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Equation of State of a Bose-Einstein System of Particles with Attractive Interactions*
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The equation of state in the grand canonical ensemble is calculated for a system of Bose-Einstein par-
ticles with hard-sphere repulsive interactions and weak long-range attractions. The energy levels used in
this calculation are modified forms of those derived in an earlier paper. The calculation is carried out in the
limit of no interactions, and attention is focused on the thermodynamic phases of the system. It is shown

that the gross features of the equation of state of He4 are reproduced. There are the phases: gas, liquid I,
and liquid II. The phase transition between gas and the two liquids are first order transitions. The transi-
tion terminates in a critical point. The transition between liquid I and liquid II is the Bose-Einstein con-
densation. Liquid II has a negative coefficient of thermal expansion. Across the transition between liquids I
and II the specific heat is discontinuous in value. In the limit of no interactions, the critical point recedes
towards zero temperature, zero pressure, and infinite volume.

I. INTRODUCTION

'HIS paper is the logical successor of a previous
one, ' in which the quantum mechanical energy

levels of a Bose-Einstein system of particles with
attractive interactions were calculated. This paper is
concerned with a calculation of the thermodynamic
equation of state of the same system.

The system considered, both in I and in the present
investigation, consists of E Bose-Einstein particles en-
closed in a box of volume 0 with periodic boundary
conditions imposed on the wave functions. The par-
ticles interact among themselves with a two-body po-
tential, which contains a hard-sphere repulsion of
diameter a, plus a weak long-ranged attraction. The
system is considered in the limit E —& ~, 0 —& ~, with
p=E/0 kept finite and small: pa'«1.

It was shown in I that if the parameters of the
attractive part of the potential are properly chosen,
the ground state of the system is a bound state of all E
particles, with a finite binding energy and a finite
equilibrium density po satisfying poa'((1. The excited
states can be described in terms of elementary excita-
tions, which for low energies are phonons.

In the present investigation we calculate the parti-

*This work is supported in part by funds provided by the U. S.
Atomic Energy Commission, the OS.ce of Naval Research and the
Air Force Ofhce of Scientific Research.

' K. Huang, Phys. Rev. 115, 765 (1959).Hereafter this will be
referred to as I.

tion function of the system from the energy levels ob-
tained previously. From the partition function is de-
rived the equation of state, which is valid for low
densities and low temperatures.

The main result of this calculation is that the system
exhibits three thermodynamic phases, which are called

gas, liquid I, and liquid II. Liquid II is distinguished
from liquid I and gas by the fact that in liquid II a
finite fraction of all the particles occupy a single quan-
tum level, whereas in the latter two phases no single
level is macroscopically occupied. Furthermore, liquid

II, in contradistinction to the other two phases, ex-
hibits "superQuidity. " The gas phase and the liquid I
phase are distinguishable only below a certain critical
temperature, and are separated by a first order transi-
tion. The gas phase and liquid II are also separated by
a first order transition. The phase transition between
liquid I and liquid II is a Bose-Einstein condensation,
but not of first order, as would be the case in the ideal
Bose gas. The specihc heat of the system su6ers a finite
discontinuity across the Bose-Einstein condensation.

The motivation for the present work is given in Sec.
II. Section III explains, in a simple and qualitative
way, the results of this work in crude form. The subse-
quent sections describe the details of the calculation.

II. BACKGROUND AND MOTIVATION

The motivation for studying the Ã-body problem
with Bose statistics is the desire to understand the
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FIG. 1. The P Tdiagram-of He (not to scale).

behavior of He4. Some of its remarkable properties are
brought out by its I' Tdiagram' -(Fig. 1). In contra-
distinction to all other substances He' possesses two
liquid phases, of which liquid I is ordinary in nature
but liquid II is unusual. It exists down to the absolute
zero of temperature and exhibits "superQuidity. '" The
specific heat measured along the vapor pressure curve is
proportional to T' near absolute zero, and diverges
logarithmically as T —+ T~, both from above and below. '

From a molecular point of view, our theoretical.
understanding of liquid helium has been confined only
to liquid II in the neighborhood of absolute zero. For
this understanding we are indebted to the work of
Feynman, combined with the earlier works of Tisza,
London, and Landau. ' The final picture is the following:
As a consequence of the Bose statistics, the low-lying
quantum states of the liquid are represented by phonon
excitations, and only phonon excitations, whose en-
ergies depend linearly on their momenta. This immedi-
ately explains the T' behavior of the specific heat. One
then takes over Tisza's two-Quid model of liquid II,
and identifies the "gas" of phonons to be the normal
Quid, and the rest of the system the superQuid. The
superQuidity of the system is then to a large extent
explained following Tisza's thermodynamic considera-
tions and London's hydrodynamic considerations.

The nature of the A. transition remains obscure.
While there seems little doubt in the correctness of
London's suggestion that it is a Bose-Einstein con-
densation, the mathematical complexity of the problem
has so far withheld a detailed understanding. This being
the case, it is worthwhile to study some idealized mathe-
matical models, in the hope that they provide insight
into the actual physical problem.

See K. R. Atkins, Liquid Helium (Cambridge University
Press, New York, 1959)~' Fairbank, Buckingham, and Kellers, ProceeCkrtgs of the Fifth
International Conference on Low-Temperature Physics and Chem-
istry, Madison, 1957, edited by J. R. Dillinger (The University of
Wisconsin Press, Madison, 1958), p. 50.

One of the simplest models that has some connection
with liquid helium is the hard-sphere Bose gas, ' ' in
which the particles of the gas are taken to be impene-
trable spheres of diameter a. For low densities (pa'«1)
the quantum mechanical energy levels of the system
have been calculated. 4 They turn out to be describable
in terms of purely phonon excitations. What Feynman,
Landau, London, and Tisza have achieved for liquid
helium becomes immediately applicable here: The
hard-sphere Bose gas, near absolute zero, exhibits
superQuid properties. The equilibrium thermodynamics5
and the transport properties' at higher temperatures
have been studied. The thermodynamic properties may
be summarized as follows:

(a) The system can exist in two phases: gas and de-
generate. They are distinguished by the fact that in the
former no quantum level is occupied by a finite fraction
of all the particles, whereas in the latter the lowest
quantum level is occupied by a finite fraction of all the
particles. The transition between them is obviously the
Bose-Einstein condensation. The P-T diagram of the
hard-sphere Bose gas, shown in Fig. 2, is qualitatively
indistinguishable from that of the ideal Bose gas.

