GAUGE INVARIANCE AND LORENTZ PONDERMOTIVE FORCE

dxs=1icdt, we obtain from (22) the equation

f{mocz[l— (v/c)?*P—T—U}dt

X3: padxs, (23)

3=l

=nh—

where we have replaced dr by its definition in terms of
dt. Since T is equal to moc?/[1— (v/¢)?]}, the left-hand
side of (23) becomes

§ ont/ 1~ /ey v

[i pi(da;/d)+UTdt.  (24)

=1

If we now integrate the first term on the right-hand
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side by parts and use the relationship dp;/dt
=—9U/dx;, we finally obtain for the left-hand side
of (23) the integral

3 U
f [Z x—+U ]dt.
=1 9%

We see that the integrand will vanish by Euler’s
theorem on homogeneous functions if U is a homo-
geneous function of degree —1 in the coordinates w;.
We see, then, that for systems in which the potential
energy is a homogeneous function of degree —1, the
left-hand side of (23) vanishes and we obtain the Bohr-
Sommerfeld quantum condition. It appears from this
that the existence of discrete orbits arises from the
fact that it is only for such orbits governed by the
Bohr-Sommerfeld conditions that the dimensions of a
particle are single-valued.

(25)
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The physical interpretation of the electromagnetic form factors
is discussed with special reference to the gauge invariance of
particular theories. A distinction is made between the condition
that the one nucleon matrix element satisfy the equation of
continuity (“weak gauge invariance”) and the stronger condition
imposed by the generalized Ward identity (‘‘strong gauge invari-
ance’”). The former is shown to be a consequence of covariance
under the improper Lorentz transformations, and hence it has no
new content concerning the functional behavior of the form
factors. The latter implies restrictions on the current operator
which may have an important effect on-the results of calculations
of form factors.

In connection with the physical interpretation, it is noted that
the moments of the charge and current distribution are -deter-
mined by Fen=F1—(¢?/2M)F; and Fuag= (1/2M)F1+Fs. Spe-
cifically the second moment of the charge distribution, —6Fcn’(0),

1. INTRODUCTION

HE electromagnetic interactions of the nucleon
provide, in principle, a direct source of infor-
mation concerning the structure of the nucleon. Al-
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Commission, and in part by the U. S. Air Force, through the
Research Contracts Division and through the European Office,
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is found, in the case of the neutron, to be directly measured by
the neutron-electron interaction without the intervening sub-
traction of the Foldy term.

These matters are investigated in detail by means of a specific
model of the nucleon which is a covariant generalization of the
fixed source static model having the property that it gives results
identical with the static model in the limit M — c. It is found
that strong gauge invariance requires the addition of line currents
which make significant contributions to the form factors in general
and, in particular, to the proton charge radius even in the static
approximation. This suggests that as a consequence of strong
gauge invariance, important contributions to the charge radius
must arise in any theory from intermediate states of large mass.
The model also provides a means of consistently calculating recoil
corrections to the static model. They are found to be large.

though a prodigious amount of experimental infor-
mation concerning the electromagnetic interactions is
available,! a satisfactory interpretation of all of the
data has not been possible.? The failure of any theo-
retical treatment of the electromagnetic form factors
1For a summary of experimental data see R. Hofstadter,
?‘19]53u)m111er, and M. R. Yearian, Revs. Modern Phys. 30, 482
8).
2 A summary of the theoretical interpretations predating the

use of dispersion relations is provided by D. R. Yennie,
Lévy, and D. G. Ravenhall, Revs. Modern Phys. 29, 144 (1957)
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to give quantitative agreement with the data has been
interpreted as an indication of a serious difficulty with
the theory. However, there are several general questions
concerning the nature of the approximations used and
their interpretation which seem to warrant careful
investigation before drawing any such conclusion. The
purpose of this work is to study in some detail two such
questions, one being the problem of gauge invariance
and the other the physical interpretation of the form
factors.

The requirement of gauge invariance is usually
limited to the condition that the one-nucleon matrix
element of the current should satisfy the equation of
continuity. However, it is found that this condition is
automatically satisfied for any matrix element which
is covariant under the improper Lorentz transforma-
tions. Hence, this condition, which will be referred to
as “weak gauge invariance,” does not, in fact, guarantee
the conservation of charge. We suggest here that the
minimum requirement is the generalized Ward identity,
which is a statement of the equation of continuity for
the photon vertex off the nucleon mass shell. This will
be called the condition of ‘“strong gauge invariance.”
It will be shown, by making use of a specific model,
that strong gauge invariance requires additions to the
current operators which make important contributions
to the form factors.

