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Using the spherical wave functions generated in a previous investigation by Wyatt, Wills, and Green,
the influence of spheroidal deformation is examined with the aid of perturbation theory. The combined
calculations yield the energies of single-particle states for a diffuse boundary, nonlocal deformed potential.
Specific calculations are performed for light nuclei around 4 =25 and in the rare-earth region between
A=150 and 4 =180. An analysis of nuclear ground-state spins and magnetic moments is presented in
terms of the computed level schemes and wave functions. The results confirm the general aspects of the
Nilsson, Mottelson results as obtained with adjusted harmonic oscillator potentials although some differences
arise in detail. In particular, the calculated coefficients usually show less mixing of different angular mo-
mentum states in our case. The fact that the unperturbed potentials used in this calculation were obtained
in the study of Wyatt, Wills, and Green from completely independent theoretical and experimental con-
siderations is satisfying and further tends to confirm that the phenomenological model has a strong basis
in reality. A discussion of the relationship of the phenomenological model to the self-consistent nuclear

model of Brueckner is given.

I. INTRODUCTION

HE successes of the unified picture of the nucleus
introduced by Bohr and Mottelson in describing
a variety of low-energy nuclear phenomena are now
well known.! Basically this description of the nucleus
combines the collective motion of many particles with
the ideas of the strict independent particle motion
incorporated in the nuclear shell model. It leads to a
unified description of nuclear motion in which the
bulk of the nucleons are pictured as being capable of
collective vibrational and rotational modes similar to
those of a liquid drop in addition to the essentially
independent motion of the few loosely bound outer
particles. Of particular interest is the case of strongly
deformed nuclei for which it can be shown! that the
vibrational, rotational and single-particle motions take
place independently of each other and may be treated
separately. This situation arises for nuclei well removed
from the closed shells where the neutrons and protons
can cooperate to produce a large deformation of the
nucleus from a spherical shape, and the total wave
function becomes simply a product of three functions
describing the two collective modes and the independent
motion of the outer nucleons in the average deformed
field which the nucleus now effectively presents to
these nucleons.

While many of the predictions of the collective model
depend only on the existence of the deformed shape,
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a more detailed appication of the model in the analysis
of nuclear properties does also require an explicit
calculation of the (so-called intrinsic) wave functions
describing the motion of the few outer nucleons in the
deformed nuclear field. This problem has attracted
much attention in recent years, especially in connection
with the application of the collective model to odd A4
nuclei.? In principle such a calculation should proceed
via some self-consistent manner, only assuming a
knowledge of the fundamental nucleon-nucleon forces,
but such a procedure poses immense difficulties and
will probably not be carried out for many years to
come. Indeed up to now attempts® to compute these
intrinsic wave functions have employed phenomeno-
logical potential wells which while analytically con-
venient are clearly unrealistic representations of the
nucleon-nucleus interaction.

In the present calculation we will also start out with
some phenomenological interaction for the average
nucleon-nucleus potential. However, taking advantage
of advanced numerical computational facilities, the
restrictions on our potential form will be considerations
of physical plausibility rather than of analytic con-
venience. Thus, we are both guided and constrained by
present experimental and theoretical information from
which the predominant features of the nucleon-nucleus
interaction may be inferred.

From the wealth of experimental data now available
on nuclear scattering and other processes, two main
facts emerge: (1) that the average potential felt by a
nucleon is dependent on its velocity,* and (2) that the

2 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 1, No. 8 (1959).

3 A list of authors who have studied nucleon motion in a
deformed well is given in reference 15.

4 See for instance A. E. Glassgold, Revs. Modern Phys. 30,
419 (1958).
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average potential has a diffuse boundary at the nuclear
surface.> The velocity dependence of the nucleon-
nucleus interaction also finds theoretical justification
and rather definite formulation in the self-consistent
field methods for the nuclear many-body problem
developed by Brueckner et al.® The work of Green and
collaborators?-® has indicated the necessity of a diffuse
edge in connection with the calculation of single-
particle binding energies and total energies within the
framework of the independent-particle model of the
nucleus.

