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The decay rates for the ground-state transitions of all polonium isotopes and the odd-even astatine
isotopes are discussed on the basis of the nuclear shell model. Good agreement with experimental data is
obtained. In particular the behavior of the reduced width as a function of the neutron number around the
magic number /=126 is well reproduced.

I. DERIVATION OF AN EXPRESSION FOR THE
DECAY CONSTANT

We consider a system of A nucleons (Z protons and
E neutrons) and describe it by means of the time-
dependent Schrodinger equation

Bc(1 A; t)=ihtac(1 2; t)//at.

We assume for the Hamiltonian the following form:

|a
I&'+V(1,2 "~)

*=~ E2rrt)
(I.2)

V describes the interaction of all the particles. It is
further assumed that the wave function Ce(1 A)
=C (1. A; t=0) is known and that this wave function
is the wave function of the parent nucleus.

Next we separate oG the trivial center-of-mass motion
of the system and decompose the remaining Hamil-
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INTRODUCTION
' 'N an earlier paper' a theory of alpha decay was

& ~ developed whose aim was to take into account the
inQuence of nuclear structure on alpha decay. The
theory was found successful in explaining the fine
structure of the Po"' alpha decay. The relative in-
tensities of transitions leading to various states in the
daughter nucleus and the coefficients of alpha-gamma
angular correlations were obtained in good agreement
with experimental values.

In this paper we shall erst outline again briefly the
derivation of some formulas which are then applied to
discuss the ground-state transitions of even-even,
even-odd, and odd-even alpha emitters in the region
of Pb"'. The nuclear wave functions are approximated
by shell-model wave functions and good agreement is
found with experimental data. '

tonian into several terms

H=H (1234)+Htc(5 A)
—(I't '/2M) h,.y+ W (n,E), (I.3)

where 1, 2, are protons, 3, 4, are neutrons.
H describes the internal motion of a system con-

sisting of two protons and two neutrons. IIK describes
the internal motion of the remaining A —4 nucleons.
R is the relative coordinate between the center of mass
of particles 1; 2; 3; 4 and the center of mass of the
remaining particles 5; 6; . A; and —(trt'/2M)L4, q is
the kinetic energy operator associated with the relative
motion of the two groups of nucleons. 8'(crE) accounts
for the interaction between the two groups of particles.
We should mention that the Hamiltonian H has not
lost its symmetry properties.

For obvious reasons we shall refer from now on to
these two groups of nucleons as n particle and daughter
nucleus. Consequently, we call the solutions of the
equations

IIax a &axa (I.4)
IIK+K ~K+K

the internal wave functions of the n particle and the
daughter nucleus. In these equations 7. and 0- are
short-hand notations for those sets of quantum numbers
that are necessary to determine the solutions z ' and
O'K' completely.

Furthermore, if y ', X
" and O'K, %K

' are bound-
state solutions of (I.4) the following relation holds:

(lt '%rc"
i W(ctE) i X.Wrc )='3„5.;V(R), (I.5)

for R=
~
R~ &Re. Rs turns out to be about 9X10 "cm

for natural e emitters. The meaning of the relation
(I.5) is that when the ot particle and the daughter
nucleus are well separated in space the interaction
between them is always described by a simple potential.
Furthermore V(R) approaches the Coulomb potential
2(Z —2)es/R rapidly. For most purposes therefore it
will be sufhcient to use 2(Z —2)e'/R instead of V(R).

These considerations indicate that it might be rea-
sonable to write for the time-dependent wave function
c(1 A; t):

C(1 . A;t)=a(t)C, (1. a)+ P d. e
roLm

(I.6)
X (y r%tr'q r, (R,e) Yr,"(R/R') }b,.r,„(e,t).
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6 is an antisymmetrization and normalization operator,
while rpz(R, e) is a solution of the equation

h' 1 d' h' L(L+1)——R+ ——
2M R dR' 2M R'

2(Z—2)e'
+ —e p}z(R,e)=0, (I.7)

and is normalized as follows:

poz(R)e) pz(R)e )R dR=8(e e ). (1.8)