(b) The Bose-Einstein condensation here is not a
first order transition, in contradistinction to that in the
ideal Bose gas. The pressure increases with volume
below the transition volume. It has a discontinuous
slope at the transition point, implying a finite discon-
tinuity of the specific heat at the transition point. Sote
added irt proof: This result, being nonexact, does not
rule out the occurrence of singularities in a higher-order
calculation.

A glance at Figs. 2 and 1 shows that the P-T diagram
of the hard-sphere Bose gas bears little resemblance to
that of He4. Although it is suggestive that the X transi-
tion in He is of the same intrinsic nature as the Bose-
Einstein condensation, the X transition takes place be-

tip

Fro. 2. The P-T diagram of the ideal Bose gas. Qualitatively
this also represents the P-T diagram of the hard-sphere Bose
gas.

4 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

~ T. D. Lee and C. ¹ Yang, Phys. Rev. 112, 1419 (1958).
6 T. D. Lee and C. ¹ Yang, Phys. Rev. 113, 1406 (1959).
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tween two liquids, while the gas phase makes 6rst order
transitions to liquid II and to liquid I, with the latter
transition ending in a critical point. It is hence impos-
sible to make any comparison between the hard-sphere
Bose gas and He4, as far as phase transitions are con-
cerned. (The solid phase of He' may be ignored since
we confine ourselves to low densities and low pressures. )

It is obvious that, just as in ordinary matter, the gas-
liquid structure of He4 arises from the attractive part
of the intermolecular potential. The fact that liquid II
is a bound system is evidenced by the observation that
the vapor pressure curve separating liquid II and gas
has a finite slope. Through the Clapeyron equation, this
implies a finite latent heat, which in turn implies a
finite binding energy for liquid II. The interplay be-
tween the gas-liquid condensation arising from the
attraction, and the Bose-Einstein condensation arising
from the Bose statistics, must be the origin of the
different phases of He4. It seems interesting, therefore,
to study such an interplay of interaction and statistics
in a simple mathematical model. We can make such a
model by embellishing the hard-sphere Bose gas,
attaching a weak long-ranged attraction to the im-
penetrable spheres that were the particles. This is the
model studied in the present investigation.

IIL QUALITATIVE EXPLANATION OF RESULTS

The main results of this work will now be explained
qualitatively. It would be instructive if we erst do the
same thing for the hard-sphere Bose gas, which is a
simpler model.

The quantum mechanical energy levels of the hard
sphere Bose gas, in the limit of pa' —+ 0, are labeled by
a set of occupation numbers {nq}. The ground state
energy is~

Eo (p) =4orap1V.

The low-lying excited states, in which few phonons are
excited, have the energies4

E{ng}=Eo(p)++ g k(k'+16m ap) &no,

where k=
~

k~ . This formula is valid only if

The phonons here appear as independent excitations
with momenta k and energies k(k'+16m. ap) &. When so
many phonons are excited that their total number be-
comes a finite fraction of X, the energy must be replaced

by the more accurate formula'

E{n~}=L1+(1—$)'jEo(p)+PI, k(k'+16~apt)*'nq,

where $ stands as an abbreviation for the fraction of

7 We choose units such that 5= 1, 2m = 1, where m is the mass
of a particle.

particles with zero. momentum:

If we put $= 1 this formula reduces to the previous case.
Thus the phonons are no longer strictly independent
because $ appears in their energies. Further, the total
energy of the system, on account of the presence of the
term (1—$)', is no longer a sum of phonon contribu-
tions. There is now a "collective" eGect.

I.et us now calculate the partition function of the
hard-sphere Bose gas. There will exist a macroscopic
parameter $ (0&~/&~1) which is the thermodynamic
average of $. The Bose-Einstein condensation will be
the transition separating the phase in which )=0 (gas
phase), and the phase in which $)0 (degenerate phase).
In the interest of simplicity we neglect the term 16mapg
in the phonon energy. This is a justihable approxima-
tion if the temperature is not too low. The energy levels
accordingly become

E{ng}= L1+ (1—t)']Eo(p)+Pg k'ng

The partition function is

Q~
—— Q exp( —PE{ng}),

where p= 1/~T, ~ being Boltzmann's constant. We may
perform the sum-over-states in the following fashion:
First choose a fixed value of $. Sum over all choices of
{n&} satisfying the condition Pgyonj, =E(1—$). Fi-
nally sum over all values of $ from 0 to 1. We obtain
in this manner:

Qz ——P exp{—P(1+(1—$)'jEo(p) }Q~&1—$)

where Q~~o& is the partition function of an ideal Bose
gas of 1V particles. The logarithm of Q~, in the limit
S—+ ~, is obtained in the usual way by taking the
logarithm of the largest term in the sum above. The
value of $ for the largest term is denoted by $, which is
the thermodynamic average of g:

-P-'»Q~=L1+(1- l)'jE.(p)

+A~ &o&(Q, T) =A~(Q, T),

where Az(Q, T) is the Helmholtz free energy of the
hard-sphere Bose gas of 1V' particles, and A~~o&(Q, T) is
the corresponding quantity for a modified ideal Bose
gas in which the weight of the k=0 level is ignored;
1V'=—1V(1—$). The pressure of the system is given by
P= —BA~/80. In this differentiation, we need not
di6erentiate with respect to the implicit dependence on
0 through $, because (BA/8$) =0 when $= $. At low
densities $ is determined essentially by minimizing the
term A~(~ ~)"' alone, because the other term is pro-
portional to p. This of course yields for ( its value for
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the ideal Bose gas'.
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—'&p, ',

if —1( —1

where p, (T) is the transition density. With this value
of $, A~ ip' becomes exactly the free energy of the true
ideal Bose gas. ' We thus obtain the pressure as a sum
of two terms:

P= —P1+ (1—$) Pj(BEp/BQ)+P iPi

where P('& is the pressure of an ideal Bose gas. Thus an
isotherm is obtained by adding to an isotherm of the
ideal Bose gas a curve similar in shape to the curve of

BEp/BD, where Ep is the ground-state energy. A
typical isotherm is sketched in Fig. 3. The "kink" in
the curve arises from the derivative B]/B(1/p), which
is discontinuous at p= p. .

Keeping in mind the example just discussed, we can
crudely explain the results of the present work with
only a few arguments. This we now proceed to do.

With the addition of an attractive interaction in
addition to the hard-sphere repulsion, the ground state
of the system becomes a bound state over a certain
range of the density p, with negative total energy' Eo.
A qualitative plot of Ep/E as a function of p is given
in Fig. 4. The pressure Po at absolute zero is obtained
by taking the negative derivative of Ep/E with respect
to p . This is also shown in Fig. 4. Due to the inexact-
ness of the calculation, the pressure becomes negative
for p '& po ', but by using a limiting form of the Max-
well construction, we obtain Pa=0 for p &po '.

