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evaluated by using the matrix elements given by
Nilsson.

It is now known that for large deformations, positive
quadrupole moments tend to predominate. "It is likely,
therefore, that the sign of tt(Brre) is negative. Of the
two conhgurations exhibiting a negative moment in
Table IV, the configuration (ptt)= (pets, fsts ) seems
most likely. A measurement of the magnetic moment
of Se" would shed light on this matter.

"B. R. Mottelson and S. G. Nilsson, Danske Videnskab.
Seiskab, Mat. -fys. Skrifter 1, No. 8 (1958).
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The recoil of a chemically bound nucleus is considered for slow neutron scattering and for the resonant
absorption of neutrons or gamma rays. The Doppler-broadened resonance line shape is derived in terms
of the time-dependent self-correlation function describing the motion of a nucleus due to the interatomic
forces. This explicitly relates the resonance line shape to the differential scattering cross section for sIow
neutrons in the Fermi pseudopotential approximation. Within this formulation an expansion for large
nuclear recoil is naturally suggested. For the case of a crystal, this expansion can be directly related to the
expansion associated with the central limit theorem of probability theory and can therefore be proved to be
asymptotic in nature. The expansion parameter is (E, /2f), where Z, is the average kinetic energy of s.
nucleus and R is the recoil energy for a free nucleus at rest. The leading term of the expansion is the weak
binding limit originally obtained by Lamb. In this limit the Doppler-broadened line shape is the same as
would obtain for an ideal monatomic gas of the same mass with an effective temperature T'= (3)E, . For
noncrystalline systems, a similar expansion with the same leading term can be obtained by a rearrangement
of the terms in an expansion used by Wick to study the slow neutron total cross section. The relation of the
present expansion to Wick's expansion is discussed.

I. INTRODUCTION

OR many nuclear processes a quantitative descrip-
tion requires the inclusion of the effects of chemical

binding on the nuclear recoil. These processes include
the scattering of neutrons with energies less than a few
electron volts, the Doppler-broadening of neutron-
absorption resonances, and the emission and resonant
reabsorption of nuclear gamma rays. These processes
can all be described in terms of the same formalism
because the perturbation on the atomic system due to
the nuclear interaction is accurately given in terms of
the matrix element of a point interaction. For the
neutron-scattering problem, this involves the familiar
Fermi pseudopotential' approximation, the application
of which has been extensively developed in the litera-
ture. "=' For the Doppler-broadening of neutron absorp-

*A partial report of this work was presented at the American
Physical Society meeting in New York, January 27—30, 1960
Diull. Am. Phys. Soc. 5, 39 (1960)j.

~ E. Fermi, Ricerca sci. 1, 13 (1936}.
2 G. Placzek, Phys. Rev. 86, 377 (1952).
e G. Placzek and L. Van Hove, Phys. Rev. 93, 120't (1954).' G. C. Wick, Phys. Rev. 94, 1228 (1954).
'A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118, 129

(1956).
e L. Van Hove, Phys. Rev. 95, 249 (1954).
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tion resonances, the original derivation given by Lamb'
contains the essential physical arguments, but is given
only for crystalline materials. This derivation has been
applied by Visscher to the study of the emission and
resonant reabsorption of gamma rays' and neutrinos'
in crystals. In Sec. II, we extend Lamb's derivation to
arbitrary materials and show that the result can be
expressed in terms of the same time-dependent self-
correlation function that determines the incoherent slow
neutron scattering.

The explicit relationship between the resonance line
shape and the slow neutron-scattering amplitude en-
ables the application to the former problem of the
formalism which has been extensively developed for the
latter. In many cases the recoil momentum is suKciently
large that the details of the binding potential are not
expected to be important. In this large recoil limit, the
binding appears only insofar as it determines the average
kinetic energy of the nucleus before the nuclear inter-
action. This limit was 6rst studied by Lamb in connec-
tion with the resonance line shape. More recently,

' W. E. Lamb, Phys. Rev. 55, 190 (1939).
e W. M. Visscher Ann. Phys. 9, 194 (1960).' W. M. Visscher, Phys. Rev. 116, 1581 (1959).
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Placzek' and Wick have considered the large recoil
limit for the slow neutron-scattering cross section by
introducing expansions in powers of the effective colli-
sion time. They showed that the leading correction to
the free-atom cross section at high energies is deter-
mined by the Doppler eBect associated with the average
kinetic energy of the bound nucleus. They also derived
higher-order corrections that depend explicitly on the
binding potential.

