

(82)

o 1
A—=—2 Ti[S' ()G ] (83)
N 281
On the other hand from (LW 41) we have
1 1 1
Q=-223 — (G (§0) 1w, (84)
B n l 21’5 g’l—er

where [G,.' (1) ]x is the 77 element of the total reducible
propagator of nth order in A. Differentiating with re-
spect to A we have

o 1 1

e 2P 35>
N 26 nor lg‘l_e‘r

1 1
- Ty
2‘8 r 1 g‘ 1— €r

1 1
S 3p>
26 r L€

[Gr'(§1) 1w

Grrl (i’ l)

[ Grr(f l)

1
+Z/ Grr'(g‘l)—Gr'r(fl)'*' ce ]

g‘l_ (734

1 1
—rx|—
28 1 rrrl$—er

1
Grr (§ l)‘

g’l_ €,/

1
+—

g‘l_er

+-e IGr'r(s“l)

1
=—2X Ti[S' )G )] (85)
28 1
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fy a

Fi16. 2. A skeleton diagram corresponding to Q.

Therefore we have proved that the derivative of (75)
with respect to X gives the correct result. The proof that
(75) is correct for A=0 is identical with that in LW.
Therefore we have established (75) in general.

Although we have had the band case in mind in
deriving this formalism, it is of course quite generally
valid. It is necessary in any problem where the inter-
action is such that the propagator is not automatically
diagonal. Other examples where it is necessary are the
case of particles of arbitrary spin when there is no
isotropy, and that of an external magnetic field acting
on the orbital motion of charged interacting particles.

The same derivation that led to (3) now gives for the
mean occupation number of state ()

; =—z exp (¢ 0* >( (86)

m)

For the band case £ and G are diagonal in k. Let us write
r=K, v, v being a discrete index which labels band and
spin.

€= €idindyy = (£1) s 00,17, (87)

Grrr=Gew,y 0,50 = (Gie) v, (88)
Therefore

1

=l; z‘: P07 (fz— £x— Gk(s“t)) (#9)

The “momentum” distribution will be given by

1
nk=Zp nvk=;} Zz exp(£:0%) Tr[m]. (90)

We now take advantage of the fact that the trace of a
function of a matrix is just the sum of the values of the
function at the characteristic values of the matrix.!!

1 See, for example, P. R. Halmos, Finite Dimensional Vector
Spaces (Princeton University Press, Princeton, New Jersey, 1942),
pp. 80-85. The required result follows for ﬁmte matrices and
polynomial functions from the last sentence of that section. The
characteristic values are defined in the case of nondiagonalizability
as just the roots of the secular equation.
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This is true whether or not the matrix is diagonalizable
by a similarity transformation or not. [Tt will only be in
very exceptional cases, however, that a similarity
transformation will not exist which will diagonalize
ex+Gi (7). ] It is not surprising that the problem of
finding the characteristic values of a new matrix still
exists in the theory. Even in the usual Hartree-Fock
approximation, new bands are defined by the new
effective potential which arises from the average effect
of all the other particles on one of them. In Appendix A,
we will show how the Hartree-Fock in fact arises
naturally as a very simple first step in our formulation.
Let us write the characteristic values of gx+ Gy ({;) as
Ly, (¢1). The discrete index p is what replaces our former
band and spin indices. We shall refer to p as the “true”
band index. From (90)

nk—— Z Z exp(§10+)- (1)

—"Lkp( l)

Going to the zero-temperature limit, and closing the
resulting contour to the left, we have (y an infinitesimal
positive number)

b 1
nk—— Z {
2nt o J_ —in— Ly, (x—1n)
— . (92)
x+in— Ly, (x+1n)
Let us write
Ly (x—11) = Qup (%) +1T 1o (). (93)

The quantity Qx, plays the same role here that e,4K,(x)
played in earlier work. The quantity Jyg,(x) plays ex-
actly the same role as J,(x) did previously. If we again
assume the analytic properties that we did formerly
(they follow in an analogous fashion), then results just
like our former ones are clearly still valid. For example,
discontinuities will occur in k space at the values of k

satisfying
— Qs (1) =0. (94)

We shall again call this collection of surfaces the FS of
the system. In general for a metal (94) will only have
solutions for a few p values; these will play the role of
the “unfilled bands” in conventional metal theory. For
an insulator or semiconductor there will be no values of
p which enable us to find solutions of (94), so that no FS
and no metallic properties can exist.

The discussion of the volume of the FS also proceeds
as before. Analogously to (31), we have

1\7=Zk3 0 (u—Qxp (). (95)

We now divide the band indices p into three classes:

(1) Equation (94) is never satisfied, and p—Qx, (1) >0.
We call these the “filled”” bands.
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(2) Equation (94) is satisfied on certain surfaces in
k space. We call these the “conduction’ bands.

(3) Equation (94) is never satisfied, and u—Qx,(u)
<0. We call these the “empty’’ bands.

Each filled band contributes to (95) an amount N,
where NV, is the number of k states in a band. This is
determined only by the geometry of the crystal and is
the same as for the noninteracting particle problem. It
is equal to the number of unit cells of the crystal. The
empty bands contribute nothing. Therefore we have

Nc=zk,0(ﬂ_Qkp(l~‘)), (96)

where IV, is the total number of particles present minus
the number of filled bands times N, We may call it the
“number of particles in the conduction band.” The
prime on the summation means that it only extends over
the conduction bands. This gives'?