The meaning of the Maxwell construction is the fol-
lowing: The state of the system at p=pp can coexist
with that at p=o because they both have the same
pressure and temperature. For p '& po

' the free energy
of the system is lowest if the system breaks up into two
parts, one being in the state at p= po, and the other in
the state at p =0.The state at p =0 is of course a vacuum.
The Maxwell construction, which is usually based on a
thermodynamic argument, becomes an automatic yro-

J ~ y.
P

FiG. 3. Isotherm of the hard-sphere Bose gas (solid line). It
is the sum of the two dotted lines. The construction is explained
in the text.

cedure if one calculates the pressure not in a canonical
ensemble but in a grand canonical ensemble. Thus we
already see that at absolute zero there is a first order
transition of the gas-liquid type.

In order to obtain the equation of state at a finite
temperature we need the excited energy levels of the
system. ' It sufFices to say that they are again labeled
by a set of occupation numbers {mk). And, as in the
hard-sphere Bose gas, the energy may be split into two
terms, one depending only on the combination of the
occupation numbers':

$—= 1—1V 'Q ek,
k&0

and the other is the contribution from elementary
excitations:

E{iik) Ei—$(P)+2k pikipk

where, for )= 1, E, p(p) reduces to the graph of Fig. 4,
and where the phonon energy ~k approaches k' for
large k. Again let us make the approximation cok=k' so
that the energy levels become

E{'lk)=El $(p)+Qk pikwk.

In complete analogy with the hard-sphere Bose gas,
we can immediately write down, for the pressure of the
system, the expression

where P( ) is the pressure of the ideal Bose gas, and the
first term qualitatively has the same form as Po
= —BEp/BQ shown in Fig. 4. The first term above of
course depends on the temperature through (.

For the sake of illustration, however, let us take

P= BEp/BQ+P"—'= Pp+PiPi

and see what happens. A family of isotherms are shown

]iP

P I

O

FIG. 4. Ground state energy E0/37 and isotherm at absolute
zero P0 in the present model. The dotted portion of P0 is to be
replaced by the abscissa above it, in accordance with the Maxwell
construction.

This is an oversimplification. Actually the energy depends on
one other combination of occupation numbers Pi.e., x, see Eq.
(4)$; but this sufBces to bring out the qualitative features of the
results.
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F' 5. The are obtained by graphically adding the
4 and thencurve Po to the ideal gas isotherms 1, 2, 3, 4, and

making Maxwell constructions when necessary.
The transition line of the Bose-Einstein condensation

divides the P—
p

' plane into two parts. If a point ies
to the rig t o is ih

'
ht of this line, it represents a state or w ich

(=0. Otherwise $)0. This is true throughout t. e —p
plane except in the area under the line OPABCDEQR.
A

'
l ithin this area represents a system com-

posed of two parts in thermodynamic equilibrium wit
each other. For example, at 0, the two parts are re-
spectively in states P ($)0) and Q ((=0), an at
they are B (/=0) and D ()=0). The area under
OPABCDEQR therefore represents the transition re-
gion of erst order transitions. The area below AE has
to do with those first order transitions between $=
and t) 0 states, while that above AE has to do wit
th first order transitions between )=0 and )=0ose
states. To use a terminology suggestive o e,
former are transitions between gas and 'q '~ ~

d li uid II while
the latter are between gas and liquid I. The transition
region for the gas-liquid I transitions end in a critica
point C above which one can no longer distinguish gas)

and li uid.
The transition line of Bose-Einstein condensation

meets the transition area of first order transitions at
oint A. It can be seen graphically that below pointpoint . ca

this transition area eecessarily conta' ins the line of
Bose-Einstein condensation, so that the latter never
"comes out again. nt" . Once inside the said transition area,
the line of Bose-Einstein condensation is no longer
meaningful because, as we hav ', ph e said a oint there
represent a mixture of two states each of which are

Above poinb t A the line of Bose-Einstein condensation

- trpngitipn

0

FIG. 6. P-T diagram of the present model.

~ ~

divides liquids I and II. We may therefore call it the
line of P -transition.

It is easy to construct qualitatively the P-T diagram.
Th' is shown in Fig. 6 and we see that it now repro-is is s
duces the features of the P'-T diagram of He ig.
with the exception of the solid phase.

These, qualitatively, are the results of the present
investigation.

IV. DEFINITION OF THE MODEL

The starting point of this investigation is Eq. (57)
of I for the energy levels of a system of Bose-Einstein

l ith hard-sphere repulsive interactions plus
weak long-range attractive interactions. T e ourier
transform of the interparticle potential is

vi,
—— 8ira if l~ )ko

(1)= —8mb if k (ko.
The parameters characterizing the potential are a, b,
Gnd ko'.

i(p

therm

a= scattering length (diameter) of hard sphere;
b=total scattering length of the potential at

zero energy;
ko (range of the attractive part of' potential) '.

There is only one other parameter for this S-body
problem, namely the particle density p.

An energy eigenvalue of the X-body system, accord-
ing to Eq. (57) of I, is labeled by a set of occupation
num ers sg, w eib ~ y, h re k is a vector in the momentum

1 ~

lattice space with lattice constant I.=D,'. Each ei, is 0
or a positive in cger, an't' ' t ger and the set {n~) satisfies the

0
P; y

FIG. 5. Qualitative isotherms in the p
~ ~ ~

he resent model. They are
obtained by adding curve P0 to the various isotherms of t e i ea
Bose gas 1 2 3, 4. The construction is explained in the text.

condition
(3)Qg ni, =E

The energy eigenvalue corresponding to {nag is E{n~),
given by the formula'

(1/E)E{ni,)
47rbp+4m up{g (P,x)+—(128/15) (pa'/ir):

)&P(0)[f((,x)]l}+(1/E) P kLk'+16Ãapf(), x)]ink
k)kp

+(1/&) 2 kLk+ 6~@'(p)pk(& +)&'n&
P(k(kp
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where'

$—= 1—N 'Q ng
k&Q

g(~,*)—= (1-~)'[(1+b/ ) (1-*)'-b/ ]

(0 ~& 5 &~1) (5)

(o ~&~ &~ 1), (6)

(o &f~&1), (7)

superRuid properties near absolute zero, . is not expected
to make any qualitative difference in the nature of the
phase transitions. Accordingly, we replace this spectrum
by k', the spectrum of a free particle, in order to simplify
the calculations. The energy levels then become

b—E{mg}=%rap ——[1+(1—$)']+ (1—f)'
8

b/a & (2/n-) koa. (12)

This condition is the condition for binding. "We shall
assume this to be the case, so that Eo/N is qualitatively
the curve in Fig. 4. The equilibrium density po and
binding energy per particle eo are then given by

koa (b 2
a po— I

———koa
32 Ea ~ )

oo=—(64n apo) poa'lkoa.