The model used here is a covariant generalization of
the fixed source static model, designed in such a way
as to give the same results as the static model in the
limit of large nucleon mass. Strong gauge invariance is
established by introducing “line currents” which can
be used to estimate the effect of charge conservation
on the form factors. A particularly surprising result is
that there is a large line-current contribution to the
isoscalar second moment of the charge distribution even
in' the static limit. This is of particular interest since
the large value of the experimental isoscalar second
moment has been a major source of difficulty in earlier
work.2

The model also provides a consistent procedure for
calculating recoil corrections to the static model. The
fact that recoil effects are included means that another
question of some interest can be investigated. In 1951,
Foldy® showed that the neutron-electron interaction
could be described as the sum of two terms, one of them
being given exactly in terms of the known anomalous
magnetic moment of the nucleon. He interpreted the
other term as the second moment of the pion charge
cloud distribution. The contribution of the magnetic
moment, called the “Foldy term” is inversely pro-
portional to the nucleon mass. Therefore it was argued,
in particular by Salzman, that it is not taken into
account by the static model, which corresponds to the
limit M — . Hence, the neutron-electron interaction

L. L. Foldy, Phys. Rev. 83, 688 (1951); 87, 688 (1952); 87,

693 (1952).
4G. Salzman, Phys. Rev. 99, 973 (1955).
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as calculated by the static model has usually been
compared to the difference between the observed
interaction and the Foldy term. The disagreement
measured in that way is enormous.

The interpretation of Foldy’s result is re-examined
below, by making use of the fact that the limit M — o
can be handled systematically. We find that in a con-
sistent treatment of the static model, the result of the
static model is to be compared directly with the ob-
served neutron-electron interaction, without making
the subtraction described above. Therefore the dis-
crepancy between the static model and observation is
not nearly so great as had been thought, nor is the
experimental result as mysterious as it seemed.

As an illustration of the possibility of calculating
recoil corrections, we shall obtain the terms of order
M~ in the magnetic moments. These will turn out to
be large, of the same order as the static contributions,
so that any success of the static model is probably
fortuitous. Of particular interest is the isoscalar mag-
netic moment, which is strictly a recoil effect. Its
evaluation to order M~ by means of the present model
gives an expression in close agreement with that
obtained from the static model on the basis of the
mirror theorem.® Perhaps this agreement is not so
surprising since the early result is just a consequence
of the conservation of angular momentum. As is well
known, the result disagrees seriously with the observed
value of the isoscalar magnetic moment.

2. ELECTROMAGNETIC FORM FACTORS

The interactions under discussion involve the
emission and absorption of a single photon and
may be described in terms of the matrix element
(P',s'| 7.(0)| P,s) of the current density operator
between nucleon states of 4-momentum P and P’ and
spin s and s’. The operator is evaluated at the space-
time point x,=0. It is well known* that this matrix
element may be written in the form

ie
(2m)® (PoPo')}
XLF(@vu—F2(g®)owgsJus(P), (1)

where gu=P,/'— Py, ow=(1/29)[vuy>], and u,(P) is
the positive energy Dirac spinor of a free nucleon of
mass M, momentum P and spin s.

The matrix element is restricted to the form Eq. (1)
by the requirement of covariance under the improper
Lorentz group. In particular, it is shown in the Appendix
that the additional term of the form F3(g?)g, is excluded
by the requirements imposed on the current density
under the time-reversal transformation. The condition
imposed on the matrix element by the equation of

(P's| ju(0)| Ps)=

g (P)

5R. G. Sachs, Phys. Rev. 87, 1100 (1952).
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continuity, namely,
q,‘<P',S'| 7u(0) IP,.S‘):O (2

is satisfied by Eq. (1). Thus the condition of weak
gauge invariance, Eq. (2), is a direct consequence of
the covariance® and does not, in fact, contain any
information concerning the consequences of charge
conservation. Therein lies its weakness. It is satisfied
for any choice of the functions Fi(¢?) and Fs(g?). On
the other hand, it is clear that the form of the functions,
as calculated in any given model, is affected by the
condition of charge conservation. This results from the
restriction on the form of the current operator imposed
by the equation of continuity,

97u(%)/0%,=0. ©)

Not only does Eq. (3) imply the condition Eq. (2) on
the one-nucleon matrix element, but it also implies an
extension of the condition off the nucleon mass shell,
namely, the generalized Ward identity.” This condition
of strong gauge invariance would appear to be a mini-
mum requirement on any calculation of electromagnetic
properties of the nucleon. ’

It is of interest to discuss the physical meaning of
the form factors Fi(¢?) and Fs(g%) which describe, in
some sense, the distribution of charge and magneti-
zation in the nucleon. The various moments of these
distributions are often used to give an insight into the
form of the distribution; examples are the magnetic
moment, second moment of the charge distribution,
and so on. The simplest moment is the zero-order
moment of Fy, namely,

F1(0)=%(1+73) (4)

is just the charge of the nucleon in units of e.

To obtain the magnetic moment, for example, we
wish to calculate the expectation value of the operator
1 @ rXj(x) in a state in which the nucleon is at rest.
This expectation value is most easily determined for a
wave packet S'd3P a(P)| P,s). Since

(P'|ju(@) | Py=e"®==(P'| ()| P),  (5)

we find for the magnetic moment
1

(M)=— f &P’ a*(P') f d°P a(P) f &r e 1P =P -2y
2

. X(P',s'|§(0)| Ps)
== (2ny'i; f &*P' a*(P') f &P a(P)v o (P—P)

X(P',s'|3(0)| P,s)eiPo'=Pore,

We now substitute for the matrix element from Eq.
(1), integrate by parts, and finally take as the wave
6 Note that this result would not obtain if the initial and final

states described particles of different mass.
7Y. Takahashi, Nuovo cimento 6, 370 (1957).
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packet
: la(P)|2=5(P),
with the result

(M) =e[F1(0)/2M +F+(0) Ji. (0)ou,(0). ©)

Since eF1(0)/2M is, according to Eq. (4), the Dirac
moment, we see that eF3(0) is the anomalous moment
of the nucleon.