V
NemZ' o f k0 (u—Qxp (1))

= VVFs/(ZW)3. (97)
For the noninteracting case we have,
N.=VVrs®/(2m)3, (98)
so that
Ves=Vrs, (99)
once more.

The low-temperature heat capacity also is easily
found. By reasoning exactly analogous to that which led
to (48) we obtain

w2 9
Cy=—RT> —
3 k Jx

XA{Tr[In(ex+ Gy (x—in)—x) ]—c.c.} (100)

r=p

Since (100) only contains the trace, we can again
introduce the characteristic values Ly, ({). This gives
7I'2

<]
Cy=—RTY —
3 kp 0%

X{In[Qx, (%) —x+1Jx,(x) ]—c.c.} (101)

T=p

"Let us again define a true single-particle excitation
energy Ex, by

Qxp(Exp) — Ex,=0. (102)

These Ex, are only meaningful for those p for which (94)
has solutions, so that there are solutions of (102) with
Ex, near u. Then the identical reasoning that led to

2 By Vrg here we mean of course the sum of the volume con-
tained in the FS of each conduction band.

M. LUTTINGER

(51) from (48) now gives

w2 '
Cy=—kT X' 6(u— Ex,), (103)
3 kp

once more identical in form with the noninteracting
particle case.
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APPENDIX A. HARTREE-FOCK APPROXIMATION

In terms of the formalism of this paper the Hartree-
Fock approximation has a very simple interpretation.
Let us consider the contribution to G, ({;) [as given by
(78)7] of the lowest order skeleton diagrams. Call this
G,~»®(¢7). Then one sees at once (the diagrams are given
in Fig. 3) that

G @) =% 2 {G"|o|7?")+"r|v|r7)

— (rlllr'v; rlrll)_ (rrllllv[rl/rl)}

1
5; exp(§v0t)Sprr’ (C1). (A1)
In (A1)

(1'11’2 l ? | 1’37’4)
= ffd3x1d3x2 ll/rl*(l)ll/rz*(Z)'l)(].Z)ll/rg (1)1l/r4 (2) , (A2)

where v(12) is the interaction between any pair of
particles 1 and 2, and the integration also implies any
spin summations necessary. The ¥, are the single-
particle basis functions.

Clearly G, is independent of {;, and it is easily seen
to be Hermitian. Therefore, if we work to this order it is
possible to choose the basic functions ¥, so that e+ G®
is diagonal. Imagine that this has been done, then

(e+GO) =5y, (A3

where the & are the characteristic values of e+ G®. Call
the propagator to this order and in this representation

F16. 3. First-order skeleton diagrams for proper self-energy part.
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S (¢7). Then by (74)

Sfr'(l) (f l) = Brr’- (A.4)
g‘l_ér
Further,
IZ w0, ®(Fv) =8 (A.5)
- €Xp §' 4 rr! §' 1) = O0pp’ . .
g7 T explB(— ) I+

Going over to the zero-temperature limit (A.1) becomes

G O=% 3 {(r" || 77")+(""r|v|77)
7
Er',: <u

— (7| YY) — (" |v| )} (A6)

The condition (A.3) on the basis ¢ then becomes

f D)5 (D Br1= 23,0, (A7)

where
R=h+Vy—A. (A.8)

In (A.8), & is the unperturbed single-particle Hamil-
tonian of the problem, Vg is the Hartree potential

Vi= 3 f Yo (212, (dxs,  (A9)

& <u
9(12)=3[v(12)+2(21) ],
and 4 is the Dirac exchange operator defined by
AYr (1)

(A.10)

=>:< F f (d%czw*(zmzm(2))¢,-~<1). (A11)

JC is easily seen to be Hermitian, so that (A.7) is satisfied
by taking
jvc'ﬁbr: grlbr, (A 12)

which is exactly the Hartree-Fock equation for the
determination of the y,. The & are therefore just the
Hartree-Fock single-particle energies.
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Using G and S® in the expression (75) for Q, [in-
cluding the first-order skeleton diagrams for @ given in
Fig. 1(b) of (LW)], we obtain

Q=2 (&—u)
€rr<u
=3 X LG |v|e?)—= (o |0|77)].

o
€r, €r' <pu

(A.13)

One can obtain the equation for the chemical potential
directly from this by differentiating with respect to u
(and remembering &, depends on u). However, it is easier
to use the matrix generalization of (LW 74), namely

NZ%XL: exp(¢,0%) Tr( ) (A.14)

ci—e—G(5)
In our approximation this becomes simply

1

1
NZEZ Zz exp(f 0)——=3 1. (A.15)

ST € L4

& <u
Therefore the expression for the ground-state energy
(LW 9) becomes

Ey=Q+uN=3 &
& <n
—3 X {7 |v|r)— (' |v]F'r)}. (A.16)

s
€r, € <p

The expression (A.16) is just the usual expression for
the energy in the Hartree-Fock theory. It would not be
difficult to push this type of approximation a step
further by taking into account all skeleton diagrams for
which the interaction occurs explicitly twice, but we
shall not enter into this kind of generalized Hartree-
Fock theory here. We also wish to remark that the
passage to the zero-temperature limit was not at all
necessary, and that our equations form a convenient
basis for defining a Hartree-Fock procedure for finite
temperatures.