(13)

We can make po as small as we please by making (b/a)—(2koa/n) as close to zero as we please. Thus we expect
that the interesting phenomenon of condensation can
be made to occur at as low a density as we please.

In the calculations to follow, we shall be interested
primarily in the phase transitions of the system. The
detailed form of the excitation spectrum of elementary
excitations, important for the specific heat and for

9 In I, P(0) was misprinted as F(v). There it should have been
F (vf-&).

' In I this condition was misquoted. It was wrong by a factor
of 2.

=-(1-~)'[(1-*)'-b/ ], (8)

ko[—16m-apf(P,x)]
F(0):(15/2—)[o(1+a2) ~ o(—1+02)'+ oa o+ o rro]. (10)

The quantity a'(p) is given in Eq. (50) of I. We shall
not need it here. The quantity k(P,x) has not been
calculated but will not be needed. We know, however,
that 4= 1 when /=1, and in general k&~1.

The formula (4) is valid under the following re-
strictions:

(a) pa'«1, koa«1, bla«1.
(b) The set {e&}is such that m& changes negligibly

when k changes by ko.

(c) The set {eq}is such that the levels with large k

are not appreciably occupied (low excitations).
(d) Except eo, no other eq is a finite fraction of N.

The ground energy is obtained by setting co=% and
all other ek=0:

Eo/N = 47rbp j4irap—(128/15) (pa'/vr) lF (v), (11)

where v=ko(16m. ap) *. If one plots this as a function of

p ', the energy is everywhere positive if (b/a) &2koa/s.
It becomes negative for a range of p

' if

128 (pa'l ~
1

1
I

—
I
f:F(a) +—P kN„(14)15( i J two

v= [167ra p/(koa) ]
The final form of the energy eigenvalues is

1 ]4~p ' (koa) '
—E{N,}=I—I I

N (a j (4m)

(17)

b b -1 2f'( fqt
I (1—f)' ———-(1—S)' -+

I
1+—

I

Ekoaj a a v v ( 2wj I

1
+—Q k'ng (18)

g kgo

where v is defined by (17).
We shall use the energy levels (18) for the calculation

of the partition function of the system. According to the
restrictions on the validity of (18), this partition func-
tion gives valid results for low densities and low tem-
peratures. Therefore the sects that we are looking for,
e.g., phase transitions, must be such that they can
exist in the limit of zero density and temperature. We
shall find this to be the case. This is not surprising,
because both the formation of a bound state and the
Bose-Einstein condensation can occur in that limit.

We shall also find that restriction (b) is satisfied when

ko —+ 0. The only misgiving one might have concerning
the use of (18) in the partition function is that it does
not include all possible energy eigenvalues of the sys-
tem. Specifically, it left out those states in which an
ei, other than mo is a finite fraction of E. Such mis-
givings may be partly dissipated by the following plausi-
bility arguments:

(a) Such states have small statistical weights so that

where f=f($,x)—is defined in (7). We have used the
fact that

(1-f)= (1-~)(1-*), (15)

which easily follows from (7). According to the remarks
following (13), we may confine the calculation to as low
a density as we please. This enables us to simplify F(o)
by expanding f'F(0) about p=0:
f*'F(a) = iof'~'*

&[1+2 (f/o) —(»/48) (f/~)'+ "], (16)

where v is a dimensionless volume defined by
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they cannot be of importance in the equilibrium
thermodynamics;

(b) Our calculation is self-consistent, in that we shall
find no tendency for any level other than 4=0 to be
macroscopically occupied, under thermal equilibrium.

In any event, our model is that the partition function
shall be calculated from (18).

Finally, it is convenient to introduce the following
dimensionless variables and parameters:

k&0 0(k(kp

These are equivalent to the conditions

where p= (aT) ', ~ being Boltzmann's constant, and T
the absolute temperature. We perform the partition
sum as follows: First we pick a fixed set of values f, P,
and sum over all sets of occupation numbers (e~) satis-
fying the two conditions

P eg ——(1—g)N, and P rig=x(1 —$)N.

r=b a,
s= koa/kr,

19
~=koa/(16m pa') & (dimensionless specific volume),

8= KT/ko' (dimensionless temperature).

k&kp

0(k(kp
rtt, =x(1 $)N=—(f f)N.— (23b)

rt Q
——(1—

P) (1—x)N = (1—f)N, (23a)

(pa'/m) I=s/e,

aT= (4irs/a)'8
(21)

Thus, if for Axed a we let r —+ 0, s —+ 0, . then any finite
value of v ' would be a low density, and any 6nite
value of 8 would be a low temperature. In terms of
these dimensionless parameters we can write

E(eg}=E'(f,$)+Q k'mg,

In the above, x is Boltzmann's constant, and T the
absolute temperature. We require

0(r(&1, 0(s(&1, (r/8s) —1)0. (20)

The last condition is the same as (12), the condition
for binding. From (19) we have

After this is done we sum over all values of f and (,
whose ranges are 0&~(~& f, 0&&f&&1. To obtain A~, the
Helmholtz free energy of the system, we shall need the
logarithm of the partition function. In the limit X~
this is obtained by retaining only one term in the sum
over f and $, namely the largest term in that sum. The
values of f, $ corresponding to this term is denoted by
f, $. They are interpreted to be the thermodynamic
averages of f, $.

We obtain, in the way just described:

A~/N=Minr, t(E'(f,$)/N Z(f g)), —(24)

where the symbol Miny, ~( } denotes the smallest value
of the quantity in the bracket ( ), in the range 0&~( ~& f,
0~&f~&1.The quantity Z(f, g) is defined by

where
k+0 Z(f, &)

—=—(NP) ' P' exp( —P P k'Ng), (25)

1 (4n ~'
E'(f &)=—

I

—
I
"

&a&
E(1 f) r r(1 5)

4se

where the sum P' is subject to the conditions (23a)
and (23b).

In Appendix A, it is shown that the minimization

(„)with respect to $ can be immediately carried out, giving

v 0 2e) the result

V. THE PARTITION FUNCTION

The thermodynamic properties of the system shall be
calculated in the grand canonical ensemble. In an exact
calculation of any physical problem, the results in the
grand canonical ensemble must agree with those in the
canonical ensemble. In an inexact calculation, such as
ours, this is not necessarily so, but the grand ensemble
usually leads to more physical results. The well-known
relation between the two is the following: To obtain
the equation of state in the grand canonical ensemble,
make Maxwell constructions, whenever necessary, in
the equation of state in the canonical ensemble. There-
fore it is suflicient to calculate the canonical partition
function.

