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Neutron Scattering by Fluids and the Law of Corresponding States*
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It is shown that the classical law of corresponding states implies correspondences in the time-displaced
pair correlations of Quids, and also in the cross sections for neutron and x-ray scattering. A measurement of
the scattering at one temperature and pressure by one Quid of a class of Quids can thus be used to determine
the scattering at corresponding temperatures and pressures of all Quids of the class. Other applications, in
the study of molecular Quids and in the separation of the self-correlation from the general correlation, are
pointed out.

BASIC THEORY

%e restrict our attention at first to classical, mono-
molecular Quids in which the intermolecular force is
central and two-body. It will be assumed, in the con-
ventional way, ' that for a class of Quids the inter-
molecular potentials have the form

~= ef(r/n)

Here r is the separation of centers of two molecules;
0. is a length and e is an energy characteristic of a par-
ticular Quid in the class. f is an arbitrary function, but
is the same for all Quids of the class.

The Harmltonian for a Quid of the class is then

1
p,'+ 2 f(, /),

~-1 2M
(2)

where M is the molecular mass, p; the momentum of
the jth molecule, and r;& the separation of a pair. The

*Work performed under the auspices of the U. S. Atomic
Energy Commision.' H. Kammerlingh Onnes and W. H. Keesom, EwsykloPadie der
Matheesatischee 8'issenschaften (B. G. Teubner, Leipzig-Berlin,
1912), Vol. V, Part 10, pp. 26, 27.

2 D. ter Haar, Elements of Statistical Mechanics (Rinehart and
Company, Inc. , New York, 1954},Chap. VIII.

3 J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley and Sons, New York,
1954).

4 Note added in proof. The law of corresponding states for trans-
port properties, as derived from time-dependent correlations, has
been discussed recently by K. Helfand and S. A. Rice, J. Chem.
Phys. (to be published).

INTRODUCTION

HE law of corresponding states shows how the
thermodynamic and transport properties of a

family of Quids can be determined from the properties
of one member of the family. ' ' As has been known for
many years, the principle applies to any class of sub-
stances for which the laws of intermolecular potential
can be brought into coincidence by changes of length
and energy scales. In this note it is pointed out that the
law of corresponding states can be readily extended to
cover the scattering of neutrons (and x rays) by fluids, '
and some ways are suggested in which this extension
may be useful.

neutron scattering is determined completely by the
time-displaced pair correlation function G(r, t) and the
time displaced self-correlation G, (r,t). Consider the
first of these which, for classical systems, is de6ned as
the average number density of molecules at r after a
time 3 if a molecule was at the origin at time 0. From
Eq. (10) of reference 5, specialized to a classical
monomolecular Quid, one has

N

G(r, t) =g Z ' e ~~St r+ri(0) —r;(t) jdI'. (3)

Here Z is the partition function, b is a three-dimensional
Dirac delta function, P= (kT) ', r, (t) is the position
of the jth molecule at time t, and H is given by (2)
with the dynamical variables taken at time 0. The
integration in (3) is over all of I' space consistent with
the volume V of the system.

One now introduces units of length, mass, and energy
appropriate to the particular Quid; the unit of length
is n, of mass is M, and of energy is e. The unit of time

Lt) becomes n(M/e)'* Reduced .variables, identified by
asterisks, are introduced as follows:

r*= r/n,

M*= 1,

t'= t/[t)= t/n(M/s)4,

T*=kT/e,

(4)

(6)

' L. Van Hove, Phys. Rev. 95, 249 (1954).

P*=Pn'/e.

(P is pressure, T is temperature. ) In Kq. (3), r;(t)
depends on V, ri(0) . .tv(0), and pi(0) piv(0), as
well as on t, through the equations of motion of the
system. If reduced variables are introduced r;*(t*) will

be a universal (i.e., the same for all Quids of the class)
function of the corresponding reduced variables V*,
ri*(0) pN*(0). Similarly, all of the other functions
in the integrand ot (3) are seen to be universal functions
of the reduced variables. Thus the result of the integra-
tion, G(r, t), will be given in terms of a universal func-
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where a„s is the coherent scattering length, Akp is the
momentum of the incoming neutron and Ak is the
momentum of the scattered neutron. Using (10) in

(12), and reducing the other variables appearing in the
integration, one 6nds

a..g'k t'M) & r

o„h"(x,rp) = n
~

—
~

exp/i(x* r*—pp*i*))(.j »
or

)&G*(r*,ie; T*,P*)dr*de*,

a,.~'k (3E~ &

O„h"(x,pp) = n~
—

(
F(x*,(p*; T*,P*).

