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It would be desirable to have more accurate measure-
ments of the low-momentum ( 100 Mev/c) Z /Z+
production ratio from Iy pr-eactions, as well as of the
E -d nonabsorptive scattering at higher momenta
( 200 Mev/c). More refined data wouM require, in
turn, a more detailed and careful analysis of the cor-

rections to the impulse approximation for E -d
reactions.

We would like to thank Dr. R. H. Dalitz and Dr.
S. I'. Tuan for sending us the results of their analysis
before publication. We would also like to thank Dr.
L. S. Rodberg for several stimulating discussions.
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In this paper it is shown that if one introduces into the Weyl theory of gauge invariance the two additional
conditions that gauge (and therefore length), except for an arbitrary phase factor, be integrable along the
path of a particle, and that the change in dimensions of a particle be a minimum, one immediately obtains
the Lorentz pondermotive force for a charged particle in an electromagnetic field and the Bohr-Sommerfeld
quantum integral.

INTRODUCTION
' 'N a previous paper' an attempt was made to obtain
~ - the Maxwell-Lorentz equations for an electron by
starting out from a generalized Lagrangian which was
derived from the contracted Riemann-ChristoGel tensor
G„„by imposing the condition that the Lagrangian be
gauge invariant in Weyl's sense of the term. This led
to the second rank in-tensor as defined by Eddington'

Goy =Goy (Ka 2KaK )goy 2KoKy

+ (K„,„+K,,„)—2m„„, (1)

where the g„, are the components of the metric tensor,
and Kty, y= c)Ko/ctXy) aild

~Kp, ~Kv

F
BXfr OX'

(2)

We shall see later that the 4-vector l~;„may be chosen
proportional to the electromagnetic 4-vector potential
A„so that the S„„are essentially the electromagnetic
field strengths.

In this note we shall show first that we can derive
the Lorentz expression for the pondermotive force on
a charge in an electromagnetic field if we impose upon
the Weyl theory the condition that the charge must
move in such a way that the change in its dimensions
along a given path (resulting from the change of gauge
along this path) must be a minimum. Secondly, we
shall show that the Bohr-Sommerfeld quantum integral
follows directly if we impose the condition that the
dimensions of a charged particle, except for a possible
change of phase, must return to their initial values
when the particle moves around a closed orbit. We shall

' L. Motz, Phys. Rev. 89, 60 (1953).
2 A. S. Eddington, The Mathematical Theory of Relativity

(Cambridge University Press, Cambridge, 1923), p. 204.

see that this condition wiH eliminate one of the most
serious objections to the Weyl theory arising from the
nonintegrability of length that is a consequence of the
theory.

LORENTZ PONDERMOTIVE FORCE

The Weyl theory of gauge invariance arose out of
the concept that lengths at diferent places cannot be
compared because of the change of gauge that takes
place as one moves from point to point in a space-time
continuum. Since the gauge was assumed to be deter-
mined by a vector field ~„, comparison of lengths at
diGerent places would be ambiguous because the result
of the comparison would depend on the path taken in
going from one point to the other. Although this theory
introduced a four vector (to be identified with the
electromagnetic vector potential) into the description
of the world quite naturally, the nonintegrability of
length which it brought with it led to apparently
insurmountable difhculties concerning the structure of
atoms.

Thus the objection was raised that according to the
Weyl theory the natural frequency of an atom at a
point in space-time should depend on the path the atom
took to reach that point. This objection was met by
introducing the assumption that although lengths and
frequencies depend on the path taken, the e6ect is
much too small to be measurable in actual physical
phenomena. This, however, is not a satisfactory way
out of the difBculty since the ambiguity is still present
in the theory. It is possible to eliminate this ambiguity
without destroying the content of the Weyl theory by
imposing the condition that the measurable physical
dimensions of a particle shall be integrable along the
path of its motion. We must note that this is not the
same thing as imposing the condition that the gauge
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gP2 ~P2 dA
d 1nA= K»dX» =a I1111111Ilulll. (4)

We have, then, as an additional constraint on the
motion of the particle the condition that

(5)

for all variations of the permissible path in which the
end points are kept fixed.

If ds is the element of path length along a geodesic
between two fixed points, it must satisfy the stationary
condition

be integrable along a path. This latter condition is much
too restrictive and would result in the vanishing of the
curl of the four-vector ~„and hence to the vanishing
of the electromagnetic field so that our theory would
be empty.

The possibility of imposing integrability on the
physically meaningful dimensions and yet not on the
gauge arises from the fact that the dimensions must be
treated as complex quantities so that they have arbi-
trary phase factors associated with them. Since these
phases need not be integrable, the gauge will not be
integrable either, with the result that the content of
the theory will remain while the ambiguity is eliminated.
We shall come back to this point in our discussion of
the Bohr-Sommerfeld quantum condition, but now we
shall consider what constraints may be imposed on the
motion of a particle without modifying the noninte-
grability of gauge at all.