The second moment of the charge distribution may
be calculated in a similar manner; the expectation
value of the quantity S'd* r2j4(x) is required. Pro-
ceeding in just the manner described above, we find
for the second moment

F3(0)

<<n2>=—6[&’(0)——2—2[—[—]%(0)[—4%

3 Po
—l—fd PEVpa(P)-VPa(P)], )

where the prime denotes differentiation with respect to
g% The ambiguous term proportional to F;(0), which
vanishes for the neutron, is just the uninteresting effect
of distributing the charge of the proton in a wave
packet. It will be dropped henceforth.?

The results Eq. (6) and Eq. (7) suggest that we
introduce new form factors, the charge form factor

Fan(¢) =F1(g") — (¢/2M)F2(g?), ©)
and the magnetic form factor
Fag(¢?) = (1/2M)F1(g")+F2(g?)- )

Note that this usage differs from the usual, but the
difference has an important physical significance. Fen
measures the charge distribution, not F; as is so often
assumed. Also, Fu,, rather than F» measures the dis-
tribution of magnetization. This point was surmised
by Yennie, Lévy, and Ravenhall,? and a clear demon-
stration that it is a reasonable interpretation has been
given by Walecka,’ who shows that Fg and Fua,
measure the interaction with static electric and mag-
netic fields, respectively.
We now have from Egs. (7) and (8)

(®%)=—6Fa'(0), (10)

after dropping the uninteresting term, and from Egs.

(6) and (9),
I = eF ey (0). 11)

We are now in a position to comment on the Foldy
term. Foldy® showed that the neutron-electron inter-
action is proportional to Fy'(0)—F2(0)/2M, which we
now see is just Fe'(0). Thus a measurement of the

8 Yennie, Lévy, and Ravenhall, reference 2, include part of
this term in their expression for the second moment but its con-
tribution is too small to have a significant effect on their
discussion.

9 J. P. Walecka, Nuovo cimento 11, 821 (1959).
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neutron-electron interaction is simply a measurement
of Fe'(0), which is also seen to be directly proportional
to the second moment of the total charge distribution.
A calculation of the second moment should then be
directly comparable to the measurement, without
subtracting the Foldy term. In particular, it will be
shown in Sec. 7 that the limit as M —  of —6Fq’(0)
is identical with the second moment of the pion charge
distribution as calculated in the static model. Hence,
a consistent interpretation of the static model would
associate the entire neutron-electron interaction with
the second moment of the pion charge distribution.

3. DESCRIPTION OF THE MODEL

The model to be considered is a covariant generali-
zation of the fixed-source static model in its most
primitive form. No effort will be made here to determine
rescattering corrections. Thus our starting point is the
lowest-order covariant perturbation theory. The modi-
fication is simply to insert at the pion-nucleon vertices
a general vertex function, as indicated in Fig. 1, and
to calculate the form factors in terms of the vertex
function. The vertex function will be found to play
the same role as the source function in the static model.

There are several terms in the general vertex function
corresponding to the several possible vertex form
factors. For the sake of simplicity, only the pseudo-
vector term is included; it is the one having the closest
correspondence to the static model. This has the form
vs(P>— P;) multiplied by a form factor, where P=+v,P,.
The vertex form factor is, in general, an invariant
function of P; and P, (see Fig. 1), thus any three
combinations of the three invariant variables P2, Pg,
(P1-P3) may appear in it. On the other hand, in the
static model the source function depends on only one
variable. In order to study the approach to the static
limit, the vertex function is also taken to be a function
of a single invariant variable £(Pi,P;) the variable
being chosen to be such a combination of P2, Ps? and
P;- P, as to make the correspondence with the static
model as close as possible. This choice will be specified
below. The vertex part, Fig. 1 is therefore taken to be

of the form

i(8m) fo(§)ys(Poa—Py), (12a)
for a charged pion and

i(4m)d fo(&)ys(Pe—Py) (12b)

for a neutral pion. We shall normalize » in such a way

7

A

2

Fic. 1. Diagram of the pion-nucleon vertex.
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Fic. 2. Diagrams representing the electromagnetic
interaction of the proton.

that f corresponds to the usual renormalized, un-
rationalized coupling constant, f2=0.08.

The calculation of the electromagnetic form factor
consists of substituting the vertex part Eq. (12a) or
Eqg. (12b) in the matrix element obtained from the
diagrams Fig. 2 for the proton and Fig. 3 for the
neutron. For a given function v(£), these diagrams
could be evaluated directly without further assumptions
or approximations. However, in order to avoid intro-
ducing a specific function and to study the expansion
in powers of M1, we proceed in the following manner.
Consider for example the term corresponding to Fig.
2(c) : The contribution to (P’,s’| 7.(0)| P,s) is

dref? M
(2m)" (PoPy')?

i (P') f % ko (£)Se(P'—B)

XYuSr(P—k)ysko(£2)Ar (k)us(P),

‘El:E(P,’ P’—k)x E2=E(P_ks P)r
Sr(p)=(ip— M)/ (p*+M?—ie),

Ap(k)= (B+p2—ie.