( ~ )

(13)

(14)

Here Ii designates a dimensionless universal function
of the four reduced variables, de6ned by the reduced
Fourier transform of G* in (13). Similarly, the inco-
herent part of the scattering cross section, 0;„,"(r.,pp),

is found from G, and the incoherent scattering length

;.,'k t'~)~
0;„,"(x,cp) = ni —

i F,(x*,o)*; T*,P*), (15)
kkp c

where

F,(~~,~*; T*,P*)= expLi(~* r*—~1)j
&&G,*(r*,t*; T*,P*)dr*de. (16)

Equations (14) and (15) show how the coherent and
incoherent cross sections of all members of a class of
fluids obeying a law of corresponding states can be ex-

tion of the reduced variables r*, t*, and V*, and of the
number of molecules X. For large systems V* and X
will enter only in the combination V*/1V, which will

depend on P* and T*. It is thus permissible and con-
venient to consider the state variables to be T* and P*,
and to write G in terms of a dimensionless universal
function G* of the reduced state variables and the re-
duced microscopic variables r* and t*:

G(r, i) =n 'G*(r*,ia; T*,P*). (10)

An exactly similar argument relates the self-correla-
tion function' to a universal self-correlation G,*, as
follows:

G, (r,t) =n 'G,*(r*,t*; T*,P.*).

The Van Hove formulas' giving the differential cross
section for single scattering of neutrons by a monatomic
Quid in terms of the Fourier transforms of the pair
correlations may now be invoked. The cross section
o„h"(x,a&) for coherent scattering with loss of neutron
momentum Ax and loss of energy fuo, per unit solid

angle and per unit energy range, is

Cgoh k f

0 h" (x,cp)=, exp/i(sc: r cot) jG(r—,t)drdt, (12)
jgko g

pressed in terms of nuclear parameters and universal
functions of certain reduced variables. Thus a measure-
ment of the scattering at one temperature and pressure
by one Quid of a class determines the scattering at
corresponding temperatures and pressures by all fluids
of that class.

If the time dependence of the correlation functions is
sufFiciently slow compared with certain characteristic
times of the scattering, ' G*(r*,t*; T*,P*) in (13) can
be replaced with G*(r*,0; T*,Pa) and an integration of
both sides of the equation with respect to ~* can be
carried out. This gives the differential cross section for
coherent scattering (without regard to energy changes),
per unit solid angle,

0Doh (''Kp) =GgolP exp(imp*. r*)G*(r*,0; T*,P*)dr*. (17)

Here xp ——kp —k with a&=0. Recognizing that G(r,0)
=8(r)+g(r), where g(r) is the ordinary radial density
of the fluid, (17) is seen to be a reduced form of the
scattering expression first derived by Zernicke and
Prins' for the case of x-ray di6raction. Successful use of
the Zernicke-Prins equation with a law of corresponding
states to correlate x-ray scattering data from different
Quids has been made by Ricci.'

It should be noted that the microscopic parameters e

and n do not need to be known for the application of a
law of corresponding states, since the critical pressure,
P„and critical temperature, T„of a Quid will serve as
well. One has, from dimensional considerations,

&~kT„
and

n ~ (kT,/P, )'.
Thus, if kT, is substituted for s and (kT,/P, )& is sub-
stituted for n throughout Eqs. (4) through (17), equally
valid reduced expressions will be obtained.

QUANTUM AND MOLECULAR CONSIDERATIONS

For systems of very light molecules the classical law
of corresponding states is inadequate, and, as is well

known, ' the universal functions come to depend on an
additional parameter A.*=kn '(Me) &. In the absence
of theoretical information on the dependence of the
reduced correlation functions on h.*, one does not have
any general way to use the reduced scattering cross-
section formulas. Corresponding-state considerations
can be helpful, however, with systems of polyatomic
molecules that fu1611 two conditions: (a) the molecular
mass M is great enough that the translational motions
of the molecule can be treated classically, and (b) the
internal degrees of freedom are virtually independent
of the translational degrees of freedom. Condition (a)

P F. Zernicke and J. A. Prins, Z. Physik 41, 184 (1927).
7 The author is indebted to Dr. Ricci for communicating his

results before publication.
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requires that A* be somewhat less than one. Condition
(b) would seem to be satisfied by molecules of nearly
spherical shape. Assuming these two conditions, one
separates the dynamical variables of molecular trans-
lation from the variables of internal motion. The con-
tribution of the translational motions to the scattering
can then be expressed in a "universal" way with the
aid of the law of corresponding states, and can be
evaluated by measurements on any other scatterer of
the same family. The remaining contribution is from
internal motions, and in some cases can be evaluated
forthwith. The ideas will be illustrated by treating a
simple case, that in which one or more incoherently
scattering atoms has a large cross section compared
with all other atoms in the molecule. This is the case
with molecules containing hydrogen, and the law of
corresponding states has already been applied success-
fully to thermodynamic properties of several of these.