To get unique solutions' for the coefficients (z(f) and
b z (e t), it is necessary to impose the condition

cp(1 A)l P
ro Lm

xb.mz yl(((e}r, }}„c(~t})=o. ((3}

Of course C (1 A; t) may always be expanded in the
above form (I.6) as long as we sum over a complete set
of functions x ' and 0'~ . But we know that for ener-
getic reasons the terms in the sum over v and r corre-
sponding to unbound states cannot contribute to the
alpha decay. Therefore, we split the sum into one over
bound states only and one in which r and 0- or both
correspond to unbound states and neglect the latter
sum. With this approximation and taking into account
angular momentum conservation as well as the fact
that there is only a single bound state of the alpha
particle, we rewrite 4(1 A; t) in the following form:

C (1 A; 1)=(z(t)CpgM(1 A)+P deb;.z(e, t) Ct
joL u

X{v poz(R, e) Q C(Lj J; m M —m)
fn

X I' "(R/R)%™ ) (I 10)

where J is the angular momentum of the parent
nucleus, j the angular momentum of the daughter
nucleus, and L the angular momentum of the n particle.
The Clebsch-Gordan coefficient C(Lj J; 4N M—te) cou-
ples L and j to give the resulting angular momentum J.
The functions x and f;,~ are now, as already men-
tioned, only the bound state solutions of (I.4).

Introducing this expression for C into the Schrodinger
equation (I.1), we get a system of coupled integro-
differential equations for (z(t) and b,,z(e,t). But this
system of equations decouples and becomes rather
simple if one more approximation is introduced. %e
neglect nondiagonal matrix elements of the type

(C g;,z4~
I
H H~ H—zz+ (—h'/2M) A,.t

2(Z 2)es/Rl C,J", ,z, ,M&

where

C», z, ,~——n{x,poz(R, e) p C(Lj J; ns M —fzs)

m+. sz m})—
which means we neglect the interaction of the alpha
particle with the daughter nucleus via the nuclear
forces4 and take only into account the Coulomb inter-
action; a reasonable approximation at the alpha
energies involved in natural alpha decays.

The simplified equations read:

iha(f) =(z(f)Ep+P d. b;.z(e, f)
joL J

x&@oz I&—Eol@».z, 4 &)"' '
(I.»)

ih[;„(e,f)+a(f) &C„.„IC „~)]
= (e.+Ezz+ e)b~.z(e, t)+(z(t)

X&C».z,

where Eo=(C'»" ITIC'p~
Using standard techniques' to solve the equations

approximately we get:

a(t) =exp[—(i/h) (Ep+F—iy) t],

b;.,(e,t) =
E(}+F Ezc e e iy— — ——

(I.12)
v —~Z I(+».z. I& Epl~» &I =~o - nx+~--

jl e

I&C'~ z. I&—EplC'p~ )I'F=P F de
J Ep+F Ezz —e» e— —

exp[—(i/h) (Ep+F—iy) f]—exp[ —(i/h) (Ezz+e +e)t]
(+os"

(
& Eo I C'z;.r.M&, —

where P means principal value. The conditions for the
approximate solution to be a good one are:

v«IEo —Ex—e-I = « (I.13)
F&&ep,

I
&C'» z "I&—Eo I

C'p~~& I'

' H. Casimir, Physica 1, 193 (1934).

has to vary slowly compared to

[(E(}+F e Ezz e)s+ys]—1

if e varies between ep —y and op+a. For all natural
alpha emitters these conditions are well fulfilled.

4 If we use V(R) as defined in (I.S) instead of the Coulomb
potential, we take into account a part of the nuclear interaction.

'%. Heitler, Quantum Theory of Radiation (Clarendon Press,
Oxford, 1954), 3rd ed. , p. 181, and the references quoted there.
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The problem of determining the decay constant is
now reduced to the calculation of the matrix elements
(4'OJ IH —EsI O'Jjrzg~). But those matrix elements can-
not be calculated unless CpJ~ is defined in a rigorous
way. The somewhat vague statement "the wave func-
tion CpJ~ should describe the parent nucleus of the
alpha decay" cannot be considered as a definition
of CpJ e

A natural way to define CpJM would be to obtain it
from a consideration of the formation process of the
alpha emitter. But on a nuclear time scale all alpha
emitters are nearly stable. If it were not for the re-
pulsive Coulomb interaction between the alpha particle
and the daughter nucleus there would be no alpha
decay at all. Therefore, another dehnition of CpJ~ is
suggested. It has to be a bound-state solution of a
Schrodinger equation

ration space where the nuclear forces between the
nucleons play an important role and therefore CpJ
should be a very close approximation to an exact wave
function as derived for instance from considering the
formation process of an alpha emitter. By means of
these assumptions about Cp J the matrix element can
be simplified considerably.