The expansions introduced by Placzek and Wick are
not suitable, however, for the calculation of differential
quantities, such as the energy-transfer cross section for
slow neutrons, or the Doppler-broadened line shape
for resonant absorption. An appropriate expansion for
the calculation of these quantities is obtained in the
present paper by a rearrangement of the terms in
Wick's expansion. The properties of this new expansion
are not easily studied for an arbitrary system. It is
therefore useful to explicitly consider a system for
which the appropriate time-dependent correlation func-
tion is exactly calculable.

We consider, in Sec. III, the case of a crystal with.

harmonic lattice vibrations. For this case the exact
form of the appropriate time-dependent correlation
function can be derived. '" The nature of the 6nal
result is such that we can obtain an asymptotic expan-
sion in inverse powers of the recoil momentum by direct
application of the central limit theorem of probability
theory. "The leading term in the expansion is the result
that would apply for an ideal monatomic gas of un-

changed mass, but with an eGective temperature
T'= (-,')E, , where E, is the average kinetic energy per
particle. This term is the "weak binding" limit obtained

by Lamb. The higher terms in the expansion involve
the same parameters of the lattice vibrations that
appear in the work of Placzek' and of Kick.4

Ao alternative approach that is applicable for crystals
is to 6rst expand in terms of the number of phonons
exchanged in a single interaction. The terms corre-
sponding to zero or to one phonon interchange can be
treated exactly and can yield detailed information
about the distribution of lattice vibration frequencies
in the crystal. ' ' The central limit theorem can then be
applied to the individual terms in the phonon expansion
corresponding to the exchange of two or more phonons.
In a paper by Sjolander, " this approach has been
carried through in detail for the scattering of neutrons

by crystals.
In Sec. IV we consider the development of an ex-

pansion for large momentum transfer applicable to non-

crystalline materials. The expansion is obtained by
making the same rearrangement of the terms in Wick's
expansion that gives the result in Sec. III for the crystal-
line case. For a noncrystalline system, the expansion

'0 F. Sloch, Z. Physik 74, 295 (1932).
"H. Cramer, Mathematicat Methods of Statistics (Princeton

University Press, Princeton, New Jersey, 1946).
"A. Sjolander, Arkiv Fysik 14, 315 (1958).

no longer gives an asymptotic expansion in inverse
powers of the recoil momentum, but it continues to have
the property that the leading terms of the expansion
give the dominant contributions to the 6rst few mo-
ments of the scattered energy distribution or of the
absorption line shape. This feature makes the present
method of interest in connection with such complicated
phenomena as the scattering of slow neutrons by
liquids. The present method is closely related to the
moments method considered by de Gennes" in connec-
tion with the above-mentioned problem. I

Finally, in Sec. V we discuss some applications of the
techniques developed in the preceding sections. Nu-
merical results for the Doppler-broadening of neutron
absorption resonances are presented, as wel1 as a dis-
cussion which makes it plausible that the weak binding
limit of Lamb will be quite accurate for almost all cases
of interest. The relevant formulas for the emission and
resonant reabsorption of nuclear gamma rays are pre-
sented and discussed, but no numerical results are given.
A discussion is given of the application of the present
method to slow-neutron scattering problems. The rela-
tion of the present expansion to Wick's expansion for
the total scattering cross section is discussed in Ap-
pendix A.

II. DERIVATION OF RESONANCE LINE SHAPE

We consider the resonant absorption of a neutron
by a nucleus bound in an atomic system. The resonance
line shape (normalized to unit area) summed over final
atomic states and averaged over initial atomic states.
is given by7'4

where E is the energy of the incident neutron or
gamma ray; Eo is the resonance energy; y is the recoil
momentum to be taken up by the atomic system; r is
the position coordinate of the nucleus; and p(a) is the
distribution of initial atomic states,

I a},with energy e,.
The sum is over intermediate states, I b), with energy
e&. The sum over 6nal atomic states has already been
carried out by closure, and the dependence of the
natural width, F, on the atomic state has been neglected.
An identical expression applies to the resonant absorp-
tion of a gamma ray. '

In order to relate the resonance line shape to the
neutron-scattering amplitude for the same atomic
system, we introduce"

00

b(co —et+e ) =—
~ dt expI —et(co —et, +e,)g, (2)

2x QQ

"P.G. de Gennes, Physica 25, 825 (1959).
'4 A system of units will be used in which k = 1, and temperatures,

are given in energy units.
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and rewrite (1) in the form