Consider now a molecule containing one or more
hydrogen atoms and no other atoms of large scattering
cross section. Employing the general results of Van
Hove, 5 Glauber, Zemach and Glauber, ' and others the
scattering cross section is proportional to the Fourier
transform of the expectation value of the operator
Q(s», t), where

Q(»», t)=g, expL —i»» r„(0)]exp[i»» r„(t)]. (18)

Here r„(t) is the Heisenberg opera, tor representing the
position of the vth hydrogen atom in a molecule at
time t, and the summation is over all hydrogen atoms
in one molecule. Put

be expressed as a convolution of cross sections associated
independently with 0, and 0;„&. Thus, the cross sec-
tion per molecule is given by

a;„,'k p
»r;„,"(r.,»0) =

~

~ s;„»"(»», oi —or') s, "(i»,oi') do)', (23)
2&hkp~

where

and

s» (L 'M)
J

(Q;„»(»», i)) exp (—i»»it)dt,

s, ."(»»,»o) =) (Q. (v.,t)) exp( —i»di)df. (25)

Apart from the factor a;„,'k/hkp, s;„»"(v.,oi) is precisely
the cross section for scattering by the same molecule,
with all its internal motions (vibration and rotation),
but with its center of mass rigidly fixed, and s, "(»»,oi)

is the cross section for incoherent scattering by a single
atom moving with the center of gravity of the molecule.
If the substance belongs to a family obeying a law of
corresponding states, s, "(v.,o&) obeys such a law, be-
ing related to the s, "for other members of the family
in precisely the way the 0-;„,"are interrelated, as given
by Eq. (15). Thus, if the incoherent scattering by
another member of the family (possibly a monatomic
substance) can be measured, s, .

" can be determined
and, through (23) or (20), s;„»"can be found. This idea
has been used in a more or less intuitive form before;
the above reasoning gives it a more satisfactory
foundation.

r„(i)=R(i)y b„(i), (19) FURTHER APPLICATIONS

where R(t) is the position of the center of gravity of a
molecule and b, (t) is the position of the pth hydrogen
atom in that molecule with respect to the center of
gravity. Assumption (b) above allows one to treat
R and b„as statistically independent, and thus to split
out a factor containing R(0) and R(i) from the right
side of (18) and to average it separately. One then finds

where
(Q(,i))=(Q..-.(,i))(Q'- (,~)), (2o)

Q, (s», t) = expL —is» R(0)] expLi»» R(t)], (21)

Q;„»(»»,t) =P„- expL i»» b„(0—)] ex. pLiv. b, (t)]. (22)

All information pertaining to the internal motions of a
molecule is contained in Q;„t, and all information on the
translational motions is contained in 0, . Under
assumption (a) above the latter motion can be treated
classically and subjected to a law of corresponding
states. Because 0 has been decomposed into a product
in Eq. (20), the scattering cross section to which it
leads can, by a familiar theorem in Fourier transforms,

' R. J. Glauber, Phys. Rev. 98, 1692 (1955).
:A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956);

101, 129 (1956).

Two further applications of these principles can now
be suggested. The first possibility is to explore how far
correspondence of states can actually be found in new
families of Quids, particularly families for which thermo-
dynamic and transport data have been insufficient to
make the conventional tests. Finding a correspondence
of states implies a similarity of intermolecular forces;
lack of correspondence implies essential di6erences. The
liquid metals would seem particularly deserving of
such attention.