Our purpose is to reduce this to an integral in the
3-dimensional k space, similar to the type of integral
occurring in the static model. Therefore we assume
that 2(£1) and (&) are analytic in the upper half of
the ko plane, vanishing on the infinite semicircle, and
integrate ko over a contour closed in the upper half
plane.® Contributions from the three poles on the
negative ko axis are thereby obtained.
When the variable £(P1,P,) is chosen to be

AMPH-p? - (Pot-P1)* P w2+ (Pa— Py)?
] + | (13)
4Mp u?

where

and

z(Pl,P2>=[

very simple results are obtained for the contributions
of these three poles and the poles appearing from the
other diagrams. In fact, this choice leads directly to the
static model in the no-recoil limit.

101t is not implied that this simple behavior is to be expected
for the vertex function arising from any realistic, relativistic

theory. These assumptions are introduced only as a prescription
for reproducing the results of the static model.
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An expansion in powers of |k|/M and |q|/M is now
possible if it is assumed that at each pole

v(§)~0,
|&]2/M2A1.

This rather unrealistic assumption is in the spirit of
the static model and will be the basis for our discussion.
Evaluation of the diagrams of Figs. 2 and 3 to any
order in M~ is now a straightforward but tedious
matter. The results to lowest order are presented in
Sec. 7 and some of the first order corrections in Sec. 8.

(14)

except for

4. CONSEQUENCES OF GAUGE INVARIANCE

It is immediately recognized that the diagrams in
Figs. 2 and 3 do not present a gauge invariant result.
As long as the black boxes represent anything other
than a local pseudoscalar interaction, diagrams of the
type shown in Fig. 4 are expected to contribute ap-
preciably to the electromagnetic interactions. For
example, if the black box represents vertex parts con-
“tributed by higher order diagrams, each of the internal
lines carrying charge must, in turn, be permitted to
produce the photon.

Nevertheless, the gauge invariance condition Eq. (2)
is satisfied by the matrix elements obtained from Figs.
2 and 3. Indeed, it is easily shown that eack of the
terms indicated by Figs. 2(a), 2(b), 2(c) and 3
satisfies this condition, as does the sum of diagrams
Figs. 2(d) and 2(e), as long as the function v(§) is
symmetric under interchange of P; and P;. Note that
for a local pseudovector vertex, not even the usual
catastrophic terms arising from the momentum de-
pendence are required to satisfy the condition Eq. (2).
The reason for this is simply that Eq. (2) follows from
covariance under a Lorentz transformation, as remarked
in Sec. 2, and each of these terms satisfies separately
the covariance condition. These remarks serve to
illustrate the weakness of Eq. (2).

To satisfy the requirements of strong gauge in-
variance, the behavior of the photon vertex off the
nucleon mass shell must be considered. Then it is found
that the diagrams indicated in Fig. 4 are required. We
shall give a prescription for writing down terms of the
type indicated in Fig. 4 for an arbitrary vertex function
v(£). However, there is no unique prescription for
determining these terms, there are always many ways
to satisfy the condition of gauge invariance. That given

AT ™

——

e ~~

_@_—@_-@_g—@_

Fi6. 3. Diagrams representing the electromagnetic
interaction of the neutron.
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F16. 4. Vertex current contributions to the nucleon form factors.

here seems to be the simplest, it makes use of line cur-
rents which are a natural generalization' of the usual
substitution of P,— (e/c)A, for P,.

The currents to be introduced may be described in
configuration space as currents flowing along a line
connecting two points in space-time which are coupled
by the nonlocal pion-nucleon vertex function. In this
way it is seen that they serve to transfer the electric
charge across the nonlocal vertex. We shall not go into
this representation in configuration space here, but
merely remark that the form of the line is arbitrary.
It will be taken to be a straight line for the sake of
simplicity. The corresponding matrix element is given
below in momentum representation and we shall
simply demonstrate that the term used does indeed
satisfy the condition of strong gauge invariance.

If we write
(P ()| Py =L

P T a7 (Popy)?

s (P') T s (P),  (15)

the contributions to J, from the diagrams in Fig. 4 are
as follows: For the proton with intermediate #?,

)= f d%{w[f da(ap' aP,

Xg(P'—ayg, P——le+(1,“a)q)]

XSp(P—Fk)ysg(P—Fk, P)
+vsg(P', P'—k)Sr(P' —k)ys

1
K
0

Xg(P'—k—aq, P+ (l—a)q)] lAF(k); (16a)

oP,’

for the proton with intermediate 7,

Lo
T () =2i f d“k{%[ f do ——g(P'—ag, P—k)]
o art

XSr(P—Ek)ysg(P—Ek, P)

+vsg (P, P'—k)Sr(P'—k)vs

[ f da “g(P' B, P+ (1~ a)q)]}AF(k), (16b)