OQ

W(E) =-- d S(y, )L(E—E,—) y-,'r j-. (3)
2~

The dependence of the line shape on the atomic
system is contained in the function

where

S(yp)) = (2m)-')t' dt e ""x(y,t),

X(y, ') =2 ~(a) I
(&I'"'la) l''*"' "'

b,e

At this point, we note the relationship of our notation
to that of other authors: S(y,&o) is the same function in-

troduced by Van Hove, 'and x(y, t) is the spatial Fourier
transform of Van Hove's time-dependent self-correla-
tion function G, (r,t). It is equal to x(y, t) as defi—ned

by Zemach and Glauber, ' which is equal to (4~/o. z)

times the function G(y, t) defined by Wick.4

By the introduction of the Hamiltonian, H, for the
atomic system, ' ' Eq. (5) for x(y, t) can be rewritten in

the convenient condensed form

(y]) P (a)(a~'—jy ~ rgiHtgiy rg HE~a)—'
(8a)

=2 p(a)(alexpL —iy r(0)j expt:iy r(/)]la). (8b)

In general, x(y, t) will depend on the relative orientation
of the incident neutron or gamma ray and the molecular
or crystalline axes. For a randomly oriented assembly
of molecules or crystal lites, the average of x over
orientation will depend only on the magnitude p of the
recoil momentum.

For an ideal monatomic gas of mass M and tempera, -
ture T, the use of (8a) enables a very simple deriva-

We note that S(y,&a) is precisely the same function'

that determines the noninterference slow neutron scat-
tering in the Fermi pseudopotential approximation. The
scattering of a neutron of energy E to energy E' through

angle 8 is given by

o(E,E',9) =((rg/4')(E'/E)iS(K, E—E'), (6)

where the momentum transfer E if given by (E'/2m)
=$E+E' 2(EE') cos—8), and ob is the bound-atom

cross section.
The formalism that has been developed in the theory

of slow neutron scattering' ' can therefore be applied
to the calculation of the resonance line shape. In this

formalism it is usually more convenient to work with

the function x(y, t), which is related to the line shape

through

5'(E)=(2~)—' t'
dt exp)i(EO —E)f—21'~t~ jy, (y,~). (7)

tion of'
x(p, t) =exp|-(p'/2M)(ir —TP)],

III. ASYMPTOTIC EXPANSION FOR
LATTICE VIBRATIONS

In the approximation of an infinite phonon lifetime
the lattice vibrations of a solid can be represented by
an r(t) which is a sum of simple harmonic oscillator
coordinates. By the use of standard field theoretical
techniques plus a theorem due to Bloch" for the
averaging over a thermal equilibrium distribution of
initial states, an exact expression for x(y, t) can be
derived" for this case. This expression will, in general. ,
depend on the orientation of the incident neutron or
gamma ray with respect to the crystal axes. For
randomly oriented polycrystalline material, an average
over this orientation must be performed. In this paper
we will consider only the case of a Bravais lattice, for
which x(y, t) is independent of orientation, and is
given by

where

and

x(p, ~) = exp(ZL-~(~) —~(0)]),

E= (p'/2M), (12)

v()=&
0

Lcoth(t. /2T) cosset+i sin(tjf(P)|. df, (13)

in which M is the nuclear mass, cu is the maximum
vibrational frequency, and f(t) is the distribution of
vibrational frequencies normalized to unity. The
familiar expansion in the number of phonons exchanged
in a single interaction is obtained by extracting the
Debye-Wailer factor, expt- —Rp(0) j, and expanding the
remaining factor in powers of Ry(t). The first few terms
in this expansion are sensitive to the details of the
frequency distribution. In a range where Ry(0) is of
order unity, or smaller, these terms will dominate, and

"H. Bethe and G. Placzek, Phys. Rev. 51, 462 {1937).

S(P,&o) = (M/2~T p') i

Xexp[—(M/2TP')(~ —p'/2&V)']. (10)

Substitution of (9) into (7) or (10) into (3) gives the
familiar Bethe-Placzek" form for the Doppler-broad-
ened resonance line shape.