A second application allows one to separate the co-
herent from the incoherent scattering in a Quid, and
thus to determine both the self-correlation G, and the
general correlation G."Consider two monatomic Quids
of different elements, 3 and 8, which are known to
obey a law of corresponding states. The scattering
cross section for substance 2 will be proportional to

Qpp& spp& 1c)co '

Q'&zp s&zp 'K)co )

"B.N. Brockhonse and N. K. Pope [Phys. Rev. Letters 5,
259 (1959l] have been able to find G, at small times by deter-
mining G and extracting the peak near the origin of the time axis.
This procedure cannot be used at longer times where the interest-
ing diffusive behavior of G, sets in. In some systems isotopic sub-
stitution that alters the relative amounts of coherent and in-
coherent scattering could be employed to make this separation.
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where s„i,"~(v.,M) is the coherent cross section of A,
apart from the factors of scattering length and k/(kks),
a„h~ is the coherent scattering length for A atoms, and
the second term in the expression involves the corre-
sponding incoherent quantities. For 8 the scattering is
proportional to the same expression with A replaced by
8 throughout.

Now by use of the principle of corresponding states,
s„i,"~(x,co) can be expressed theoretically in terms of
s„i,""(x,ce), and s;„,," (v.,&e), can be expressed in terms
of s;„,""(x,cv). Assuming that

(&cob /&inc ) W (&coh /&inc ) q

measurement of the scattering from both A and 8
at corresponding conditions of temperature and pres-
sure allows immediate determination of both s,,s""(x,&e)

and s;„,""(x,re), rather than just their weighted sum.
Fourier inversion then determines G and G, for sub-
stance A.

The corresponding substances liquid argon and liquid
krypton would seem to be well suited for an experiment
of this type. Theoretical approximations which have
been suggested" for G, and for relating G, to G could
be tested most effectively by such a determination.

"G.H. Vineyard, Phys. Rev. 110, 999 (1958).
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It is shown that certain analytical properties of the propagators of many-fermion systems lead rigorously
to the existence of sharp discontinuities of the momentum distribution at absolute zero. This discontinuity in
the momentum distribution is used to define a Fermi surface for a system of interacting fermions. It is
shown that the volume of this surface in momentum space is unaffected by the interaction. The same analytic
properties are shown to lead, by direct statistical mechanical arguments, to simple expressions for the low-
temperature heat capacity, the spin paramagnetism, and the compressibility of the system. These expressions
are very analogous to the corresponding expressions for noninteracting particles. Finally, it is shown how the
whole formalism may be generalized when an external periodic potential is present (band case).

I. INTRODUCTION

'N this paper we shall be concerned with the existence
~ ~ and characteristics of the Fermi surface (FS) for a
system of interacting fermions, as well as some simple
equilibrium properties of such a system. Usually such a
surface is introduced into momentum space only for a
system of noninteracting fermions. In that case this
surface represents the limit of occupation of the diferent
single-particle momentum states in the ground state of
the system. All the states with momentum contained
within this surface are occupied, all those with mo-
mentum outside this surface are unoccupied. As soon as
one considers interaction between the particles the
above definition of the FS becomes meaningless. None
the less, we shall show that with a suitable definition,
and under certain conditions, such a surface can be
given a rigorous meaning for a system of interacting
fermions. This possibility was first pointed out by
Migdal, ' who noticed that under some circumstances it

*This work was supported in part by the Once of Naval
Research.

t Now at: Dept. of Physics, Columbia University, New York
27, N. Y.

'A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 399
(1957) Ltranslation: Soviet Phys. —JETP 5, 333 (1957)).See also

could be so that the meae occupation number of differ-
ent single-particle momentum states in the true ground
state still possesses a discontinuity. Migdal's argument
can certainly not be general, i.e., it cannot be valid for
all systems of interacting fermions. Consider, for ex-
ample, a collection of interacting deuterium atoms.
These obey Fermi statistics. However, the ground state
of this system is certainly a molecular crystal made up
of D2 molecules, and has no trace of a FS in its momen-
tum distribution. Therefore the existence of a FS de-
pends on the nature of the forces between the fermions.
We shall investigate the problem here under the as-
sumption that the forces between particles are such as
to allow a power series expansion in their strength to
give a good representation of certain properties of the
system. We cannot expect that such a power series will
be truly convergent, but rather that it is at most an
asymptotic expansion. This was already clear from the
de.cul ties which arise in the theory of supercon-
ductivity when one has even arbitrarily weak attractive
forces. More recently Van Hove' has indicated how

V. M. Galitsky and A. B. Migdal, J. Exptl. Theoret. Phys.
(U.S.S.R.) 34, 139 (1958) [translation: Soviet Phys. —JETP 7, 96
(1958)j.' I . Van Hove, Physica 25, 849 (j.959).