" 1R G. Sachs, Phys. Rev. 74, 433 (1948); 75, 1605 (1949).
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and, finally, for the neutron with intermediate =,

1 a
JL ‘=2fd4k{'y[f da —
#(7") 5 , aP,,

Xg(P', P—k+ (1—a>q>]sF<P—k>

Xvsg(P—k, P)+vsg(P', P'—k)Sr(P'—k)ys

ld o P —F P)|iAr(k 16c)
X[j(: aa—r?g( —RrR—ag, )]} r(k). (16¢c

The definition of the function g is
g(pap1)= (b2—p1)v(%), (17)

so that the indicated differentiations of the factor
(p2—p1) lead to the usual “catastrophic” terms asso-
ciated with the pseudovector coupling, while the
derivatives of v(£¢) provide the pure line currents.

The test of strong gauge invariance may be taken

to be
quJ =0, (18)

where J, includes all contributions other than that of
Fig. 2(a). The point is that Eq. (18) applies off the
mass shell for the nucleons. It will be found to be
equivalent to the generalized Ward identity. Before
applying this test, it is helpful to take account of mass
renormalization,” which also has an effect on the
electromagnetic interactions.

5. MASS RENORMALIZATION

Since our procedure is analogous to the lowest order
perturbation diagram in meson theory, the mass re-
normalization consists merely of the subtraction of a
term having the form suggested by the diagram Fig. 5.
We may make the usual Dyson expansion of this
diagram

Z(p)=A+ (ip+M)B+(ip+M)yZ;(p), (19

where 4 and B are constants. Insertion of 2 (p) between
external lines leaves only the constant 4 to be sub-
tracted. However, we wish to perform the renormali-
zation without reference to the external lines, that is,
in J,. Hence, we introduce the renormalization diagram
Fig. 6, where the X denotes the momentum-dependent
mass correction

3M = —[A+(ip+M)B]. (20)

The introduction of the electromagnetic interaction

Fic. 5. Self-energy con-

% ! bution to the nucleon mass.
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now must be made in such a way as to maintain the
gauge invariance of this momentum-dependent mass
correction. Since 8M is in effect a nonlocal operator,
this can again be accomplished by means of line cur-
rents. Hence, in the one-photon matrix element for the
proton, we must introduce terms corresponding to the
diagrams of Fig. 7, where the contribution to J, of
Fig. 7(c) is just

M —
J M=

a 1
: f da 2(P'—ag), (21)

13
and

2(p)=3 f @ vsg(P, P—B)Sy(P—F)
Xvsg(P—k, P)Ar(k) (22)

may be expanded in the form of Eq. (19). The term in
2 does not contribute to the matrix element, Eq. (15),
but it is required in Eq. (21) for strong gauge invari-
ance. There is no contribution of the type J,* for the
neutron.

It is immediately evident that diagrams Fig. 7(a)
and Fig. 7(b) cancel those of Figs. 2(d) and 2(e),.
respectively. Hence, the sum of all proton diagrams
except Fig. 2(a) is given by inserting into Eq. (15), the

P P

F16. 6. Mass correction.

expression
] w(proton) =J ¥ (%) +J 7 (x)+T L (z)
+J (@) 4T (23a)

where the last three terms are given by Egs. (16) and
(21) while the nucleonic contribution [Fig. 2(c)] is

TN (=i f @k vsg(P', P'—E)Sp(P'—F)

XvuSr(P—k)ysg(P—k, P)Ar(k), (24a)
and the pionic contribution [Fig. 2(b)] is
Ty ==2 [ #p1sg (P DS s (P,
XAp(P'—=p)(Pu'+Pu—2p,)Ar(P—p). (24D)

For the neutron, the sum of the diagrams in Figs. 3
and 4 is

Ju(meutron)=J, ¥ (x7)+J " (x)+JE(r), (23b)
where J,2(r™) is given by Eq. (16c) and

TN (a7) =27, (x), (24¢c)

Jym(17) = =T, (xt). (24d)

The condition of strong gauge invariance, Eq. (18)
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() (b) (c)

F16. 7. Contributions of the mass renormalization to the
electromagnetic interaction of the proton.

can now be easily verified by noting that

(ip+M)Sr(p)=—1,

whence
SF(P'—k)iqSF(P‘—k) =SF(P'—k)—SF(P—k).
Similarly

QAAF(PI—?)(Pul‘*‘PM—zP#)AF(P_P)
—Ar(P—p)—Ap(P'—p).

The following relationships are also used:

1 a 9
f daqu( +~——)<I>(P’—aq,P+(1-a)q)
o oP,’ oP,

L g
—— f do —=(P',P")—3(P,P),
0 da
1 d
f dot gu——®(P'—agq, P)=B(P',P)— (P, P),
o apy
and

1 a
f da qua—l-)@(P’, P+(1—a)q)=3(P',P")—(P',P),
0 »

where ®(x,y) is an arbitrary function of the two 4-
dimensional variables x, y.