To simulate the velocity dependence we will use an
“effective mass approximation” for finite nuclei® intro-
duced elsewhere, which does seem to provide a good
qualitative indication of the results to be expected from
a more elaborate treatment of this effect which essenti-
ally arises from the nonlocality of the effective nucleon-
nucleus potential in coordinate space.® Within the
limits of this approximation it turns out that the
velocity-dependent potential is not very much more
difficult to treat than an ordinary potential, whether
it is spherical or not. The introduction of a diffuse
edge, however, is much more difficult to handle even
in the case of a spherical potential well, and one has to
resort to numerical methods of computation. However,
it turns out that once the wave functions and level
schemes of a given spherical potential are known, it is
a fairly straightforward matter to compute the effects
of introducing a spherical deformation into this po-
tential field. Extensive numerical calculations of single-
particle states and wave functions in velocity-dependent
spherical wells having a diffuse edge, using the effective
mass approximation mentioned above have previously
been made and thus it is now feasible to carry out the
additional computations associated with deformation
effects.

A summary of the method of calculation of single-
particle states in a realistic deformed potential which
includes the effects of velocity dependence will be found
in the next section. Detailed calculations have been
carried out for light nuclei around 4 =25, and in the rare
earths region between 4 =150 and 4 = 180, i.e., in regions
where the existence of strongly deformed nuclear shapes
seem to be well established experimentally. The result-
ing deformed level schemes will be found in Sec. III
together with an analysis of the magnetic moments of
selected nuclei. A brief discussion of the results in the
light of other existing calculations of the same type is
presented in Sec. IV.

5D. L. Hill, in Handbuch der Physik (Springer-Verlag, Berlin,
1957), Vol. XXXIX.
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II. SINGLE-PARTICLE MOTION IN A REALISTIC
NONSPHERICAL POTENTIAL WELL

In this section we give an outline of the calculations
of single-particle binding states and wave functions in
a realistic nonspherical force field that is appropriate
for strongly deformed nuclei. As usual we assume that
the adiabatic approximation holds, i.e., that the
intrinsic motion is not appreciably altered by the
rotation of the nucleus as a whole. The problem then
reduces to a study of nucleon motion in the average
nonspherical field V (r) of the nucleus which is regarded
as fixed in space. As a further approximation we also
ignore all residual interactions and assume that each
nucleon moves independently of its neighbors in the
collective nuclear field. Actually, this last assumption
turns out to be partially justified in the light of recent
work on the nuclear many-body problem® and is also
supported by the approximate validity of the extreme
shell model'? and optical model®® of the nucleus. Hence,
one could expect that a good starting point would be
to assume a single-particle wave equation like

(P%/2mo)u(r)+V (r)u(r) = Eu(r), )

for a particle of mass m, and energy E moving in the
collective field V (r) of the nucleus. However, the self-
consistent field methods of Brueckner and collabo-
rators®! which take into account the strong correlations
in the nuclear wave functions, show that the extreme
independent particle picture represented by the above
wave equation is actually only reasonable if ¥ (r) has a
nonlocal nature, and the second term on the left-hand
side of Eq. (1) must be replaced by the interaction

f V(e0)u(r)dr, 2)

where the integration extends over all space; V (r,t’) is
a nonlocal potential which can in principle be self-
consistently determined from a knowledge of the
individual nuclear two-body forces alone. The immense
computational difficulties involved in calculations of
this type!® however make such a procedure unsuitable
for the present purposes. Rather we adopt an approxi-
mate phenomenological approach and simply assume
a physically reasonable form for the nonlocal potential
appearing in Eq. (2). Bearing in mind that (i) the
interaction represented by (2) must be Hermitian
which means that V(r,t’) must be symmetric in its
dependence on r and r’ if it is real, (ii) that the approxi-
mate validity of calculations employing local potentials
indicates that nonlocal effects should not be too large,
and (iii) that Eq. (2) must be translationally invariant

K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys.
Rev. 110, 431 (1958).

2M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (J. Wiley & Sons, Inc., New York, 1955).

13 H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
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for infinite nuclear matter, one is lead to the modified
wave equation (see reference 9 for details)

171 1 1
—(-—~P2+2P~——P+P2——)u(r)+V(r)u(r)
4\2m 2m 2m

=FEu(r), (3)

in the place of Eq. (1) as a first approximation to
describe the nonlocal nature of the nuclear field. Here
m denotes a spatially variable effective nuclear mass

m=mo[ 1— (a*mo/27)V (r) ]7, 4)

where @ is a parameter characterizing the degree of
nonlocality in the potential. This parameter is so
defined that =0 corresponds to the local case. We take
the modified Eq. (3) to be the wave equation describing
the single-particle motion and proceed to study how
this modification effects the motion of individual
nucleus in a realistic nonspherical potential well. The
solutions of a similar wave equation have already been
extensively studied by Green et al.3* for various
spherical potentials.