The canonical partition function is

exp( —PA~) = P exp( —PZ(N~})
Zng=N

= 2 (-pi-P&'(f, ~)h-pL —P2k'. j),
Zng=N

~1
f,(8,v) = 16sv dt t '*(e'I' —1)—'. -

0

(27)

Since ( is the average fraction of particles with zero
momentum, (26) expresses the Bose-Einstein condensa-
tion. In the 8—v plane, the transition region of the Bose-
Einstein condensation is the locus of f(8,v) f, (8,n) =0.—

It is also shown in Appendix A that the free energy
can be expressed through the following groups of
formulas. I.et

A ~/N = (4m/a)'s'0', (8,v)

P= (4m/a)'(s/a') s'(P (8,i).
The dimensionless quantities 8(8,n) and (P(8,v) shall
from now on be referred to, respectively, as the free

(=0 if f(f, (nondegenerate region)
(26)=f f, if f)f,—(degenerate region),

where
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energy and the pressure. They are given by.

(P(0,v) = —[0(X(0,v)/8vfp (equation of state),

0!(0,v) =Mint(Sq(0, v)) (0 ~&f~&1) (free energy),

et(0,v) = t:f (0,v)+Xr(0,v)+ah(0, v),

vp(0) = [8pr*(2.612)]—'0 ** (36)
(30)

(31)
is the transition volume of the ideal Bose gas. A more
accurate formula for v, (0) is given in Appendix B. For
fixed 0 the transition region ends when v=e, —5, where
the width 0(0) of the transition region, of order rsvp, is
also given in Appendix B. The two phases separated
by the Bose-Einstein condensation can be characterized
as follows:

r 1 t' fy 1
Sg(0,v) = ——+—(1—f)'+2f'I 1+—~—

2s 4s 2vJ

if f&f0
(32)

(r/4») (f f.) (2—+f. f) i—f f&f f&f,(0,v), or v) v, (0) (nondegenerate region),

f)f, (0,v), or v&v, (0)—h(0) (degenerate region).
(3't)

Xf(0,v) = 16v0)t dt t'*ln(1—t e "')
1 (b) The function f(0,v) is determined by the condition

+ (%)(1—f) ln|, (33a)

region is approached from large volumes, be v, (0), then

(29)
v, (0)—vp(0) where

1 f=16—» dt t**(f' 'e"' 1)——' (0—&f' (e't') (33b)
1

8 Sf (0,v)
(38)

1

Zt (0,v) = 16v0 I dt tl ln(1 —se "')+(8/s) f lns

1

f=16»l dt t'*( ' "' 1) '—
J0

Bef(0,v)
(0~&s &~1) (39)

-9 1' f=f
if f&f„(34b)

both for f&f, and f&f„butnot in the transition region
f=f,. This immediately enables us to write, outside of
the transition region:

if f&f„(34a)

pl
Zf (0,v) =Zy, (0,v) = 16v0 dt t'*ln(1—e "')

p

if f&f,. (34c)

The designation of the functions hf, 3Cf, Zf are sug-
gestive of the fact that Sf is qualitatively similar to the
ground state energy, 3Cf is the contribution from ex-
cited particles with high momentum (k) kp), and Zf is
the contribution from excited particles of low mo-
mentum 0&k&k0.

Other thermodynamic functions may be obtained
from the free energy as follows:

g(0,v) = —[80', (0,v)/00j„(entropy),
'tt(0, v) = S(0,v)+0$(0,v) (internal energy), (35)

6(0 v) = —0[8'S(0 v)/80'] (specific heat).

op(0, v) = op~ (0,v) + hp (0,v)y hP, (0,v).

r 1 ( f)-
hp~(0, v) = ———+—(1—f)'+2f'~ 1+-

I

2s 4s & v)

if v)v,t I0

l (r/2»')[f —-', (f' —f,')j if v(v, —8.

(40)

(41)

6'~(0,v) = —160)f dt t'* ln(1 fe "')—,
1

(42a)

1 f=16sv I C—k h3(f 'e'tP 1) ', (0&&(—(&e't ) (42b)

Using (39), we may calculate the equation of state
more explicitly. The results are as follows:

VI. THE EQUATION OF STATE

1. Some General Properties

To obtain the equation of state from the free energy,
it is necessary to know some of the properties of f(0,r),
the value of f which minimizes Qt(0, v). These are
studied in Appendix B.The results may be summarized
as follows:

(a) The transition region of the Bose-Einstein con-
densation, given by f(0,v) —f, (0,v) =0, is a narrow
ribbon in the 0—v plane which deviates from the transi-
tion line of the ideal Bose gas by an amount of the
order of s. Let the transition volume, as the transition

6'z, (0,v) = —160~ Ch hl ln(1 —se 't') if v) v„(43a)
0

1

f=16»I dt tl(s 'e'~P 1) ' if v)v, . —(43b)

I

O'1, (0,v)= —160 t ChP*ln(1 —e "') if v(v, —0. (43c)

In the transition region, when v lies in the narrow in-
terval between v, —6 and e„the pressure can be worked
out by setting f=f, in Sr(0,v) and then differentiating
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with respect to e. However we shall not be interested
in that.

To. the formulas (40)—(43), we must append the
instruction to make Maxwell constructions whenever
necessary. With this prescription, (40)—(43) yield the
equation of state in the grand canonical ensemble.

The three terms 5'~, (P~, and (Pl, are in one-to-one
correspondence with the three terms Bf, 3Cf and eC f of
(31). (P& is qualitatively similar to —8Ep/80. Its values
on both sides of the transition region differ by the
amount

The last approximation is valid for 0«1. Its slopes
86'/8v also diGer on both sides of the transition region
by an amount of order s'. There are no discontinuities
in (P~ and (P~. Thus, due to (P~, the total pressure is
discontinuous both in value and in slope across the
transition region. In physical terms, there is a drop in
pressure when particles are taken out of the k=0 level.
This is the opposite behavior to the hard-sphere gas, in
which the pressure rises instead. '

2. Lowest Order Approximation

We are interested in studying the equation of state
in the region where phase transitions occur. We know
that there is a Bose-Einstein condensation at all tem-
peratures, and that there is a first order transition of the
gas-liquid type at absolute zero. What we want to And

out is what happens to these transitions at finite tem-
peratures. The energy levels (4) on which this model
is based are the results of a perturbation calculation in
which the interaction between particles must be con-
sidered vanishing small. Accordingly, any phase transi-
tion that appears in this model must appear at very
low temperatures (note that this means aT((1, but not
necessarily 8((1), where the pressure of the ideal Bose
gas is vanishingly small —so small, in fact, that it can
be significantly changed by the interactions. Since the
pressure of the ideal Bose gas actually goes to zero at
absolute zero, it is not a priori ruled out that an arbi-
trarily small interaction can produce significant effects,
at suKciently low temperatures. Such an effect is in-
deed what we seek.