Since
i)

aP,/

1
=g, f da 2(P'—ag)=2(P)—2(P),
0

we see that strong gauge invariance for the proton is
equivalent to the generalized Ward identity

(P/=P)AP,P)=2(P)~2(P),  (29)
where A,(P',P) is the photon vertex function
AP P)=T N @) T, (@) T @)+ T L (x). (26)
According to Egs. (21) and (19)
s (P")J 20 (P) = —iBa, (P")v,u.(P).  (27)

Comparison of Eq. (15) with Eq. (1) therefore yields

(2% (P’) EF 1 (42) Yu—F (92) Ourd vjus (P)
=4n 21 (P'){v,[1— (27)*B]
+ 2m)~*A (P, P) }u, ®).
But the Ward identity
A (P,P)=093Z/3P,

(28)
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combined with Eq. (19) shows that
g (P")Au(P,P)us(P) =iBits (P')y,us (P),

whence it follows from Eq. (28) that F:1(0)=1, in
accordance with the required normalization for the
proton, Eq. (4). To circumvent the calculation of B,
we may first obtain an unrenormalized “F1(¢?) defined

by
o (P)[“F1(¢)vu—0uwqs Fa(g?) Jus(P)

=4x?(2m)~* f2ie (P )AL (P, P)us(P), (29)
and then determine F1(¢?) from
Fy(¢)="F1(¢")—"F1(0)+1. (30)

For the neutron, the condition of strong gauge
invariance is satisfied by Eq. (23b) without the intro-
duction of a mass normalization term. Hence, Eq. (25)
is replaced by

(P —=P)A(P',P)=0, (31)

and Eq. (4) follows directly by noting that Eq. (31) is

equivalent to setting B=0, although B does not vanish,

of course, for the mass renormalization of the neutron.
6. CHOICE OF REFERENCE FRAME

It is convenient to perform the computations in the
Breit frame defined by the condition

P'=—P. (32)

In this case the left-hand side of Eq. (29) can be simpli-
fied by making use of the Dirac equation to give

i “Fon(¢?) = 4w (2m)~ f2a(— P)As(P',P)u(P), (33a)
and
1(0Xq) “Finag(¢?)
=47 2m)*fa(—P)A(P",P)u(P), (33b)

where a 2X 2 spin matrix notation has been substituted
for the labeling of the spin states. Here

“Fen (¢8) ="F1(¢®) — (¢%/2M) F (),

“Fmeg (%) = (1/2M)“F1(¢)+ F2(¢?)

are the unrenormalized charge and magnetic form
factors defined in accordance with Egs. (8) and (9).
The renormalized form factors are then found from
Eq. (30) to be

Fch(q2) =" 'ch(QZ) - Ch(o) + 17
and
Frnag(4) ="“Frnag(¢) + (1/2m) [1 —"len (O)]

7. THE STATIC LIMIT

and

(34a)

(34b)

The calculation of Feu(¢?) and Frae(¢?) on the basis
of Egs. (33), (26), (24), and (16) may now be carried
out by the method outlined in Sec. 3, which produces
an expansion in powers of M. In this section, attention
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is limited to the lowest order, or static terms. The
results are as follows (we set u=1 as well as A=c¢=1):
For the neutron,

[Fou®(g®) Jneutron= ‘g‘ f d%[ (kz—%;)

V40—

where
wy=[1+|k+3q[*]},

w=[1+k] (36)
1=0(ws?); 37

Note that ¢?=¢q? in the Breit frame. It is found im-
mediately that for ¢?=0

[:F ch0 (O) :Ineutron = 0,

in accordance with Eq. (4) [note that Eq. (8) gives
Fa.(0)=F1(0), in general]. Also

9=2(w?).

(q-k)z]

2

f2
[Fmag(o) (q2)]neutron= I fdak[ [kg_
27(‘2 q

V40—

X } (38a)

w+2w_2
For the proton,

M%Wﬂhmsng(W—VQ

1 k2 1 Vo .
Fia f dor {20y
0 w

wpo_(witw ) 4o?

+&Hw@Mﬁn),m%>

V40—

where

Vo= v(1+[k+aq]2),
o' =1"(1+[k+aq]),
o' (§) =dv/d¢.
The quantity required by Egs. (34) for renormalization
is
3 f?

% (0) =——
E Fch (0)]proton 4 1"2 ©

39)

and

@krpk?
[—2‘1)02—81{2'007)0’]. (40)

@

The second term can be integrated by parts to yield

3 wf ke
[:chh(o) (0)]proton= ; '_2 d3k—[6_ —]- (41)

T 1) w?

It can be seen from Eq. (34b) that the renormali-
zation of Fuae is of order M1, hence it is not to be
included in the static limit. Then, for the proton,

[F mag(o) (92) ]proton: - [:F mag(o) (q2)]neutron, (38b)
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where the expression on the right-hand side may be
obtained from Eq. (38a).