To pursue the case where V(r) is nonspherical we
confine ourselves to small deformations of a spheroidal
nature only. Accordingly, one may then approximate
the potential as!®

V(e)=V(r)—e(rdV/0r)Ps(cosd)+3e(rdV/adr), (5)

where 6 is the angle between the particle’s radius vector
and the nuclear symmetry axis, and e is a measure of
the deformation. Following the procedure used by
Gottfried,'s we treat all e-dependent terms which arise
when the expression (5) is substituted into Eq. (3) as
perturbations, and expand the wave functions # in
terms of the basic set of wave functions provided by
the solutions of the spherically symmetric wave equation

[TeymtV (1) +Veo(r) W (nl Q)= Eo(nlf) (nljQ), (6)

where Tsym is an abbreviation for the symmetrized
kinetic energy operator appearing in Eq. (3) and #ljQ
denote the usual set of radial and angular momentum
quantum numbers required to describe a single nucleon
state in a spherical potential well.!® Equation (6) is
identical with (3) for e=0 apart from an additional
Thomas-type spin-orbit force Vg, which is necessary if
one wishes to obtain a reasonable set of spherical energy
levels. We ignore here the influence of deformation and
nonlocality on the spin-orbit force since effects of this
type are expected to be small and would fall well
within the limits of uncertainty involved in the choice
of potential shape in (6) anyway.

By substituting the last two terms in the expression
(5) into the wave equation (3) we obtain the pertur-
bation interaction

U=U+U,, )

4 A, E. S. Green and P. J. Wyatt (to be published).
15 K. Gottfried, Phys. Rev. 103, 1017 (1956).
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with
Ui=—e(rV)Pyt-1e(2V"),
and

Us=—ea[ (rV') PoW242V - (r V') Pov+V2(rV') P2,

where the primes denote differentiation with respect to
7. Our perturbed eigenvalue problem then reads

(Ho+ Uyu=En, ®)

for the energies E and intrinsic wave functions # in the’
deformed field, where H, denotes the spherical Hamil-
tonian in Eq. (6). Expanding # in terms of the complete
set of eigenfunctions y (#l7Q) of Ho which belong to the
same projection © of the particle’s angular momentum
along the nuclear symmetry axis and have the same
parity w since only these quantum numbers are con-
served when all perturbations are included, Eq. (8)
reduces to the matrix eigenvalue problem

+ @7 5| U|nlj2)]=0, (9)

for the energies E(q,Qw), and eigenvectors C(g,Q,w; nlj)
which are at the same time the expansion coefficients
for the wave functions # in terms of the y(n/7Q). The
additional quantum number ¢ in the above expressions
serves to label the different roots of the matrix (9)
belonging to the same @ and w. A deformed state is
then specified by the set (¢,Q,w); due to the assumed
axial symmetry in our potential a degeneracy with
respect to the sign of @ in each state still remains.
Now, in principle, the summations in (9) should also
include integrations over the continuous positive
energy spectrum of Ho, so that the matrices (9) are
formally of infinite order. The complete diagonalization
of this system of matrices is not possible in practice,
and considerable simplifications must be introduced to
make the procedure a practical one. So, with Gott-
fried,'s we first delete the entire continuous spectrum
of Hy so that the matrix elements of U in (9) refer to
bound-state wave functions only. One expects the errors
introduced by this approximation to be confined mostly
to the particle states lying near the top of the potential
well. Further simplifications result from the selection
rules for the matrix elements of U appearing in (9).
As U is an even operator in space, no parity change is
introduced by it, and only even or odd values of / can
appear in the summations in (9). Since the eigenvalues
of (6) fall into definite shells of even or odd parity
well separated from each other in energy, the operation
of the parity selection rule makes it sufficient to
diagonalize the matrices (9) in the subspace spanned
by only those wave functions of Hy which have the
same parity and which belong to the same major shell.
The next shell of states having the correct parity to
contribute is energetically then too distant to have a
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large effect and the contributions of all such distant
states can be neglected in the first order.

i [In setting up the appropriate matrices for the
deformed field it is convenient to break the basic wave
functions ¢ (#l7Q) down into radial and angular parts
by writing

Y (nljQ)= (1/7)G (nlj)is;a,

where the ¥’s are the well-known eigenfunctions of ;2
and j, and the G’s can be numerically determined once
the shape of the spherical potential V (r) in (6) is defined.
The matrices for U can then be reduced to simple
expressions involving the product of terms depending
only on the radial wave functions G and the known!®
matrix elements of Py(cosf). After some reduction one
finds

(n'V§'Q| Us| nljQ2)= — e{I1—

(10)

1[I+ I+ f(V,DI4]}

X(l'j'ﬂleIljﬂ)+62118nr7,51115j/j, (11)
where
=i(+1)—1, =l
=1(1—1), V=i-2,

16 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 27, No, 16 (1953).

and the I’s denote the radial matrix elements
I;1=(G()V'G(@), a=(nlj)
I=(dG()/drsV'dG(a)/dr),

—(G@)V"G(@),

I4=(G(a’),(1/ nNV'G(e).