To see what we must do we shall start from Weyl's
fundamental assumption that if a length 3 is displaced
from a point a» to a nearby point x»+dh», then it
suffers a change in length determined by the equation

d 1IL4 = Icpdsp)

where a„ is a vector field. Let us suppose, now, that
we have a particle which moves from some point, P~,
in our space-time continuum to some other point, E'~,

along a physically permissible path. What constraint
can we impose upon this motion that will be physically
significant and yet which will not violate the basic
assumptions of the Weyl theory? It is reasonable to
assume that a particle will tend to retain its dimensions
in so far as possible as it moves along its path. We shall
therefore impose the condition that the particle will
move along that particular path connecting the end
points E~ and P2 which results in the smallest change in
its dimensions. In other words we shall assume that

are permissible which are governed by Eq. (5).We may
treat this situation in the usual way by varying (5)
and incorporating this variation into (6) by means of
Lagrangian multipliers.

If we vary (5) we obtain

BK» dX»
dSBX„+

BX, dS
K„d(BX„)=O. (r)

If we integrate the second term by parts and take
account of the fact that the variation must vanish at
the end points of the path, we finally obtain

Qgp dXp
bX,dS—

~X„dS

pPg

4P&
da, bX„

If we now introduce the Lagrangian multiplier, L, we
can combine (8) and (9) to give,

1 dX» dXv (Bg»v Bg»v Bgvvl

2 dS dS E BX„BX, BX»)

d'X,—g„+LF»,V» dSBX„=O. (10)
dS'

In this equation the variations are arbitrary so that
we obtain the equations of motion of a particle by
setting the square bracket in (10) equal to zero:

d Xv 1 (Bg»v Bg»v Bgvvl dX» dXv
g,„—-i — —

i =Lp„,V„. (11)
dS' 2 &BX„BX, BX») dS dS

If we multiply through by g~", we obtain the Lorentz
force equation in the form

8K@ BKp dXp
dSbX„

BX„BX„dS

)Pg

F»„V»dSBX„=0, (8)
4P&

where we have introduced the velocity four-vector V„
and the antisymmetric tensor P»„defined by (2).

The variation (6) gives rise to the result

t' 1 dX» dXv (Bg»v Bg»v Bgvvl

.2 dS dS &BX. BX, BX»)

d'X,—g,„dSBX„=0 (9).
dS'

PI
8(ds) =0. (6)

d'X dX„dX+I'„=LP» V»
dS' dS dS

(12)

However, the variation in the integrand of (6) may no
longer be taken as arbitrary since only those variations

Since ~„will later be related to the vector potential
A„by the equation K„= (i/h)(e/c)A», the Lagrangian
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(e/e) /@cd&=ef (d/e)de=eed,

BOHR-SOMMERFELD QUANTUM INTEGRAL

multiplier, I., must be chosen equal to —i()(t/p)4c) in A„will be different from zero, and (16) reduces to
order to make Eq. (12) dimensionally correct. The
letters e, A, m, and c have their usual meanings.

(17)

We have already noted that the nonintegrability of
length which follows from the Weyl theory brings
certain objectionable features with it which cast doubt
on the entire theory. We must therefore try, in so far
as is possible, to eliminate these features but not at the
expense of the physical content of the theory. We may
do this if we note that the quantity lnA is, in general,
not real so that we may write A = Se'&, where (p) is a
real number. The arbitrary phase factor will have no
effect on the physically meaningful lengths in nature
since these are to be obtained from the mathematical
quantities A by taking absolute values. We now have
from Eq. (3) the result

d ln8+iddt) =P(„dx„,
or

d ln 8=K)ddx)d $(fdtp. —

We shall now impose the condition that lnO', shall be
integrable along any permissible path of a particle
but that lnA need not be. If we now consider a particle
moving in a closed orbit in the Geld ~„, we see that we
must have

4) = (24re')/(p4h). (18)

This is just the Bohr condition for the velocity of an
electron in a circular orbit and leads to the Bohr
energy levels for circular orbits. This means that (15)
is equivalent to the Bohr-Sommerfeld quantum integral,
and we shall now give a general proof of this.

If we start from (16) and introduce the proper time
dr=cdt(1 v'/c')i, we—have

where C is the scalar potential of the central field, ~ is
the speed of the particle in its orbit, and ds is an element
of path length.