In general, exact analytic expression for y(y, t) cannot
be given except in the operator form of Eq. (8). From
(8b) it appears plausible that an expansion of S(y,cv)

for large p can be obtained from the behavior of x(y, t)
for small t In t.he special case that r(t) can be written
as a sum of harmonic oscillator coordinates, x(y, t) can
be exactly determined, and the behavior for large recoil
explicitly studied. In the next section we examine the
application to the harmonic lattice vibrations of a solid.
A related expansion is developed for arbitrary systems
in Sec. IV.
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detailed information about the frequency distribution
of the lattice vibrations can be obtained from the experi-
ment. This has been discussed in some detail for the
case of neutron scattering by Placzek and Uan Hove, '
and for the case of gamma-ray absorption by Visscher. '
It has been shown by Sjolander" that the terms corre-
sponding to emission of two or more phonons can be
accurately calculated by means of an expansion based
on the central limit theorem of probability theory. "
This simpli6cation of the multiphonon terms greatly
simplifies the analysis of experiments in which multi-
phonon corrections are significant but not dominant.

In the present paper we apply the central limit
theorem to obtain an asymptotic expansion for large
recoil without first making the expansion in the number
of phonons exchanged. The resulting expansion is useful
only when the multiphonon terms are dominant, so that
the details of the frequency distribution are not im-
portant. We expect that for large values of R, the
Fourier transform of )t(p, t) will be determined by the
behavior of x(p, t) for small values of t. Expanding y(t)
about t=0, we obtain

~00

e '**(is)"exp( —'/2)ds

where
= (2m) &H„(x) exp( —x'/2), (19)

dn

H„(x)= (—1)"exp(x'/2) Lexp( —x'/2) j (20)
dS

is the eth Hermite polynomial.
The resulting expression for S(P,co) is

1 PT'~ & x0
s(p,~) = (~a')—'

*exp(—00') 1+
~

—
I a0(0)

12v2 ER) T"

T j. S4 ($3)
e4(.)+ ]

'
[ a0(0)

R 96 T" 576 iT")

+o((T'/R)'), (21)

Fourier transform of )t(p, t) will be of order unity. The
Fourier transform of each term in the expansion can
easily be carried out by noting that

where

&(t)—7(0)=p —(it)",
v=I. pt

(14) where
6=2(RT')& (22)

and

~2v—1

0

1'-'f(t )dt',
is the Doppler width, and

0=v2 (co—R)/A. (23)
pm

x, = 1'"-' coth(t-/2T)f(1. )df.
0

In particu1ar,
$$ ~)

xg ——(4/3)E, =2T', —

(16)

(17)

and then expand the second exponential in (18) 111

powers of (it). In order to group terms according to
powers of 2 ', we introduce the dimensionless variable
z'=2RT'P. The values of s which contribute to the

where E, is the average kinetic energy per particle
associated with the lattice vibrations. In the limit that

goes to zero, T' approaches T and the terms in (14)
for 1&3 vanish, giving the proper ideal gas limit (9)
for X(p,t).

In order to develop an expansion valid for large
values of R, we note that the Fourier transform of (11)
is formally identical to the probability distribution of
the sum of (R/T') identically distributed random
variables. The central limit theorem of probability
theory tells us that this distribution approaches a
Gaussian with corrections of order E:.A systematic
procedure exists for obtaining an expansion in powers
of E ', which can be proved to be asymptotic in nature. "
Following Cramer, we write

00 g
x(P,t) =expLR(it —T'1')$ exp R P —(it)", (18)

v=3 pt

The leading term in (21) is the result for an ideal gas
of mass M and temperature 1'. The "weak binding"
limit first obtained by Lambv corresponds to retaining
only this term. The correction terms are seen to vanish
both in the limit of large recoil and in the limit of weak
binding for arbitrary recoil. Since the expansion is
known to be asymptotic, the error in truncating at any
term can be estimated. The higher order terms in (21)
can be computed in a straightforward manner for any
assumed frequency distribution.

For arbitrary crystal structure, we must replace
(11) by

x(y, t) =exp{Ru [m(t) —m(0)) u), (24)

where u is a unit vector in the direction of p, and St(t)
is a tensor depending on the orientation of the incident
neutron with respect to the crystal axes. The expansion
corresponding to (21) can still be carried out, but T',
x3, x4, etc. , will depend on orientation. An average over
orientation of such an expression is cumbersome. In the
next section we discuss a closely related expansion which
can be applied to noncrystalline systems and which
gives a fairly simple result for crystalline systems of
complicated structure.

IV. APPROXIMATION FOR ARBITRARY SYSTEMS

We would like to develop an expansion of the form
(21) for arbitrary systems. Since x(p, t) does not in
general depend exponentially on R, the expansion will
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not yield an asymptotic series in powers of R:. We
consider erst the expansion developed by Wick4 for the
average of X(y, )!) over orientations.