It is clear that the values of these matrix elements
are very sensitive to the behavior of the radial functions
G and the behavior of the potential at the nuclear
surface and hence the importance of using realistic
nuclear potentials would appear obvious. Since the
integrations involved in (12) are confined to the
surface, the task of carrying out the indicated inte-
grations numerically for a realistic well shape is con-
siderably reduced.

Further evaluation of (12) now depends on the
values of the various nuclear parameters (well depth,
nuclear radius constant, etc.) defining the well shape
chosen for V (r), which in turn determines the functions
G. These parameters have been found approximately
in the work of Wyatt, Wills, and Green for a well shape
very similar to a Woods-Saxon potential (see reference
14 for details) by looking at both bound and scattering
states for spherical nuclei. We will assume that their
values are appropriate for our problem too although

(12)
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this need not necessarily be so. This is no serious
restriction, however, since it turns out that most of
the results of the deformed calculation are primarily
dependent only on the over-all shape of the radial
wave functions which in turn is rather insensitive to
the exact well parameters used in their calculation, as
long as the general features of the well are retained.
Knowing the radial integrals (12) and spherical
energy levels Eo(nlj), it is a simple matter to solve the
eigenvalue equation numerically for various values of
the deformation parameter. The results of such diago-
nalizations are shown in Figs. 1-3 where we give the
resulting energy level schemes for light and heavy
nuclei plotted as a function of the more usual defor-
mation parameter §=0.67¢. This is used rather than e
to allow a direct comparison with other existing calcu-
lations,® especially those of Nilsson.'” The quantum
number ¢ defined previously in connection with the
designation of the deformed levels is given along the
vertical axis at §=0 in each figure and serves to indicate
directly the spherical state from which each deformed
level originates. The bracketed numbers labeling each
state give the set of quantum numbers (¢,Q2,w) appro-
priate to that state. A table of the coefficients C is also

78S. G. Nilsson, Kgl. Dahske Videnskab. Selskab, Mat.-fys.
Medd. 29, No. 16 (1955).

Deformation Parameter §

available but is too lengthy to reproduce here.!® In
these calculations we have used the Green-Wyatt well
shape with depth Vo=70 Mev, surface diffuseness
d=2.86 fermi and a nuclear radius R=1.204" fermi.
The nonlocality parameter was fixed at ¢=0.82 fermi,
giving a mass reduction of 0.54 in the nucleus [see Eq.
(4)], in good agreement with other estimates.?

Figure 1 refers to a nucleus with radius corresponding
to 4=29. However, by repeating the calculation for
another value of 4 (i.e., changing the radius parameter
R) one can readily see that the main features of the
level scheme are preserved, there being only a slight
shift in the over-all position of each level. This state-
ment is even more true for the expansion coeflicients
C(¢,Q,w) which hardly change at all when the positions
of the spherical levels are altered in this way. Thus
one can suppose that our level scheme will be valid for
range of nuclei in this region. Furthermore, since the
Coulomb interaction in-light nuclei is small, Fig. 1 can
be expected to apply to both neutron and proton states.
The deformed level scheme plotted in Fig. 2 is based
on the spherical wave functions generated by the
Wyatt-Wills-Green code for protons with parameter

18 Tables will be available on microfilm.

1 See, for instance, K. A. Brueckner, Phys. Rev. 97, 1353
(1955). Note that fixing the mass reduction from Eq. (4) at =0

only determines the combination a?V,, but it is only this combi-
nation of parameters that enters into the nonlocal perturbation,
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values as above except for Coulomb corrections, for a
well radius corresponding to 4=177. Figure 3 shows a
similar computation for neutron states at the same
mass number.

III. APPLICATIONS

A comparison of the level schemes presented in the
previous section with the diagrams computed by
Nilsson using an oscillator potential for the nuclear
field shows a very similar behavior in the energy levels
as a function of deformation. This might have been
expected since the main features of any deformed
level scheme will depend primarily on the spherical
level ordering. In Nilsson’s case this level order is
adjusted to reproduce empirical single-particle levels
as well as possible. In the present calculation it is
determined directly as a result of choosing well pa-
rameters which reproduce scattering and boundstate
data as well as possible.4

Mottelson and Nilsson? have recently made an
intensive analysis of the ground-state properties of
deformed odd A4 nuclei in terms of the Nilsson level
scheme. By way of application we present here a
parallel analysis of ground-state spins and magnetic
moments based on the present calculations.