In Egs. (35) and (38), the terms proportional to
v39_ are the contributions of the pion current J,™. They
are identical with the Born terms obtained by Walecka?
in his calculation of the form factors in the static model.
The terms proportional to v¢? [in Egs. (35) only] arise
from the nucleon current J,» and they are independent
of q. Hence, their role is just to maintain charge
conservation, The line-current contributions are easily
recognized by their ¢ dependence. The only such term
in the static approximation occurs for Fu,® of the
proton.12

From Fs, @ we may now calculate the second moment
of the charge distribution (®?)©=—6(dFu@/d¢?) =0
in the static limit. Since the form factor is the same,
the result for the neutron is identical with that obtained
in the static model by Salzman,* for example:

f2 ® k4 d‘l}o 9
((G{Z>(0))neutron: —_ dk—_[zwtl (_)

x Jo w’ dk

+5(3w2— 2k2)v02].  (42a)

This is the anticipated result which shows that the
second moment of the pion charge distribution calcu-
lated in the static model is to be compared to the
complete neutron-electron interaction without sub-
tracting the Foldy turn. The static model therefore
gives much closer agreement with experiment than
had previously been thought. For the usual choice of a
cutoff close to the nucleon mass, the calculated value
is about twice the experimental value.l® However, it is
to be noted that, with this high a cutoff, the neglect of
recoil terms is clearly not justified for our procedure.

The second moment of the proton charge distribution
is made up of two terms, one is the pionic contribution
which is the negative of the neutron second moment
and the other is the line-current contribution:

f2 @ k2
(<a2>(0))pmton= - (<(R2>(0))neutron+4— f dk_‘
vy

x[5v02+w4(1+%w2)(§$)2]. (42b)

It is clear that the second term, due entirely to the line
currents, is somewhat larger than the first.

It has been remarked by Yennie, Lévy, and Raven-
hall? that application of the mirror theorem® to (®2)
indicates that the isoscalar quantity (®2proton

2 To demonstrate that the line-current contributions to Fpag®
vanish, an integration by parts in cosf= (k-q)/|k||q| has been
performed. The fact that these terms vanish is probably related
to the fact that the line currents flow radially in the static model
and therefore do not give rise to any magnetic multipole moments.
See R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (1955).

18S. Treiman and R. G. Sachs, Phys. Rev. 103, 435 (1956).
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F(®neutron depends only on contributions from the
nucleon (core) charge distribution. Hence, the line-
current contribution is presumably nucleonic in origin.
For a usual value of the cutoff, its order of magnitude
agrees with the experimental value?

[<(R2>proton + <(R2>neutron] 3 = 0~ 75 >< 10_13 Cm,

which is, of course, a surprisingly large number. Evi-
dently, in the process of introducing a cutoff, the
requirements of charge conservation are such as to
cause a large shift in the electric charge, even if the
cutoff is limited to a small spatial region. In this
connection, it should be remarked that the line-current
contribution is obtained in the form given in Eq. (42b)
only after several integrations by parts. As can be
seen from Eq. (35b), the contribution originally in-
volves at least one derivative of the source function,
hence for a constant v, the line-current term would
vanish.

From Eq. (38b) it is evident that only pionic con-
tributions to the magnetic form factor occur in the
static limit. The neutron and proton magnetic moments
are oppositely equal in this approximation and they
agree exactly with the values obtained in the usual
static model. Hence, the magnetic moments are iden-
tical with those obtained from the static model. As
Miyazawa has shown,* these may be brought inte
reasonable agreement with the isotopic vector part of
the observed nucleon moment by including rescattering
corrections.

8. RECOIL CORRECTIONS TO THE
MAGNETIC MOMENT

Although it is actually a recoil effect, it is customary
in applications of the static model to include a nucleon
(core) spin contribution to the magnetic moment. This
has been a constant source of failure for the static
model since it leads to much too large a value of the
isoscalar moment.”* However, it has often been sug-
gested that a consistent treatment of recoil effects
would overcome this difficulty. We have now made a
consistent calculation on the basis of the procedure
outlined above with the following results:

For the neutron, the contribution of the pion current
is

f2
A Fma ()(0):Ineu ron™— d3k_
: f ‘ oM =? w
3K
X l:* —1}02—21)07)0’], (43a)
2 wt
that of the nucleon (core) current is
1
A Fms. @ (0) peutron™ T T d.’)‘k__v 2 (4:4&)
LanFanc® (O Jomen= = "

14 H, Miyazawa, Phys. Rev. 101, 1564 (1956).
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and that of the line current is

1 2
oM =?

k2
X [(3""";) 1)02+2k27)01)ol]. (453.)
w

The total 1/M effect on the neutron moment is therefore

1 £ pdk

2M =2

1k
X [ ( 1+- —) 22+ £k2oovo’ ] (46a)
2wt

For the proton, the pion contribution and the nucleon
contributions to the unrenormalized form factors are
related to those of the neutron as follows:

[ALqug(l) (0)]1\eutron= -

[Fmag(l) (O)Jneutron=

[Ar “Frneg(0) Joroton=—[ Az “Fruag® (0) Jncutron, (43b)
and
[Ax “Finas® (0) Joroton =3[ AN Finas® (0) Jnsuteon.  (44D)
The line-current contribution is
80 O T =— 2 [
6M n* w
ke
X [ (3-!—;;)7)02-{—81(27)0110' ] (45b)

Also for the proton, there are the additional terms

produced by renormalization in accordance with Eq.
(34b):

1
Fraag® (0) = “F o (O)+2_]l2[1 —“Fa®(0)], (47)

where “Fq®(0) is given by Eq. (40) or Eq. (41). In
this way, we find for the total recoil correction to the
magnetic moment of the proton:

[F s (0)] + Lz
ma 0 roon——— -
U om o e d o

>k

1k 1k 14
X[(- —_t 1= v02+—-k27)07)0 ] (46b)

2 wt 2 w?