Sn
X(&,&) = &X(p,t))=e'" 2 —('~)" (25)

where

r4= s4 —3s2' ——2RC,

2
3+ave ~3 S3 ~ave

+ (16/5) L(&')-—(5/3) (&-)'3&' (»)

The quantities s„can be related' to pararn. eters intro-
duced by Placzek':

sp= 1, si ——0, si ——(-p)RE, , sp RB,——,
s4——(16/5) R'(E'). +2RC.„

where E, and (E')„are the mean and mean square
kinetic energy of the nucleus averaged over initial states.
8, and C, depend explicitly on the binding potential.
For the case of a crystal, 8„=xp and C, = (-,')x4.

The expansion (25) was applied by Wick to the calcu-
lation of the total scattering cross section for slow
neutrons as an expansion in inverse powers of the
neutron energy. Wick's expansion is not suitable for the
calculation of differential quantities such as the reso-
nance line shape because the resulting expansion of
S(E,o)) is in terms of singular functions. The expansion
of the preceding section was in terms of nonsingular
functions because of the appearance of the Doppler
term (—RT'P), as the argument of an exponential. A
natural generalization of our result for crystalline
systems can be obtained by multiplying the right-hand
side of (25) by

oo

exp( —ks, t') Z —(psp~')"
n=O nt

to give

for a Bravais lattice and for an arbitrary crystal
structure for a fixed orientation. There will be similar
terms of order unity for all the even Hermite poly-
nomials in (28) and terms of order R *

for all the odd
Hermite polynomials. It is therefore clear that (28)

. is not an asymptotic expansion in powers of E ' for a
general system. For many quantities of physical interest,
however, the contributions arising from Hermite poly-
nomials of high order will be small, so the expansion
(28) is useful. This is best illustrated by the specific
applications considered in the next section and in
Appendix A.

V. APPLICATIONS

Doppler-Broadening of Neutron
Absorption Resonances

The present expansion can be applied with greatest
accuracy to the line shape for a neutron absorption
resonance in a crystal. This is true because of the
appreciable magnitude of the natural width of the
resonance compared with the Doppler width. The line

shape in the wings of the resonance is determined
primarily by the natural width. It is in the wings, how-

ever, that the higher Hermite polynomial terms would

be important. Near the center of the line the Doppler-
broadening has its greatest eBect and is likely to be
given accurately by the weak binding limit of Lamb,
which constitutes the leading term of the present ex-

pansion. In addition, the natural width is roughly
independent of incident neutron energy for a purely
absorbing resonance, whereas the Doppler width in-

creases with increasing energy. The resonances for
which the Doppler-broadening is largest will therefore
correspond to large recoil and consequently to smaH

coeS.cients of the Hermite polynomial correction terms.
We will consider a numerical example. The line shape

is given by a convolution (3) of (21) with the natural
line shape. The resulting expression, which has been
programmed for computation with a, digital com-
puter" is

The corresponding expansion for S(R,o)) is

S(R,(p) =- (~a') —l exp( ——,'c')
where

IV(E)= (r/2~)y(g, x),

P= (r/a), x= (2/r) (Z—Z,—R),

(29)

Bav)
X 1+ — Hp(e)

12@2 R ) T")
6 is given by (22), and

~(~,*)=~.(r, )+2 ~.~.(~, ). (30)

The functions (t „(P,x) are defined by

1 4 (E'),
+—— —1 II4(e)+. , (28)

8 15 T"

where d and e are defined by (22) and (23).
Comparing (21) and (28) through terms containing

EEi(e), we see that (28) contains a term in H4(e) which
is of order unity. The coef6cient of this term vanishes

4-(k,x) = (5/2~'*) &X (1+&') '

((x—
X) &

&(exp ——(x—y)' lI„), (31)

and tPp((, x) is the usual Bethe-Placzek lire shape P($,x).
"G. Kuncir (private communication).
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TAnLE I. Peak cross section (arbitrary units) as a function of
temperature for the 1.26-ev resonance in Rh"'.