‘Assuming that the nuclear spin is determined by the
spin of the odd particle, it is clear that the deformed
states to which the odd nucleon is assigned, in our case
on the basis of measured nuclear spin, will almost
invariably coincide with the Mottelson-Nilsson assign-
ments. This is to be expected, since the procedure
involved here only requires that a deformed state of
the appropriate spin be available in the vicinity of the
observed nuclear deformation at around the correct

mass number. A better indication of any improvements
introduced by the more realistic calculation must come
from comparing quantities like the predicted magnetic
moments with other similar estimates and experiment.
This is especially the case with magnetic moments since
these quantities only involve the comparison coefficients
C(g,Qw) which are sensitive to the main features of the
potential alone and are not very dependent on the
exact parameters of the well. We will not attempt to
calculate any collective features like the effective
moments of inertia or equilibrium deformations, since
such calculations always involve contributions from
many particles and the actual level spacing does become
important. We do not consider the energy values given
in the previous section to be unique enough to make
such calculations (which are very tedious to perform)
significant.

The magnetic moments of the coupled system divide
up into contributions from the collective motion of the
nucleons as a whole and from the odd extra particle,
and may be expressed as (see reference 1 for details)

v=2aQ+¢rR, (13)

where go and gg are the gyromagnetic ratios associated
with the intrinsic and rotational motion, and R is the
angular momentum of rotation. Both gg and gz depend
on details of the intrinsic motion, but especially the
former, which may be calculated directly in terms of
the expansion caefficients; useful formulas have been
given by Gottfried.!® The gg on the other hand involve
the cooperation of many particles, so we will accept
these factors as empirically determined parameters for
different nuclei. '

Some calculations for deformed odd A nuclei based
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TaBLE I. Calculated values of intrinsic g factors and magnetic moments for odd 4 nuclei lying in the region 4 =151 to 4=179.
The ground state spin I,, measured equilibrium deformations § and the deformed state occupied by the odd particle according to Figs.
2 and .3 are also given. For comparison the second last column lists the Gottfried values ug for the magnetic moment.® The empirical
data on go (which can have two possible values unless the sign of (go—gr) is also known) comes from Adler et al.P as do the values
for 7o and 6. The experimental values for the uexp are taken from a recent review article.© We take gr=0.4 throughout and the intrinsic
magnet moments for the neutron and proton equal to that appropriate for the free nucleon.

Nucleus I, 5 (¢,9w) g0 g9, exp o 7% Hexp
saEulst 5/2 0.16 14, 5/2— 1.53 ? 3.02 3.15 34
s Eul® 5/2 0.30 12 5/2+ 0.36 0.6, 0.5 0.92 0.69 15
T 32 0.31 13, 3/24+ 2.50 1.6, 0.4 2.50 234 15+ 04
srHo15 772 0.30 14, 7/2— 132 11,08 3.1 > 320+ 017
Ll 772 0.28 12, 7/2+ 9.40 0.9, 9.6 1.41 45 17
" Tais 772 0.23 12, 7/2+ 0.39 9.7 only 1.36 1.46 19
kel gﬁ 0.19 13, 5;2+ 190 16,09 3.66 322 314

o 31 18, 3/2— 071 —0.5,0.1 —048 —00 —031
Gdgsts? 3/2 0.31 18, 3/2— —071 0.6, 0.1 —048 —0.71 —037 04
Dyogslé! 5/2 0.31 19, 5/2+ —~0.30 ; —0.50 > +0.38%+ 0.05
Erglt” 772 0.29 19, 7/2+ —0.30 ? —0.49 ~095 2050+ —0.12
Vhyp 1/2 0.2 2, %: 0.7 0.62 043+ 0.05
Vsl 5/2 0.29 18, 5/2— —071 2 —0.98 —0.87 —0.67+ 0.01
Hf 10517 772 0.26 17,7/2— 0.39 0.1,0.2 1.39 > 0.61+ 0.03
Hf o7 9/2 0.27 19, 9/2+ —03 —0.2,0 —0.52 ? 047+ 0.03

s See reference 15.
b See reference 20.