(+s&~ I
H Eo I

@—&;.&,~)
-

pZq )Ey -«

IH —Hslx ~&(R,e)(2) &2)

XQ C(Lj J;m M m—)Yz @ M.™)

R'dR dQ„i) d$,d$» Cpg~*(H —Hp)

HpC«pJ3f p(p)C«pJ llf

Bp is defined as follows:

Hp ——H,

(I.14)
&&7r pz(R, e) p C(LjJ; m M m) Y—i, (R/R)

(Z) iVq -«
&&+. sr-m

I I I I (I 15)
~2) ~2)

if all nucleons are confined in a sphericals volume Qp

with radius rp,

Hs=H Uc(r)+ Vc(rp—),

if one or more nucleons are outside the above defined
volume Qo. Vc(r) is the Coulomb interaction between
the nucleons inside and those outside Qp.

t'p ls so defined that the interaction between one
selected proton (neutron) and all the others that are
in Qs is repulsive (zero) if the selected proton (neutron)
is outside Qp but mostly attractive if the proton
(neutron) is inside Qs. Of course there is a maximum
value for rp because of the condition that the eigenvalue
problem with Hs (I.14) should have bound-state
solutions. This definition assures that Hp is equal to
the exact Hamiltonian H in that part of the configu-

where g and f» are the internal coordinates of the
alpha particle and the daughter nucleus.

The first equality holds because of H —Ep being a
symmetric operator and C pJ an antisymmetric wave
function and the fact that Ep=E&') is a very good
approximation. The second equality holds because of
the definition of 4sq~(1 ~ A) (I.14).

Ep is somewhat smaller than rp because of the 6nite
size of the alpha particle. The relation between Ep and
rp is schematically illustrated in Fig. i. Because of the
freedom in choosing fp and consequently Rp, the
distance rp and hence Ep is chosen so that for E&Rp.'

Hx pz. (R, ) Q C(LjJ; m M m)Yz, (R/—R)@;,~
= (E»+e +e)x,pz, (R,e) Q C(LJj; m M—m)

&& Y, (R/R)e ~- (I 16)

&»ng (I.15) and (I.16) and integrating by parts on

R, the following expression is obtained for the matrix
element in question

(C„ I
H —E,

I
Cv;.z„"&

(Z) (X) «( fs' )
I, dg.dg»Rs dQ...

42) (2) &2M) &

FIG. 1. (a) Relation between the single-particle potential V(r)
and the constant ro. (b) Connection between ro and Ro. R, and
R~ are some sort of radii of the a particle and daughter nucleus.

[
t«q z(R, es)

aR

6 Of course one may assume Oq &o be nonspherical if one deals
with a deformed, nucleus,

&(x QC(LjJ;mM —m)Yn™4 ~ ~. (I.17)
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Introducing for ooJ.(R,eo) the WEB approximation

(2M I '* ( 1
II

& or A') (Roqr, &)

X-,' exp) — qr.dR ~,
(

)
2M (2(Z—2)e'

ls' & R
A' L(L+1)

2M R'

where the outer turning point R„ is defined by

qr, (R.) =0,

and defining a function Gq;, r, (R),

Gg, r, (R) =Ro'*) d$xd$ d(l„)

X (4 gM*x p C(Lj J; m M m) Y—z, (R/R)

(Zy (Sy-*
X~ ~-")

I I] I (I 19)
E2) E2)

the expression for the decay constant X is brought into
the following form:

)E= ]
—

[ P exp] —2
EA) ~r. & &z,

(RoqL, —1)' Rp BGJ,.L,

X —GJ;.1.(Ro)+
1—Rpqg BR R = Rp2Rpqp

]iq
( P I'I.(eo)"og;,I. , (I.20)