The order of magnitude of the recoil correction to
the neutron or proton moment is a sensitive (quadratic)
function of the cutoff in . For the usual choice of a
cutoff close to the nucleon mass, the correction is very
large, of the order of several nuclear magnetons. This
is not very surprising since the expansion in powers of
1/M is based on the assumption that the cutoff is
much smaller than M. Hence we come to the same
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conclusion as Walecka®? and others, that the static
model is a very poor approximation in view of the
probable importance of the recoil corrections. The
apparent agreement with experiment (of the isovector
magnetic moment, for example) is evidently fortuitous.

Despite this conclusion, it is of some interest to
consider the sum of neutron and proton moments.
From Egs. (38b), (46a), and (46b), we find to order
1/M,

I:F mag (O) ]proton + [F mag (0) :Ineutron
=(1/2M)[1—5 “Fu(0)], (48)

where “F(0) is given by Eq. (40). This is evidently
the same result obtained from the mirror theorem in
the static model,’ since “F.,(0) may be interpreted as
the probability for finding the nucleon accompanied
by a pion field. The success of the static model in this
respect is not very surprising since the derivation of
the result relied mainly on the conservation of angular
momentum.

Because of its general nature, Eq. (48) poses a serious
problem for any theory of the electromagnetic form
factors. From the observed magnetic moments it is
found by means of Eq. (48) that

[“Fx(0)]=0.00. (49)

If one calculates “Fen@ from Eq. (41) using the accepted
value of f2=0.08 and a cutoff corresponding to the
nucleon mass, a much larger value than that given by
Eq. (49) is obtained. Hence, this is a clear point of
failure of the first-order recoil corrections to the static
model.

9. CONCLUSION

The importance of taking into account the condition
of strong gauge invariance in this work suggests that
it must be kept in mind in any attempt to calculate
electromagnetic form factors. We have found, for
example, that the separation of the contribution to the
matrix element of the pion current from that of the
nucleon current is not really gauge invariant although
it satisfies the condition of weak gauge invariance. The
latter condition was noted by Federbush, Goldberger,
and Treiman'® in connection with the corresponding
separation of the integral equations arising from dis-
persion relations. Therefore, the gauge invariance of
their approximate form of the integral equations is
subject to serious doubt.

Furthermore, any other mutilation of the exact
equations is subject to doubt on the same grounds.
Such approximations provide integral equations in-

16 P, Federbush, M. L. Goldberger, and S, B, Treiman, Phys.
Rev. 112_, 642 (1958). :
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volving strong (pion-nucleon, etc.) vertex functions
and we have seen how the condition of charge con-
servation requires that a means must be provided for
transferring the charge across such a nonlocal vertex.
The importance of this consideration is illustrated by
the result that the charge radius of the proton turns
out to be very large through the influence of line
currents. The line currents are just a manifestation of
the condition of charge conservation. They represent
the electromagnetic effects of higher order diagrams.
In this connection, it is interesting that even for a
cutoff near the nucleon mass, the line-current contri-
bution to the charge form factor of the proton is most
significant. This indicates that the electromagnetic
contributions of intermediate particles of large mass
may, through conditions imposed by gauge invariance,
be comparable to the pion contribution, in spite of the
large denominators appearing with such terms.

APPENDIX

We wish to demonstrate that the time reversal
properties of 7,(x) are such that the matrix element
(P',s'] 7,(0)| P,s) cannot contain a term of the form
s (P")quF 3(¢®)us(P). Under the Wigner time inversion
operator K, the transformation of the current density is

Kj(0)K—'=—j(0),
Kp(0)K=p(0),

where p(x)=—i74(x). Phases of the state vectors are
chosen so that

(A-1)

K|P,S>= [P-7 -3, (A-2)

where P_=(—P, Py) if P=(P,P;). Since K is an
antiunitary operator, and j(0), p(0) are Hermitian
operators, we may write

(K(P',s")| Kj(0)| P,s)y=(P,s]j(0)| P',5'),
(K(P',s")| Kp(0)| P,s)=(P,s|p(0)| P',s").
But also
(K(P',s")|Kj(0)| P,s)y=(K(P',s") | Kj(0)K~'K | P,s)
= “(K(P’)sl) ,j(O)K'P,S},
by Eq. (A-1). Then from Egs. (A-2) and (A-3) we have
(Ps]§(0)| P'ys"y=—(P_!, —=s'|J(0)P_, —s). (A-4)
The corresponding result for p(0) is
(Pys|p(0) | P's"y=(P_, —5'|p(0)| P, —s). (A-5)

(A-3)

It is now easily seen by means of a straightforward
substitution that 4. (P’')g.u,(P) does not satisfy the
conditions (A-4) and (A-5) while Eq. (1) does do so.