¢ G. Laukien, in Handbuch der Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XXXVIII, Part I, p. 338.

on our wave functions are summarized in Table I. For
completeness, we list the observed nuclear spin I,
empirical deformation § and the possible state of the
odd nucleon consistent with this data according to our
level schemes. Computed values of the gyromagnetic
ratios ge and magnetic moments p are compared with
available experimental values,® taking g=0.4 through-
out and intrinsic nucleon moments appropriate to the
free nucleon. Gottfried’s estimates upe for magnetic
moments based on a Jocal square well potential are also
included for comparison. '

One notes that a satisfactory agreement results in
most cases especially as far as the intrinsic g factors
are concerned. Inspection of the table of coefficients'8
shows that, for heavy nuclei, the C’s vary slowly and
smoothly with deformation, so that the results in
Table I are insensitive to the exact value assumed for
the nuclear deformation in each case.

Evidence for rotational spectra in some light nuclei
around 4=25 have led several recent attempts?® to
apply the strong coupling to this mass number region
also, with limited success. By way of illustration we
give the decoupling parameter' ¢ as a function of
deformation in Fig. 4 for a nucleon occupying the
(5, 3-+) state (see Fig. 1), which is appropriate for the
ground state of Si®, or an excited state of Al*. The
measured values of ¢ indicate equilibrium deformation
of —0.13 and +0.4 for these two nuclei in agreement
with previous estimates.? However, the rapid variation
of the C’s with deformation (and hence any quantities
dependent on them) make the quantitative significance

2 K. Alder et al., Revs. Modern Phys. 28, 432 (1956).
2D, A. Bromley et al, Can. J. Phys. 35, 1042 (1957); G.
Rakavy, Nuclear Phys. 4, 375 (1957).

of such calculations very doubtful in this region, in
contract with the situation in heavy nuclei.

IV. DISCUSSION

Before proceeding with a general discussion of the
results obtained here, it is useful to review the various
approximations made in reducing the original problem
to a feasible one, and to indicate the probable short-
comings of the approximations that have been intro-
duced. Since the treatment of the deformed potential
depends almost entirely on the solutions of the corre-
sponding spherical well, we discuss this first.

a

- mm—— === Si

29

(5,v2+) state

a5 -04 -03 -a2 -a0 O OI 02 03 04 Q5
Deformation Parometer &
F16. 4. Decoupling parameter as a function of deformation for

the (5, 3+) state. The experimental values for Si¥ and an excited
state of Al?® are indicated.
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Apart from a more realistic well shape, the principal
modification that has been introduced here is a velocity
dependence of the average nuclear field. Our argument
in this respect was to replace the self-consistent nonlocal
potential required by many-body theory by a nonlocal
potential which satisfies reasonable physical require-
ments, but which is in no way self-consistent.® By
doing so, however, we are able to replace the integro-
differential equation for single-particle motion which
follows from (1) and (2), by the much simpler differ-
ential equation (3) within the limits of applicability of
the effective mass approximation. In any event, one
can argue that the introduction of an “effective mass”
concept for a finite nuclear system to parallel the
situation in infinite nuclear matter would have to
proceed via some fully symmetrized kinetic energy
operator like that in (3) on the basis of Hermiticity
requirements alone.

From a semiquantitative point of view our nonlocal
interaction appears to be quite reasonable. It can be
shown directly® that the effective mass equation (3) is
essentially equivalent to an additional interaction
proportional to the particle’s orbital angular momentum
2, which tends to weaken the effective nuclear potential
for higher angular momentum states (see Appendix).
This result is independent of the radial shape of V (r)
and is a direct manifestation of what is usually referred
to as the velocity dependence of the potential in nuclear
matter. An effect of this type also emerges clearly from
the recent fully self-consistent calculations carried out
by Brueckner.® In addition, the presence of nonlocal
interaction implies a much deeper well than for the
corresponding local potential in order to bind the same
number of particles and (in view of the above remarks)
is distinguishable from the effects coming from the
surface diffuseness, which generally influences states
with a high radial quantum number and low angular
momentum’ more strongly.

The assumptions made in connection with the
deformation perturbation in Sec. II are the usual ones
.tomake!® to reduce a formidable computational problem
to a form from which useful results may be obtained
without excessive labor. As stated in the text, there is
no way to estimate the error introduced by neglecting
the continuum states in the perturbation procedure
without explicit knowledge of the continuum wave
functions which are not available in any case, so this
uncertainty must remain. However, the neglect of the
coupling between different shells of the same parity can
be shown by actual computation to be a good approxi-
mation, so that no appreciable errors come from this
assumption.