It is shown in Appendix B that f deviates from the
corresponding quantity of the ideal gas only by an
amount of the order of s—a result that is hardly sur-

prising. To investigate the equation of state to the
lowest order in the interactions, it is sufhcient to put

vc= Vo)

5=0.
(47)

6'(v =v, —8) —6'(v =v.) = (r/2s) (f,/vP)

i/8

=rs64n. (2.612)'8' t dx x'(e' —1) '. (44)

PiP'(8 v) =8ir**8~g (s) if v) vp

=8ir'*8~g;(1) if v&vp,
(48)

where vp is given by (36), g„(s)=Pi=i"t "sI and s is
the root of the equation

g-:(s)/g-:(I) = vp/v. (49)

Some numbers of relevance are: g;(1)=1.341, g;(1)
=2.612. Some of the isotherrns of the ideal Bose gas
are qualitatively shown in Fig. 5.

The equation of state to lowest order is given by

where
~p(8, v) = tp&P~(8,.)+ ~P'(8, v), (50)

2 r 1 2fp'
(P'(8,v) = ————fp' ——(1—fp)' +

e' 4s 4s v'

lf v) vo

+ (51)
(r/2sv') Lfp

—l (fo' —f')]
where vp is given by (36), f, by (27), and fp by the
following:

fp=(N 'P rta);d,.-i s..
k&kp

r 1

16sv I dt tl(z 'e"' —1) ' if v)vp
~o

1—16sv I dt t*'(e" 1) ' if v&—v

(52)

with s given by (49). According to (52) and (49) fp is,
for fixed 0, a monotonically decreasing function of v.

It is a linear decreasing function of v for v(vo. At. v= vo

both fp and Bfp/8v are continuous. For v) vp, fp de-
creases slower than a linear function, and approaches
an asymptote as v —+ ~:

At 0=0, (P' is, apart from a constant factor, identical
with 8Ep/80, shown q—ualitatively in Fig. 4. At small
but 6nite 0, 6' is still qualitatively the same, except
that at v = vo it has a discontinuity both in value and in
slope. At some finite 0, (P' becomes a monotonically de-
creasing function of v, and no longer possess a minimum.
It is now clear that the discussions in Sec. III embody
the qualitative features of this model.

The isotherms according to (50) are similar to those
illustrated in Fig. 5 arid Fig. 6, and the interpretation
of the various phases is the same as that discussed in
Sec. III. More accurately, the shape of the gas-liquid

Any corrections to the results so obtained would be of
a higher order. Doing this, we find that Prr+(Pz be-
comes identical with the pressure 6'"' of the ideal gas:
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Z(f, g)= —(XP) 'lngg& & exp( —p P k'I )j
{nkvd 0&k&kp

—(A&j9) '1nL Q&'& exp( —P Q k'e„)],
k&kp

where the sum p' ' is subject to (23a), and p'" to
(23b). Let

B~=—(NP) ' lnL P"' exp( —P P k'e&)), (A1)
( nkI

where the sum Po& is subject to

0&k &kp

and let

I&,= lVn,
0&k&kp

FIG. 7. Transition region in the 6'-v plane of the present model.
The coef15cient of thermal expansion is negative for liquid EI,
positive for liquid I. The reason is given in Appendix C.

C —= —(EP) '}nLP('& exp( —P P k'e&, )], (A2)
(nkvd k)kp

where the sum p('& is subject to

Q e&,=1Vn
k)kp

Then we may write
transition region is that shown in Fig. 7, and some rele-
vant calculations are given in Appendix C. The tempera-
tures and volumes of the points on the diagrams are as
follows:

Z(f, g)=Br (+Ci r. (A3)

point 0: 8=0, i&= —,'L(r/8s) —1)-',
point 1: 8i —(lns) ', vi s '(—lns)',

1&,-point (X):
critical point (c):8„;t~1, &crit

$„(8,i&)
—= (8/4n-)'s '8„,

er (8 i&)
—= (8/4n. )'s-'Cr,

(A4)

(54) where
y=f 4(«—y—(f), (A5)

In the limit E~ ~, 8 and C can be calculated by
the method of saddle-point integration. Introducing the
dimensionless functions

As shown in Fig. 6, liquid II has a negative coe%cient
of thermal expansion, while liquid I has a positive co-
efficient. The reasons for these, including a physical
one, are contained in the calculations of Appendix C.
The limit of no interaction is to be approached by first
letting r ~ 0+, s ~ 0+, (r/8s) 1~0+ and then le—tting
a ~ 0+. Referring to the definitions of 8 and v in (19) in
terms of the conventional absolute temperature and
particle density, we see that in that limit the transition
region (a) collapses towards the transition line of the
ideal Bose gas, and (b) recedes towards zero tempera-
ture, zero pressure, and infinite volume. As explained
earlier, this makes the calculation self-consistent.

Since f fo, it is cle—ar that the average occupation
number (e&,) deviates negligibly from that of the ideal
Bose gas. Therefore the assumption restriction in the
use of energy levels (4), that e&, changes negligibly when

k changes by ko, is satisfied when tto —+ 0.
The specific heat can be calculated to the same

approximation used here. It has a finite discontinuity
across the transition region.

APPENDIX A. CALCULATION OF THE
PARTITION FUNCTION

We shall calculate Z(f, g) defined in (25). Clearly we

can write

we obtain

$„(8,v)=1658 ' dt t'*ln(1—ze '&~)+(8/s)y lnz

p1
y=16sv dt t~(z 'e'» —1)—' (p(z(1)

0

(A6)

and

6r(8, i&) =16'&8 dt t*'ln(1 —fe 'Ie)

1

+ (8/s) (1—f) lnt' (A7)
goo

1 f= 16sv d—t t'*(f-'e'» 1), (p(f (eil&—)

(1 f+y)'+—(4—/a)'—s'tL8 (8,v)+ $„(8,i&)J, (A8)
4sv

where z, f are to be eliminated between each set of
equations above. The second equations in (A6) and (A7)
are the saddle-point conditions; namely 8$/Bz= 0,
88/81 =0, respectively.