Eg) gr..
where

(
Pr. (eo) =exp) —2 qi.dR (,

~so )
) (Roql, —1)'

5JjnL
~ ~

' GJjnj
E 2MRo')' 2RoqL,

Rp BGg,.L,

1 Rpg'I, BR B=Rp

I'& is the well-known barrier penetrability as already
derived by Gamow in 1928 and bz;, I,' is the reduced
width that accounts for the inQuence of the nuclear
structure on alpha decay,

As far as the connection of our treatment with the
treatment of other authors is concerned we refer to
reference 1.

We should also mention that there is no difhculty

in using more sophisticated potentials V(R) than the
simple Coulomb potential. One has to replace the
Coulomb potential 2(Z—2)e'/R in (I.17) by V(R) to
calculate now the somewhat different function q I.(R,eo).
If necessary this replacement has been made in the
application of the theory, although all formulas are
given for the pure Coulomb potential.

2y~t
m (n'*r) 'L„'+1(nr')

(ri+ tys)!.
Xexp( ——,'nr') P C(t-', j;p, m —p)

(II 2)

XY, (./.);"-,
' R. Hofstadter, Revs. Modern Phys. 28, 3, 214 (1956).

D. Strominger and J. M. Hollander, University of California
Radiation Laboratory Report UCRL-8289, June, 1958 (un-
published).

D. Strominger, J. M. Hollander, and G. T. Seaborg, Revs.
Modern Phys. 30, 2, 585 (1958).

II. GROUND-STATE TRANSITIONS IN
THE REGION OF Pb"'

To apply the theory developed in the preceding
chapter we shall approximate the nuclear wave func-
tions by some sort of shell-model wave functions.

The following assumptions determine completely all
the wave functions.

(1) The alpha-particle wave function is a Gaussian
type wave function,

x-(1,2,3,4) =xo'(1») xo'(3 4)
Xexpg y/2-)(~ +b*+~ )E(2~1/l l4 )1, (II.1)

!r&——(1/~2 (rt—rs), $o= (1/V2) (ro—r4),

(3—(s) (rt+ls ro r4),

where here and in the following a! means F(a+1) and
xo (s,k) is a singlet spin function of particles s and k.
For the constant P we are going to use the value

P= 0.625X10+2o cm '.

This value of P was chosen so that the rms radius of
the charge density is equal to the measured value. '

(2) The wave functions of the parent and daughter
nucleus are shell-model wave functions with seniority
0 (even-even nuclei) or 1 (even-odd and odd-even
nuclei). That means an even number of particles is
coupled pairwise to angular momentum zero. In an
odd-mass nucleus the last odd particle is therefore
responsible for the total angular momentum and the
parity.

Furthermore, we assume no configurational mixing
and the single-particle states involved are taken from
the spectra of nuclei which have one particle more or
less than Pb" ' ' (Tl", Pb"', Bi"', Pb'~).

For the radial part of the single-particle wave func-
tions, harmonic oscillator functions are used.
radial part of the single-particle wave functions,
harmonic oscillator functions are used.
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TABLE I. Shell-model configurations for nuclei in the region of pb~'.

Element Proton config. Neutron config. Element Proton config.
I

Neutron config.

pp3)2
Pp202
Pp206
Pp208
Pp210
Pp212
Pp104
Pp216
Pp218
At203
At'0'
At'07
Atm)9

At»1
At213
At215
At217
At»9
Ppa03

Pp205
Pp207
Pp209
Pp211
Pp213
Pp215
pp217

(1ha/9')o
(1h,/ '},
(1ha/9') 0

(1he/92) 0

(1ha/9') o

(1h„2)
(1he/29) 0

(1ha/22) 0

(1h /'),
{h
(h, ')„,
(h / 3)„,
(ha/23)a/9
(h
(h9/2 )9/2
(ha/23)9/2
(1ha/23)9/.
(1h,3)9/
(thg/2')0
(1haia'}0
(&/20/22) o

(1h /P)o
(iha/2 )o
(1ha/2 }o
(1h„,a),
(1h P),

(Pus ')0(fs/2 ')o(Ps/2 ')o

(Pus 2)0(f:/2 ')0
(Pi/2 )0
Closed shell
(&ga/2') o

(2ga/24)o
(2ga/a')o
(2g '}
(pl/2 ' )0(fs/2 )0(p3/2 )0
(p1/.