Furthermore, we have performed calculations for
only one nuclear radius in the vicinity of nuclei in
which we were most interested. This is an obvious
computational limitation, since it is not possible to
express our deformed energy levels as a function of
mass number, a feature which makes the oscillator
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potential so useful in work of this nature. However,
small variations in R do not effect the spherical wave
functions much, and only cause a common shift in the
positions of the spherical energy levels. The small
change in the spherical wave functions means that the
expansion coefficients C(g,Qw) hardly change at all in
moving through a range of mass numbers as in the rare
earths regions for example. Thus, we expect the coefhi-
cients to be much more reliable than the actual positions
of calculated energy levels at a given deformation, and
for this reason have not looked at nuclear properties
which depend explicitly on level spacings. Any agree-
ment with experiment found in such computations
would not have too much significance since a relatively
small change in the positions of the spherical levels will
have a corresponding influence upon the relative
positions of the deformed states. For similar reasons
we have not attempted to calculate equilibrium defor-
mations in the realistic model, since apart from the
formidable task of evaluating single-particle kinetic
and potential energies in each occupied state for a
variety of deformations, the residual uncertainty intro-
duced by picking a constant radius parameter makes
the results of such a computation uninteresting.

A comparison of our orbit assignments given in Table
I for the odd particle state in both odd proton and odd
neutron nuclei shows no significant differences from or
alternatives for the Mottelson-Nilsson assignments.?
For the reasons given in the text this is an expected
result. On the other hand, the calculation of magnetic
moments in terms of our wave functions does have an
independent significance. The determining factor here
is the expansion coefficients themselves which are
insensitive to the exact location of the energy states,
but directly involve the structure of the radial wave
functions G in Eq. (10). These do differ considerably
from the corresponding oscillator wave functions. It is
possible that the main improvement obtained by using
a realistic potential is that our wave functions represent
a much better picture of the situation for a real nucleus
than what oscillator functions are able to do. We
observe in this connection that the calculated coeffi-
cients!® usually show considerably less “mixing” of
different angular momentum states in our case than
the oscillator potential leads one to expect.!” The reason
for this is twofold: (i) Our energy levels are on the
average further apart energy-wise due to the nonlocal
interaction than in a local well, and (ii) the surface
region for the realistic potential is smaller than for an
oscillator potential (which is all surface), and the
coupling of the nucleons to the nuclear surface is
reduced accordingly. To illustrate this, Table II shows
the average of 7V’ (which determines the surface
coupling) for several states in a realistic well, and the
corresponding values for a nonlocal oscillator potential
of the same rms radius. One notes that there is always
a reduction, amounting to about 15%, for the deeper
states. In contrast, the direct effect of the nonlocal
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TasLE II. Values of the radial integrals ; for neutron states
in a realistic well, and in a nonlocal oscillator potential of the
same rms radius. We take #w*=824"% Mev and 4 =177 for the
nonlocal oscillator level spacing.?

State I (Mev) Iy, o= (No+3)hw* (Mev)
14132 104 , No=6
3pis2 75.9

3pan 739

2fsi2 80.9 94.8 No=35
2fu2 77.3

11972 82.5

1z 91.2

3s1/2 68.6

2dys 70.1

2ds/2 69.2 80.2 No=4
1g7/2 65.3

lggjz 75.2

= See reference 9.

interaction through the terms proportional to ea? in
Eq. (11) turn out to be very small.

While the satisfactory values obtained for the
intrinsic g factors tend to support the point of view
that our wave functions are rather good, one must bear
in mind that the formulas used in our computations
have some theoretical uncertainties.?? To resolve some
of these uncertainties, it would be helpful at this stage
to investigate for instance electric dipole transitions in
heavy deformed nuclei on the basis of these wave
functions.?

In summary it appears that the main features of the
Nilsson level scheme and the qualitative conclusions
based on it, are retained in a more realistic treatment
of the average force field governing the independent
motion of the nucleons. One observes, however, that
the present level schemes have been generated in a
rather systematic way, and are at least understandable
in physical terms in that the radius, diffuseness and
nonlocality, etc., all fall within ranges of values which
are reasonable from other independent experimental
and theoretical investigations. In this sense there has
been no ‘“fitting” of empirical data in any way in the
present investigation. We have simply accepted the
results based on an attempted unification®* of bound
and scattering states in terms of a realistic potential
well, and have pursued the effects of spheroidally
deforming this potential. The good over-all agreement
with empirical data certainly indicates that the realistic
potential used as the basis of these calculations is
capable of producing reasonable results within the
independent particle picture of the nucleus.