T('K) T'('K)

0 142
75 153

150 198
300 324
600 612

Peak cross section
Lamb's Present

Free atom approximation approximation

1.000
0.976
0.954
0.918
0.861

0.957
0.954
0.942
0.913
0.860

0.959
0,956
0.945
0.917
0,864

P(O/2T) = (5C /3TO') (33)

where 0 is the Debye temperature. In terms of these
functions,

The coefficients, A„, for a Debye crystal are con-
veniently written by defining the functions

Emission and Absorption of Gamma Rays

The line shape for resonant emission or absorption
of gamma rays can be much more sensitive to the
details of chemical binding than for the case of neutron
absorption, since the natural width of the gamma-ray
line is negligible compared with the Doppler width.
The recoil en.ergy R is given by Eps/2Mc', which is
small (compared to T) for a 10-kev gamma ray, and
large for a 300-kev gamma ray. For sufficiently small

R, the possibility exists for studying the details of the
frequency distribution of lattice vibrations in a crystal. s

The relevant experiment will be to measure the nu-
clear reabsorption of a gamma ray as a function of the
Doppler shift of the emitted gamma ray with respect
to the absorber.

Consider the emitter to be moving at a velocity v

toward the absorber, and thus Doppler shifting the
energy of the emitted gamma ray by an amount
s=(v/c)Ep. The probability of resonant reabsorption
as a function of s is given by

1 O'H
A4 ———

80 ETF'
(34)

W'(s) =) W, (E)W, (E s)dE—
= (2m-)

—' ~ Ct expl —I" (t~ —
istic

A5=
112042 E&T'P'

1600 T'EF'

The functions F and H both go to one for high
temperature. Their detailed properties are discussed,
in Appendix B.As a numerical example, we will consider
the 1.26-ev resonance in rhodium. The Doppler-broad-
ening of this resonance as a function of temperature
has been studied experimentally by Landon. '~ The low
energy of this resonance makes the inherent convergence
of the Hermite polynomial expansion rather poor. This
is compensated, however, by the small ratio of Doppler
width to natural width, so that the effects on the line
shape due to crystalline binding are rather small. The
most sensitive parameter is the peak cross section. In
Table I we give the peak cross section as a function of
temperature. A Debye temperature of 378'K has been
assumed.

We note that the dominant corrections are given by
Lamb's result even in this low recoil case. A more
interesting comparison, considering the improved reso-
lution of today's neutron spectrometers, would be for
the detailed line shape of a more severely Doppler-
broadened resonance. The authors welcome suggestions
from experimentalists measuring neutron resonance
parameters for specific cases to calculate.

' H. Landon, Phys. Rev. 94, 1215 (1954).

where the subscripts a and e on the x functions refer to
the state of chemical binding of absorber and emitter,
respectively.

For small R and for a crystalline system, the appro-
priate procedure is to expand y and x, in terms of the
number of phonons exchanged. ' For large E., the average
number of phonons emitted will be large and the
appropriate expansion is that of (26). Carrying out this
expansion for each of the functions in (35), we obtain
a line shape W'(s) of the form (3) with

(Ep—E) ~ s I' —+ 21',

and 5(R,cp) given by an expression of the form (28)
with

e= (cp —2R)V2/6p.

The parameters T', 8, , C„,and (E'),„in (28) are to be
replaced by the sum of the values for the emitter and
the absorber. The appropriate Doppler width becomes
Dp=2)R(T, '+T, ') O'. Terms involving Hermite poly-
nomials of the sixth and higher orders will have coeK-
cients containing products of emitter and absorber
parameters.

The above results are of interest in the context of
Visscher's suggestion that gamma rays can be used to
study eGects of chemical binding on the nuclear motion.
A particularly interesting case is that of liquids; the
physics is essentially the same as for slow neutron
inelastic scattering, as discussed in the following.
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Slow Neutron Scattering

The essential feature of the expansion (28) is that it
characterizes the differential energy-transfer cross
section (6) in terms of a few parameters of the nuclear
motion in the interatomic force field. This character-
ization is not of great interest for a system of known
dynamical properties, such as a crystal, because more
detailed information on the lattice vibrations can be
obtained' by using appropriately chosen experimental
conditions. The expansion (21) is of some practical
interest in the crystalline case, however, since it is use-
ful in' describing neutron moderation by a crystal for
neutron emergies greater than the Debye temperature.
For the neutron moderation problem, we do not expect
the details of the lattice vibrations to be of great
importance.

For a system of poorly known dynamical properties,
the expansion (28) is of somewhat greater interest
since it defines in an approximate way what parameters
of the dynamics of the atomic motion are likely to be
determined from slow neutron inelastic scattering. The
developments of the present work have been limited to
the case of incoherent scattering, but they already show
some interesting features.