—
)o(fs/9- )o

(Pug 2)0(f /2 2)o

(P1/9 ')o
Closed shell
(2ga 2')o
(2gg/2') o

(2g / 6)
(2ga/2')o
(3Pug ')0(fs/2 ')0/2(ps/2 ')o
(~p1/2 }o(fs/2 )5/2

(3Pi/2 )0(fg/2 )5/2

(~PI/2 ')1/2
2ga/2

(2ga/2 )9/2
(2g / ')
(2gg/2')0/2

Pb198
Pb200
Pb202
Pb204
Pb206
Pb208
Pba10
Pb212
Pb214

Bj199

Bj201

Bj203

Bj205

BIa07
j209

Bj211

Q j»3
Bjml5
Pb199
Pb201
Pb203
Pb2'5
Pb207

Pb &9

Pb211
Pb213

Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
1h9/2
1ha/2
1he/2

1ha/2
1ha/2
1ha/2
1ha/2
1ha/2
1he/2
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell
Closed shell

(pus ')o(fs/2 ')o(ps/2 ')0
(Pus ')0(fg/2 ')0(ps/2 ')0
(pi/2 ')0(fg/2 ')0
(p ')0(f ')o
{P1/2 )o
Closed shell
(2g. ").
(2ga/24)o
(Ogg/2')o
(Pug~) (fs/2 ')o(Ps/2 ')o
(Pus ')0(fo/2 ')o(Pg/2 ')0
(Pus 2)o(fg/2 4)o

(p1/2
—

2)0 (fs/2 2)0

(PI/2 ')o
Closed shell
(2go/2 )0
(2ga/24)o
(2ga/2')o
(3p1/2- )o(2fs/,

—
)s/2(p3/.

—
)o

(3pl/2 )o(2fo/2 )0/2(ps/2 )o
(3Pi/2 )0(~fs/2 )0/2

(&Pug ')o(2fo/2 ')us
(Spug ')in
2ga/2

(2gg/22)g/2
'

(2ga/2 )9/2

where

For the constant n we shall use 43=0.1'75X10"cm 3,

a value which gives rms radii of the nuclei that are
consistent with the measured values. '

For Ro we shall use 80=9.0)&10 "cm. But only the
product nRO' enters into the reduced width and further-
more we shall only calculate relative transition proba-
bilities. Therefore, the choice of n or Ro alone is not
too critical.

With the above assumptions (1) and (2) we get
the reduced widths bg;~', where J is the angular
momentum of the parent nucleus, j the angular mo-
mentum of the daughter nucleus, and I the angular
momentum of the outgoing alpha particle.
Even-even nuclei:

//ppp
——(1/16)Nl(2 jl+3—Nl) Ns(2 j3+3—Ns)

X [(R(nl/lns/sns/sn4/4, ' Roj' (II 3)

E~ is the number of protons in the un6lled subshell
with quantum numbers njl&jj. in the parent nucleus.
X3 is the number of neutrons in the un@led subshell
with quantum numbers n2l3js in the parent nucleus.
{R' involves the radial parts of the wave functions and
is given below.
Even-odd nuclei:

4»1o' ———,', (Nl —1)(2jl+2—N, )N, (2j,+3—N, )

$$(nlllnl/ln3/sn3l3 Rp)g

///1/'ls, '=
4 (Nl 1)(2jl+2——N, )

2jl+1
x C(q j,L; ,'——,') N, (2-j,+3—N, )

(II.4)
X[(R(nlllnlllnslsnsls, Rp) $ LAO,

///2/ir. '= 4N1C'(j lj 3L; —', ——,'-)N3(2 js+3—Ns)

X[$,(nl/lns/sns/sns/3, Rp) j'.

Nl is again the number of nucleons in the subshell

nl, ll, jl. In the first two cases (8J»'lo', 82'»lz')Nl is odd.
In the third case (bs'sslz, ')Nl is even and there is one
more particle in the state n2jt2j2 in the parent nucleus.