2 F. Villars, Annual Review of Nuclear Science (Annual Reviews,
Inc., Stanford 1957), Vol. 7, p. 185.

uD. Strommger, Umver51ty of Cahforma Radiation Laboratory
Report UCRL-3374, 1958 (unpublished).
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APPENDIX

We present a brief discussion of the structure of the
nonlocal potential used as the basis of the present work
in this section and indicate a semiquantitative com-
parison with the nonlocal potential following from
Brueckner’s calculations. Since V(r,r') in Eq. (2) is a
matrix in coordinate space, it is simpler to integrate
over one coordinate first and regard the resulting
function of the remaining coordinate as representing
in some way an “‘effective potential” for a single nucleon.
To do so, we first split off the angular dependence by
writing

2041 ky(ry’)

V()= Z —_ (14)

Pi(r,x).

rr’

The function %;(r,7") may be found by inversion of
(14) if V(r,t’) is known. Taking the form®

V(e) = V((t+1)/Dsa(r—1), (15)
with 8,(r)= (w¥e)~® exp(—7?/a?), one finds
Ei(r ") =4darr'V (r) (wha)~?
Xexp[— (©*+7'%)/a*](—1)'j1(2irr'/a?), (16)

where 4; is a spherical Bessel function. The parameter
a is then identical with the e in Eq. (3). The expression
(16) is approximate in that we assume V (r) is a rela-
tively slowly varying function of 7 over a distance a.
Then we may calculate the effective potential '

ﬁm=fmmww, (17)

which is also given in Brueckner’s work.!? Evaluating
(17) when k; is given by (16), one finds

I‘((H—Z)/Z)( )

Julr)=V(r) T

41 3 7’
XF ——;l+—;-——), (18)
2 2 a?

where F is a confluent hypergeometric function.* For
(=0 one has

Jo)=V()2(r/a), (19)

where & is the error function® but for larger 7 values
we have not been able to express f; in terms of tabulated
functions. However, its general behavior may easily be
established by examining the limiting cases when (r/a)
is much smaller and much larger than unity. In the

first case ((l+2)/2) .
T
(l+3) )( ) , r<a, (20)

2 W. Magnus and F. Oberhettinger, Functions of M athematical
Physics (Chelsea Publishing Company, New York, 1954)

z”)



1052

30

20 m*/m, = 054
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F16. 5. The effective mass approximation function fi(r) for
different angular momentum states, using the G. W. well shape
and parameters, reference 14. The broken curves show the exact
behavior near the origin.

so that f; approaches the origin with increasing curva-
ture as the angular momentum increases. The other
limit is

[()=V[1—-3a(+1)/r*], e, (21

which is identical with the expression which results if
we evaluate f; directly from the effective mass equation
(3) [apart from a small term involving the second
derivative of ¥ which would also have appeared in
(21) had the integration leading to (16) been carried
out exactly]. The important point is that, while the
small 7 behavior will be very sensitive to the detailed
structure of §, in (15), the large 7 behavior given by
the expression (18) is not, and supports our original
point of view that the expanded form of the nonlocal
interaction [which leads to the effective mass equation
(3)] is the most meaningful approach to use in the
present case. Now one also sees more clearly just what
approximation the “effective mass approximation”
leading to Eq. (3) introduces. In this approximation
the exact form of the function f; (which always goes
to zero at the origin) is replaced by the approximate
form (21) for all . However, the singularity thus
introduced at the origin is not too serious as far as an
estimate of the energy shifts due to the nonlocal
interaction is concerned, since the radial wave functions
vanish strongly in this region.

R. H. LEMMER AND A. E. S.
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The behavior of f; as given by (21) is shown in Fig. 5
for several angular momentum states, using the Green-
Wyatt well shape and parameters* for V(r), and a
=0.82 fermi which corresponds to a mass reduction
of 0.54. The broken curves indicate the actual behavior
f1 should have near the origin [Eq. (20)].

Comparison with Brueckner’s results®® for Ca¥ shows
that our f; has the same qualitative behavior as shown
by the self-consistent calculation of this quantity,
especially with respect to the angular momentum
dependence of the effective potential which is exhibited
by (21) in a very simple way. Brueckner also points
out that the small 7 behavior of the self-consistently
determined f; is sensitive to many details of the two-
body force used in its computation, but that the
behavior for large 7 is mainly determined by the
exchange nature of these forces. Since the large 7
behavior of f; given by (21) agrees qualitatively with
the exact calculations, it is tempting to speculate that
our calculations describe in some approximate way the
nonlocality in the average nuclear potential arising
from this aspect of the two-body force only. This
conclusion is exactly in the spirit of the effective mass
approximation, which has been shown to be independent
of the detailed structure of our nonlocal potential.
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