It is instructive to compare the present results with
the work of de Gennes. "He considered the calculation
of the second and fourth energy-transfer moments of
S(K, E'—E) for fixed momentum transfer K. De
Gennes' considerations were restricted to a classical
liquid in the limit of large mass where recoil can be
neglected. He considered this case for coherent scatter-
ing, as well as incoherent scattering, but we will be
concerned only with the latter. De Gennes found that
the second moment of S(K, E'—E) is given by 2RT,
and the fourth moment by [12R'T'+2RC,„j.It is in-
teresting to note the di6erences in the present treatment
in which quantum mechanical effects and recoil are
included.

First, we note that the parameters of the atomic
motion appear directly in an expansion for the differen-
tial energy-transfer cross section so that the restriction.
to fixed momentum transfer at a given scattering angle
is not present. This restriction appears only in the
interpretation in terms of moments and is avoided by
the Hermite polynomial expansion. Second, the free-
atorn recoil is explicitly included in the definition of
e in (28). Third, the temperature T is replaced by T'; a
correction due to quantum mechanical zero-point
motion. The third moment term in 8, also arises from
zero-point motion. Finally, we have an additional
fourth moment term involving (E'), . This term
vanishes for a classical system in thermal equilibrium.
Its order of magnitude for a real liquids is hard to
estimate.

SUMMARY

We have considered three applications of our exten-
sion of Wick's short-collision-time method for calculat-

ing slow neutron scattering. For the Doppler-broaden-
ing of neutron absorption resonances, the essential
result is a justification of an earlier approximation
introduced by Lamb. For the scattering of slow
neutrons or for the resonant emission and reabsorption
of nuclear gamma rays, the method is applicable in
situations where the recoil is sufficiently large that the
eGects of chemical binding can be given in terms of a
few parameters. The determination of these param-
eters is of particular interest for liquids where the
dynamics of nuclear motion is poorly known. The
method presented here may be useful in analyzing
experiments on slow neutron inelastic scattering or the
broadening of low-energy gamma-ray absorption lines
in liquids.

APPENDIX A. SHORT-COLLISION-TIME
APPROXIMATION

The "short-collision-time" approximation was first
introduced by Wick, 4 who used it to express the total
neutron cross section as a series in inverse powers of
the neutron energy. (That this series contains only
the contributions from collision processes of short
duration was rigorously shown to be true for an isotropic
oscillator in its ground state. ) The developments of the
previous section constitute an extension of the short-
collision-time approximation to the calculation of the
differential properties of neutron scattering. It should
be possible, then, to obtain from the expansion (26)
the contribution of "short" duration processes to the
integral properties of the scattering. In particular, we
should be able to obtain the result obtained by Wick
for the total cross section, namely,

M y' 1 T'
~(E)=~,

)

&M+1) 2 ME

1 pM+1q'C.
+0(E-) . (A1)

32( M ) ME'

For the calculation of 0 (E), one is first tempted to
insert (28) into (6) and integrate over energy and angle.
The first two terms in (A1) are obtained correctly in
this manner, and the contributions from the B„and
(E'), terms are found to be zero. The term in C, , how-

ever, gives only half the contribution in (A1) and di-
verges logarithmically for small momentum transfer.
If we wish to include terms of order 1/R, or higher, in
(28), it is necessary to introduce a minimum recoil Ro
and to use (28) only for R)Ro. The form of 0 (E,E',9)
for R&EO can be estimated on physical grounds for
high incident energy. By such a procedure we cannot
choose Ro so that the error in 0(E) is exponentially.
small. The direct. integration of our expansion (28) to
obtain the total cross section is therefore not a very
useful procedure.

An alternative, and more successful, procedure is to
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FIG. 1. Contour for t integration in Eq. (A2). Fio. 2. Contour for p integration in Eq. (A4).

make more direct use of the short-collision-time nature
of the expansion (26) rather than the large recoil
nature of (28). Since our expansion is only valid for
short times, we must eliminate the long-time contribu-
tions to the cross section on the basis of the behavior
of x(K,t) for physical systems before making the short-
time expansion.

The cross section, o (E), is given by

independent variable

)M+1 T'
p=iEt

l + iEt l,EM ME

the resulting expression becomes

( M y'1
(E)=o~l I "p :e 'I(p)d-p, -

(A3)

(A4)

where k= (2tttE)& is the incident momentum, and I(p) =1—

Oy

&(E) dt dtK &4(E —&)gx(K t) (A2) where

8x'k &

1 B. M+1
P P (3 2P)

3fE 12 3M' 3l
E'—E= (2m)-'[@2+2k Kj.