Writing $=f y, we recast th—e Helmholtz free energy
(24) in the following form:

1 r 2f2 ( f )
a~/X= Min, ,„(1—f)—

4si& 4sv e ( 2v]



EQUATION OF STATE OF BOSE —EINSTEIN SYSTEM ii39

~1
vr(8)—= (16s/f) ' dt tI(e'te 1) —' (A9)

the meaning of which is clear from Fig. 8. It is also
clear from Fig. S that the range of y is 0&~y&~ f if
v) vf (8), and 0 &~y~& f.(8,v) if v&vt(8), where

'

f, (8,v) =—16sv dt tI(e"'—1)-'. (A10)

Equivalently the ranges of y are, for given 8, v, and f,

y & '
(A11)

0&y&f. if f&f„

where Mint, „f}denotes the smallest value of the curly
bracket in the range 0~& y &&f, 0 &~ f&&1.

It is now possible to carry out the minimization with
respect to y. For this we need to study the properties of
$„(8,v). The second equation of (A6) determines z as
a monotonically increasing function of y. For diferent
sets of values (8,v), we obtain a family of z-y curves
shown qualitatively in FIg. 8. Let

mined f, the transition region of Bose-Einstein con-
densation, as a relation between 8 and e, will be dehned
by f f,—=O. This gives a physical meaning to f,

From here on it is straightforward to obtain the
results (2S)—(34).

APPENDIX B. BOSE-EINSTEIN CONDENSATION

We define f to be the value of f which, for given 8
and v, minimizes St(8,v) of (30). Thus f is the thermo-
dynamic average of f. Its physical significance lies in
the fact (see Appendix A) that

f&f, defines the nondegenerate region ()=0),
B1

f&f, defines the degenerate region (P)0),
where f, is defined by (27) or (A10). The transition re-
gion of the Bose-Einstein condensation is therefore the
region in the 0-e plane which satisfies

f(8,v) f.(8;—)=o (B2)

From (7), we may also interpret f to be the thermo-
dynamic average of the fraction of particles with
momenta smaller than ko (including the momentum 0):

where f,~f, (8,v). f=(1V ' P ei,).
lt:(A p

(B3)

FIG. 8. Graphical aid
for the analysis of (A6)
and lA8).

I
I
I
I
I
I

A

I

I
I
I
I
'I

Now $„(8,v) is a monotonically decreasing function
of y after elimination of the dependence on s. This is
because along one of the z-y curves B$„/By=(8/s) lnz
~&0. Therefore, for given values of 8, v, and f, the
minimum value of $„(8,v) occurs at the maximum
allowable value of y. In (AS), the only other term de-
pending on y is —(1—f+y)' which assume its smallest
value also at the maximum allowable y. Denoting by y
the value of y which for given 8, v, and f minimizes (AS),
we have

Therefore to study the Bose-Einstein condensation we
must first study f

According to (30), S~(8,v) is made up of three terms.
They are qualitatively sketched in Fig. 9 as functions
of f, with some fixed finite values of 8 and v. Referring
to Fig. 9, we see that f is never equal to 0 or 1 for finite
8, v, because BZ~/Bf, BK~/Bf diverge at f=O, f=1, re-
spectively. Except at f=f., where hi has a discontinu-
ous slope, both CLt and BS~/Bf are continuous functions
of f. Therefore f satisfies the equation

(BCLt/Bf)r r=0 except when f=f, (B4).

If, for fixed 8, f=f, holds only at an isolated value of v,

then (B4) must be generally valid by continuity. How-
ever, it is possible that for fixed 8, f=f, holds over a

g=f if f&f,
=f if f&f'

In terms of $=f g this m—ean—s that

(A12)
FIG. 9. Qualitative

plots of the three
terms whose sum is
Gf. f is the value of
f at the lowest point
of Cf.

if $ &f, (system nondegenerate)
=f f, if f&f, —(system degenerate),

where f is the value of f which minimizes (AS). Equation
(A13) expresses the Bose-Einstein condensation. At the
end of the calculation, where we would have deter-



1140 KERSON HUANG

g(8) =16s dt t&(e't' —1) '.
Jp

(86)

It divides the 0-v plane into an upper part and a lower
part (with 8 chosen as the ordinate and v the abscissa).
The Bose-Einstein transition occurs somewhere in the
lower part.

Assuming f,&1 and referring to Fig. 9, we see that
in the neighborhood of f=f, the function Zr is a con-
stant. Therefore it is of no relevance to the determina-
tion of f in this neighborhood. The function Br has a
discontinuous slope at f=f, :

finite interval of v. In that case (84) is invalid over
that interval. We shall find that the latter is the case.

Since 0~& f~&1, the Bose-Einstein condensation can
occur only if f, (8,v) & 1. The locus of f, (8,v) = 1 is a line
in the 0-v plane:

vg(8) =1,
where

When s —+ 0 the second term is negligible compared to
the first. For finite 0 we write o.= 1—8o. and find to first
order in s that

8n=8 (s/8) dt t&(e't' 1)
——'.

1
(812)

Substituting this into (810) yields

v,/vp —1—sJ(8),

where

(813)

168& r" t&e ' " t'*e '
J(8)= ' dt X dt . (814)

v.&(2.612)J it 0 1 e—' "it 0 (1 e')—'

The width of the transition region is small of second
order:

8/vp —32rsJ(8).

where

(8hr)
I.im/' ' 48f)f=f, —.

Lim(
( 8f ) f=f~~e

1 1—r

2$ v

—Jt (8),

1 '1
E(8),—

2$ v

In summary, the transition region of the Bose-
Einstein condensation may be represented in the 0-v

plane by a very narrow ribbon close to the transition
(87) line of the ideal Bose gas. The distance between them

is of the order of s. The width of the ribbon is of order rs.
The line of Bose-Einstein condensation separates the
two phases characterized as follows:

&(8)=g(8) {1+»f1+4K(8)]) (Bg)

I et us keep 0 fixed and imagine that v is so chosen
that f is less than f. If we no.w decrease v, f would.
move closer to f„becomes equal to f„and finally be-
comes less than f, During .such a variation of v, the
shape of the curve 0',r ——hr+3Cr+ Zr in the neighborhood
of f, goes through the following changes: When f~ f,
from above it looks like ~.This occurs when v=v, .
Then it looks like ~, finally it looks like g . This
occurs when v=v, —6. The width of the Bose-Einstein
transition region is 8. It will be shown that 6 rsvp.

We call v, the transition volume of the Bose-Einstein
condensation. It is given, for fixed 0, by solving the
equation

Nondegenerate phase: f&f„)=0, v) v„ 816
Degenerate phase: f)f„g=f f„v&v,——8.