$(ni/lns/sns/sn4/4. , Rp) has the following form:

R (nlllÃ2/sns/sn4/4 Rp)

=[nl!(nl+l1+-', )!ns! (n 2+is+-', )!ns! (no+is+-', )!
) N+L/2

xn4! (n4+/4+ ,')!j-lI-
(n+P)

] N! y ( f3' ~ (Roq —1)'
x

I I I I
(~-:Ro)

(23~+~3 (MRO3) RoqI.

X[2 (/3//) ~/(43+!3)j'(3!)' exp( —2«p')

(P ~& ' (—&)'p!
Xp 8, (nl/lns/sns/sn4/4) I

P E 2n &

X4 '[2(43+P)Ro'j~/'& ~+'*(2(o/+P)R02), (II.S)
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IO

I

206 2IO

Mass number A

4

2I4 2t8

where

FIG. 2. Reduced widths of the even-even polonium isotopes as a
function of the mass number. The open circles are the experimental
values, while the closed circles a,re the calculated values.

8 (SlllS212S313S4/4) Sl B2.!S3.S4 ~

(Sl+/1+2 & /'S2+/2+2 & !S3+/3+2 &

vlvpv3v4 L Bl Vl )—( B2 V2 J ( B3 V3 )
(S4+/4+12$ (—I)"1+"2+"3+"4

xi
S4 V4

—] Vl!V2!V3!V4!

where the summation is restricted by

2p+L= 2(vl+v2+ v3+v4)+11+12+13+14.

With the help of these formulas and using the con-
figurations listed in Table I, we have calculated the
reduced widths that are compared to the experimental
data' in Figs. 2, 3, and 4. In these diagrams the experi-
mental and calculated reduced widths are plotted
versus the mass number for the even-even polonium
isotopes, the odd-even astatine isotopes and the even-
odd polonium isotopes separately.

2X= 2(Sl+B2+B3+S4)+/1+/2+/3+/4 L—
( 4nRp2 —L)

Z ~:=
~

Iy ~r. ~+:(2(n+P)R,2)
Rpal. 1~—

4 (n+P) Rp'
"(2(n+P)Ro'),

Rog'I, —1.

The prime means differentiation with respect to the
argument 2 (n+P) Rp'.

The coefficients

Bv (B111S212S313S414)

are de6ned by the following equation:

Sl!B2!S3!B4iI '&+-(X)L "+l(X)L "+l(X)

I 4"+'*(X)=P, B„(B1/1B2/2B3/3B4/4)

~XP+(I—lI—l2—l3—l4) t2
)

IO

a

yoO 01yy
o

& lO

lR

(II.6)

205 2C8 25
Mass number A

FIG. 4. Reduced widths of the. even-odd polonium isotopes as a
function of the mass number. The open circles are the experimental
values, while the closed circles are the calculated values.

The reduced width of Po"' is taken as a standard
and set equal to the experimental reduced width. We
hope that in doing this, we minimize the ambiguities
introduced by the choice of the radial wave functions
and the parameters ot and Ro.

It may be shown that varying the parameters within
reasonable limits affects only the absolute magnitude:
of the radial part of the reduced width 5P, but leaves:
nearly unaffected the relative magnitudes we are:
mainly interested in. This result indicates also that it.
is sometimes allowed to use a very handy approximationi
for the radial part $, (B1/lB2/2B3/3B4/4, Rp) which arises'
if one sets P&)n. Then

(R(sll, s2/2B3/3B4/4, Rp)-exp( —2nRp') (n'*Rp)'1+'~'~'4

SI I@2 tS3 .fn4! 23

205 207 2ll 2l5

Mass number A

28

FIG. 3. Reduced widths of the odd-even astatine isotopes as a
function of the mass number. The open circles are the experimental
values, while the closed circles are the calculated values.

X
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a very useful expression if one wants results quickly.
The expression so obtained is identical with what

one would get using the formula proposed by Brussaard
and Tolhoek. "But one has to be very careful in using
this expression because it favors the formation of
alpha particles from single-particle states with high
angular momenta.