Here, we have assumed that the K and t integrations
can be exchanged. As pointed out by Wick, this inter-
change is permissible if we Grst attribute to t a small

positive imaginary part. This corresponds to the con-
tour 3 ln Flg. 1.

In order to eliminate the long-time contributions to
the cross section, we deform the contour from A to 8
in Fig. 1. For a harmonic system with z(K,t) given by
(11),it has been shown4 that the contributions from the
horizontal portion of 8 are of the order of exp( —E/T'),
if to is greater than or equal to (M/T'). (This is true
except for the special case of an isotropic oscillator,
with M= 1, considered by Wick. ) It is probable that the
contribution from the horizontal parts of 8 will be
equally small for a more general system, but this has
not been shown.

We therefore choose te (M/T') and eva—l—uate the
integral around the loop in 8 by use of the expansion

(26). By transforming from K to

1 (M+1)'C. ( T'p)
p'(3 —2P) 1—

24 ( M i 3IIE' 4 MEi

1 ( 5 't 1 ( Tp)
+—

l (E') E'
l

p'l 1——-
30 ( 3 ) M'E' L MEi

X (15—2oP+4P')+o(E ') (A5)

The contour C in the complex p plane is shown in
Fig. 2. The branch cut for the integrand runs along the
positive real axis starting from the branch point of p &

at the origin. We note the occurrence of a pole at
p=ME/T' in the terms in the integra, l, which are
greater than second order in E '.

The integral in (A4) can be conveniently carried out
if we first extend the contour C in Fig. 1 to +oo on
both sides of the real axis. The contribution from the
horizontal path between p( —it&) or p*(—ito) and infinity
vanishes as exp( —ME/T') if te is chosen to be & (M/T').
For example, the error in the term involving C, is of
order

q=K+ k,
M+1+iT't

carrying out the q integration, and introducing the new

t M+1q 'C, pMEq '

E M )MELT']
T'p( —ito)

Xexp( —3II / E')Tln 1—
BEE

(A6)
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This is the flrst term in (A5) that would give diK- From the definitions (15) and (16), we have
culty if )0 were to approach in6nity. Higher order terms
will have an error containing powers of F(x) = (3/x') y' cothydy,

C:1-(T'p(- &o)/M&)l-',
(83)

T'p( —r&o) =M/(M+-,'),
MZ J

(A7)

but these errors will still be proportional to

exp (—ME/T') .

The integral around our extended contour is conven-
iently carried out by use of the integral representation
of the 1' function. "The result of integrating (A4) in
this way is (A1). The short-collision-time contribution
to the cross section is therefore in agreement with Wick.

Because of the deformation from contour A to
contour 8 in Fig. 1, there are no difhculties with long
collision time. The time $0 is not required to approach
infinity, but must only be &(M/T'). This corre-
sponds to

f'
H(x) = (5/x') y' cothydy.

~0

For small x, we have'

F(x) = 1+-'x'+0(x'),

H(x) = 1+(5/21)x'+O(x').

and for large x
3xr ~4 yF(*)=—

I 1+
4 ( 30x4)

Sx(
e(*)=—

~
1+

6 & 42x')

(84)

(85)

(86)

(87)

(88)

so the exponentially small error in (A1) is not appreci-
ably increased by factors containing inverse powers
of (A7).

', x =T'= TF—(0/2T), (81)

—,'x4 ——C. = —,'TO'H(0/2T). (82)
' P. Morse and R. H. I'eshbach, Methods of Theoretica/ Physics

(McGraw-Hill Book Company, New York, 1953), p. 431.

APPENDIX B. T' AND C„FOR A DEBYE CRYSTAL

We found it convenient to define two functions F(0™/2T)
and H(O~/2T) by

giving as the zero-temperature limits, T'~ (-,')0' and
C, ~ (4)e.a The behavior for intermediate x was
studied numerically on a digital computer, "and it was
found that the high-temperature form (85) can be
used for x(2 and the low-temperature form (87) for
x& 2. The maximum error is for x= 2[T= (-,') 0'j, where
the exact value of F is 1.68 and both (85) and (87) give
a value of 1.80.

Similarly, for C„ the maximum error occurs at
x= 2.22, where the correct value of H is 1.97, and both
(86) and (88) give 2.21.

"Joan Bell (private communication).