This is a convenient place to give more details con-
cerning the function f(8,v) outside of the transition
region of the Bose-Einstein condensation. For v(v, —6

or v) v„we can use (84), combined with (31)—(34) to
obtain the equations that f satisfies:

1 f 4f t
—3f&

+—
~

1+——
~

—-ln-=0,
v E 4v) s s

j.

f=16sv t dt tl(s 'e'" 1) ', if f—&f, (817)
0

NCr) 'f 88'
+Liml I

=0,
E af ) t=j, -'

& 8f

which yields

v = v —16sk1—n(8)]

(89)
1 f=16sv t d—t t*'(i 'e'~' 1) ', —

J,
1 f 4f(— 3f~ 8

+
~

1+——
(
—in'. =0,

2sv v E 4v) s
t'e—'f'

X ~t dt, (810)
$1 n(8) e 't']$1 e'~'—]—1 f=16sv t dt t—&(l. 'e't' 1) '—if f)f. (818).

where vp is the t'ransition volume of the ideal Bose gas
given by (36) and where n(8) is the root of the equation

81nn= —8s dt tl(n 'e"' 1)'—
+4sg(8)L1+4a(8)]. (811)

In the equations above, i and s are to be eliminated to
yield f as an explicit function of 8 and v The follow.ing
observations can be made:

(a) f is a continuous monotonically decreasing func-
tion of v, for given 0.
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(b) f=1whenv=Oor 8=0.

(c)
~1/8

f +—2~ l(2.612) dt t*e '.
aJ p

g/s ~1+0(s),

t ~ 1+0(s).
s~p

From these it is easily verified that

f~f,yo(s), (B19)

fp—=1 16sge—"'v if v(vp and 8«1. (C1)

Since v(vp, (1—fp)(2~ '*(2.612) '8 *'e "'. Hence fp
divers very little from unity. Substituting (C1) into

(51), and keeping only terms to the lowest order of s,
we obtain:

where fp is the f for the ideal Bose gas, given in (52).

APPENDIX C. EQUATION OF STATE

We shall study (P'(g, v), defined by (51).We shall first
study it for v(vp, and then for v&vp.

For v&vp, let us first consider 0«i. We may use the
following approximation for fp.

When 8 increases, vp also decreases, and it does so
much faster than v;„.At 0=0i the two become equal.
Above that temperature (C3) is no longer applicable.
For 0~ we have

pp[(r/8s —1)+48sgie 'i'&]=8vrl(2. 612)sgi&, (C4)

the solution to which is

gi —(lns) ' as s —+ 0.

Thus 0~&&1. This corresponds to point 1 of Fig. 7. For
v(vp, we need not consider (P'(g, v) at higher tempera-
tures (unless we want more quantitative information
about the equation of state).

For v)vp, it is necessary to study (P'(g, v) at all g.
When 8«1, the curve (P'(g, v) as a function of v has no
minimum at all. It is everywhere negative and mono-
tonically decreases until v=vp, at which point (P'(g, v)

abruptly rises as (C2) takes over. Thus, for 8)gi, the
entire curve 5"(g,v), for fixed 8, is U-shaped at v=vp.
This is the lowest point of the curve. Hence v;„"gets
stuck" at vp for an extended range of 8 above 0~. This
is shown in Fig. 10.

When 8 is suKciently large, a minimum will begin to
appear in (Y(g,v) for v)vp. This first happens when
8=0),. At that temperature the V-shape flattens out on
the right side to become an I. This corresponds to the
) -point in Fig. 7. We can determine 8& by the condition

2 (r ) 2 64sge"'
~'(8, )=-——

]
—1 )+48.8.-'i' +-—

v' (gs ) 3

Lim(BP'/gv). .p+, ==0 (C6)
e—+p

Differentiation of (51) combined with (52) yields, for

if v(vp and 8&(1. (C2)

For fixed 0 the minimum of this function occurs at

v;„=p[(r/8s —1)+48sge 'tP] '. (C3)

Thus, as 0 increases, v;„decreases, though extremely
slowly. This is the origin of the negative sign of the co-
eKcient of thermal expansion. The function v;„is

sketched in Fig. 10.

8(P' 4 r 1
=-, ——(1-f.)

Ov v 4s 4$

where

4 1
+——(1—fp) —fp-

v' 4s

x'se *

x'se *
L(g,v) =, dx

~p (1—se—*)'

L(gv), (C7)

dx ~ 1, (C8)
(1 I—x)2u-vp+

with s given by (49). We obtain gz to be the root of

pi/6,

dx x'(e*—1)—'=or'(2. 612)(r/8s).
4p

(C9)

I I

eg Qriticol
Point

FIG. 10. Plot of v; against 0, where v; is the volume at
which the smallest value of (P'(e,v) occurs, for fixed 9. The slope
of this curve furnishes a qualitative picture of the coefFicient of
thermal expansion.

Since (r/8s) 1, (C9) gives

(C10)

When 8&0&, v;„rapidly increases to infinity. Hence
the temperature 0„;~of the critical isotherm is not far
above 8y. The critical temperature is therefore also of
the order of 1. Figure 10 shows v;„asa function of 0.
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d"(8p )

Fro. 11.Qualitative plot of the function 6"(o,s).

Its slope may be regarded as a qualitative picture of
the coeKcient of thermal expansion. We see that this
coeKcient is negative for v;„&eoand positive when
&min+ &0

With the above, we can now qualitatively sketch
(P'(H, s), as is done in Fig. 11. Adding these curves to
the isotherms of the ideal Bose gas gives the isotherms
in the present model. It is easy to see that the transition
regions are as shown in Fig. 7.

It may be noted that the negative sign of the co-
efficient of thermal expansion for s(vs (degenerate
phase) originates with the decrease of fs with increasing
temperature. Since fs is the average fraction of particles
with momentum less than ks, the decrease of fs is
largely due to particles leaving the level k=O. Thus
the negative coeRicient of thermal expansion and the
abrupt rise of pressure at v= @0 share the same origin.
They can both be understood physically in the following
terms: When attractive forces predominate, Bose par-
ticles can achieve a lower energy by occupying mo-
mentum states as different from one another as possible.
In other words, a spatial attraction leads to a momentum
space repulsion. Being in different momentum states
makes the expectation value of the interparticle dis-
tance small (a consequence of the symmetry of the wave
function), so that greater advantage is taken of the
attraction. " The spreading out in momentum space
clearly leads to higher pressure, while the concomitant
decrease in interparticle separation leads to smaller
volume.

"Compare the discussion in K. Huang and C. N. Yang,
Phys. Rev. 105, 767 (1957), for the opposite case of repulsive
interactions.