III. DISCUSSION

The comparison of experimental and calculated
reduced widths in Figs. 2, 3, and 4 shows clearly that
taking into account the nuclear structure; even in a
very crude approximation, gives results that agree
well with the general features of the experimental data.
Especially the behavior of the reduced width when
crossing the neutron number 126 is well reproduced.
It seems to us that one no longer needs to introduce a
sudden jump of the nuclear radius at the double magic
nucleus Pb" to explain the diQ'erence in the reduced
widths of Po"' and Po"'. The increase of the reduced
width when going from X=126 to /=128 is quite
naturally brought by the change in the single-particle
states involved in the alpha decay. Particles in the
2gs/s subshell are favored over particles in the 3PI/Q
and 2fs/s subshell in forming an alpha particle, first
because of the higher angular momentum (compare
(II.3)j and second, because the 2g9/Q level belongs to
a higher major shell and therefore the radial part of the
wave function is larger too at the edge of the nucleus.
This effects the quantity (R(N&lrsslsflslsN4l4 RQ) Lcom-
pare (II.S)g.

The remaining discrepancies may have several
reasons. First, we have neglected con6gurational
mixing. Configurational mixing under the inQuence of
a short-range attractive force however tends to bring
the particles closer together which would increase the
overlap with the alpha-particle wave function. This
increase would be, roughly speaking, proportional to
the number of states which are available. The number
of states however increases with an increasing number
of particles outside or holes in closed shells. To give a
more quantitative background to these considerations
the reduced widths for the decays Po "—~ Pb' and
Pot —~Pb have been computed with the wave
functions given by True and Ford" and Newby. "The
main difference between the two decays is that there
is no configurational mixing in the Pb'0~ wave function
(one hole in a closed shell) if the shell model has any
justi6cation at all, but there is an appreciable amount
of mixing in the Pb'" wave function. The inQuence of
the mixing in the Po"' and Po"' wave function (protons)

» P. J. Hrussaard and H. A. Tolhoek, Physics 24, 238 (1958).
"W. True snd K. Ford, Phys. Rev. 109, 1675 (1958).

N. ¹wby, thesis, Indiana University, 1958 (unpubhshed);
N, Newby snd E. J. Konopinsky, Phys. Rev, 115, 343 (1959),

drops out in first approximation if one forms the ratio
3s (Po'n)/3'(Po"') The result of the calculation is
3'(Po"')/3'(Po"') =0.340, whereas the experimental
value is 3'(Po"')/P(Po"') =0.423 and the value without
mixing 1.18.

A second reason for some discrepancies could be that
even by forming ratios of transition probabilities we
have not eliminated the errors introduced by the
harmonic oscillator wave functions which might diGer
considerably from more exact single-particle wave
functions.

A further reason for discrepancies could be that there
is a sort of "clustering" of particles in the nuclear
surface which is not even taken into account by the
conventional configurational mixing. But we feel that
this "clustering" would mainly e6ect the absolute
value of the reduced width, which comes out too small
with the wave functions we have used, unless rather
unreasonable values for the parameters n and P are
chosen. ' A reason for this "feeling" is that if the shell
model gives an adequate description of the nucleus at
all, the nuclear wave functions should be approximated
reasonably by products of single-particle wave functions
inside the nucleus. "Clustering" should be effective in
the low density region of the nuclear surface. But the
"cluster wave function" has to join smoothly to the
shell-model wave function. Therefore, shell-model wave
functions should give the relative amplitudes of different
"clusters" (for instance, e particles with diGerent
angular momenta) to a good approximation. Together
with the fact that using oscillator wave functions we
have greatly underestimated the magnitude of the
single-particle wave functions in the surface region,
these considerations would explain why shell-model
wave functions give good agreement between theoretical
and experimental values for the relative transition
probabilities but fail to do so for the absolute values.

%e may conclude with a remark about the alpha-
particle wave function. Concerning this wave function
we feel quite sure, that (II.1) provides a good approxi-
mation to the actual wave function. There are experi-
mental~ as well as some theoretical" reasons for this
feeling. High-energy electron scattering experiments~
show clearly that a Gaussian-type charge density is a
good approximation to the real charge density.
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