As the simplest case we shall take a Coulomb force
Geld and suppose that our charged particle is moving
in a circular orbit with constant speed e. If r is the
radius of the orbit, the potential equals e/r, and
ds=rde, where de is the element of angular displace-
ment. Equation (17) now becomes

(e'/e) fdd=ecd,

or

d 1D0' = KIJdxf),—'L d =0) (14)
(e/c)fA„V„d eed= (19)

or

Kpdsp =z d

where V„ is the relativistic four-velocity of the particle
in its orbit defined by

Vp= dX(d/dr = (pp,
—eA „/C)/pptoC, (20)

We have complete freedom in terms of our theory
as to the change that dt) must suffer when our particle
moves once around in its orbit, but it is most natural
to assume the change will be such as to have as small
an eGect as possible on A, and this will obviously be
the case if @ changes exactly by an integral multiple of
24r. We therefore have from (14) the additional con-
straint on the motion of the particle given by

where p„ is the momentum-energy four-vector and rpto

is the rest mass of the particle. We shall now transform
(19) by adding and subtracting p„dx„under the integral
sign so that we obtain

P(e/c)A„—p„]V„A =ed —fp„d (21)e

If we now use the definition (20) and note that
(15) —$p„—(e/c)A „5'=ppt 'c',

we obtain from (21)

Kp,dS+ 2+$g )

fig pcd T=sh — ~dip.

where e is any integer.
If we now replace ~„by its definition in terms of the

vector potential A„as given in the last paragraph of
the previous section, we have (22)

(e/c)fA„de„=ecd. (16)

We may see what the meaning of this condition is if
we consider a charged particle moving in a static central
force Geld. In that case only the fourth component of

We shall split the four-vector p„ into its space and
time parts and transpose the time part, which is just
the Hamiltonian of the system, that is the sum of
kinetic (including rest mass energy) and potential
energies of the particle, fp4=(i/c)(T+U), where T
is the kinetic energy5. If we now keep in mind that
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dcc4=icdt, we obtain from (22) the equation

{moc'P1—(v/c)'$'* —T—U) dt

side by parts and use the relationship dp;/dt
= —ctU/Bx;, we finally obtain for the left-hand side
of (23) the integral

=Nht — p p;dx;, (23)
i=1

BU
gx, +U dt

~&i
(25)

where we have replaced dz by its de6nition in terms of
dt. Since T is equal to mscs/L1 —(v/c)'$&, the left-hand
side of (23) becomes

imsv'/f1 (v/—c)'g&+ U) dt

p;(doc;/dt)+ U jdt. (24)
i=1

If we now integrate the Qrst term on the right-hand

We see that the integrand will vanish by Euler's
theorem on homogeneous functions if U is a homo-
geneous function of degree —1 in the coordinates x;.
We see, then, that for systems in which the potential
energy is a homogeneous function of degree —1, the
left-hand side of (23) vanishes and we obtain the Bohr-
Sommerfeld quantum condition. It appears from this
that the existence of discrete orbits arises from the
fact that it is only for such orbits governed by the
Bohr-Sommerfeld conditions that the dimensions of a
particle are single-valued.
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The physical interpretation of the electromagnetic form factors
is discussed with special reference to the gauge invariance of
particular theories. A distinction is made between the condition
that the one nucleon matrix element satisfy the equation of
continuity ("weak gauge invariance") and the stronger condition
imposed by the generalized Ward identity ("strong gauge invari-
ance"). The former is shown to be a consequence of covariance
under the improper Lorentz transformations, and hence it has no
new content concerning the functional behavior of the form
factors. The latter implies restrictions on the current operator
which may have an important eGect on the results of calculations
of form factors.

In connection with the physical interpretation, it is noted that
the moments of the charge and current distribution are deter-
mined by F, Fh& —(q'/22d)Fs and F~„=(1/231)F,+Fs Spe-.
cifically the second moment of the charge distribution, —6Feh (0),

is found, in the case of the neutron, to be directly measured by
the neutron-electron interaction without the intervening sub-
traction of the Foldy term.

These matters are investigated in detail by means of a specific
model of the nucleon which is a covariant generalization of the
Qxed source static model having the property that it gives results
identical with the static model in the limit M —+ ~. It is found
that strong gauge invariance requires the addition of line currents
which make signi6cant contributions to the form factors in general
and, in particular, to the proton charge radius even in the static
approximation. This suggests that as a consequence of strong
gauge invariance, important contributions to the charge radius
must arise in any theory from intermediate states of large mass.
The model also provides a means of consistently calculating recoil
corrections to the static model. They are found to be large.

1. INTRODUCTION

~ 'HE electromagnetic interactions of the nucleon
provide, in principle, a direct source of infor-

mation concerning the structure of the nucleon. Al-

~Work supported in part by the University of Wisconsni
Research Committee with funds granted by the Wisconsin
Alumni Research Foundation, in part by the U. S. Atomic Energy
Commission, and in part by the U. S. Air Force, through the
Research Contracts Division and through the European Ofhce,
Air Research and Development Command.

t Guggenheim Fellow, 1959—60.

though a prodigious amount of experimental infor-
mation concerning the electromagnetic interactions is
available, ' a satisfactory interpretation of all of the
data has not been possible. ' The failure of any theo-
retical treatment of the electromagnetic form factors

For a summary of experimental data see R. Hofstadter,
F. Bumiller, and M. R. Yearian, Revs. Modern Phys. 30, 482
(1958).

2A summary of the theoretical interpretations predating the
use of dispersion relations is provided by D. R. Yennie, M. M.
Lbvy, and D. G. Ravenhall, Revs. Modern Phys. 29, 144 (195"/).


