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The eigenvalues and eigenfunctions of the vibrational states belonging to the ground electronic state of
the hydrogen molecular ion have been calculated. The calculations have been done for the J=0, 2, 4, and 7
rotational states. Included is a discussion of the dependence of the eigenvalues as a function of the lowest-
order dynamic corrections to the internuclear potential. Also, a calculation has been done to determine the

number of bound states of the Dyt system.

I. INTRODUCTION

N a study of the collision processes of the hydrogen
molecular ion with electrons and other atomic
systems, one is concerned in general with contributions
from all the vibrational states belonging to the ground
electronic state of the system. This follows from the fact
that of the various mechanisms which lead to the forma-
tion of the molecular ion, whether in the laboratory or
under astrophysical conditions, the ion is left in an
excited vibrational state, and further transitions to the
ground state must proceed via quadrupole emission.
These quadrupole lifetimes are sufficiently long that the
collision processes of the interest can occur before the
ion has settled into the ground state. With respect to
the interpretation of most experiments performed in the
laboratory, these states are sufficiently long-lived to be
considered stable.'—?

Calculations have been done to determine the eigen-
values and eigenfunctions of the vibrational states
belonging to the ground electronic state of the Hyt
system. These calculations have been carried out for
several rotational states of the ion. We have included in
these calculations a discussion of the dependence of the
eigenvalues on the lowest-order dynamic corrections to
the internuclear potential. In addition, a calculation has
been done which gives the number of bound states for
the Dyt ion. The eigenvalues for the Hyt ion are listed in
the tables; the eigenfunctions have been tabulated
elsewhere.

II. QUANTITATIVE DISCUSSION

A general discussion of the three-body problem has
been given in a previous paper®; here we reproduce only
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that portion which is essential for the continuity of this
discussion.
The Hamiltonian for the hydrogen molecular ion is
given by
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where 1, 2 refer to the proton coordinates, and e to the
electron coordinates. Upon introduction of the trans-
formation
re= 2M+m)(Mr1+Mry+mr,),
R,=r,—3(ri+r), 2)
Y,=T1—Iy
the center-of-mass motion is separated from the internal
motion, and the equation for the internal motion
becomes
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To treat the equation for the internal motions, we
introduce a solution of the form
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Upon insertion of Eq. (4) into Eq. (3), multiplication

by ¢;* and integration over all values of R,, Eq. (3)
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TasLE I. Comparison of eigenvalues with and without the lowest
order dynamic corrections to the potential.

g00=0 20070
=0 —1.1947414 —1.1944982
=2 —1.1559646 —1.1557255
=4 —1.1216770 —1.1214401
=06 —1.0916400 —1.0914036
=8 —1.0657038 —1.0654659
=10 —1.0438166 —1.0435752
=12 —1.0260434 —1.0257969
=14 —1.0125960 —1.0123427
=16 —1.0038738 —1.0003612
=18 —1.0004024 —1.0001323
Wo(x) —1.0002723 —1.0000000
here
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The electronic eigenfunctions, ¢;, are defined by
setting the integrand of the last term in Eq. (5) to
zero; the electronic eigenvalues, W;(»,), are then
determined as a function of the internuclear separation,
7. The values of W;(r,) used here have been determined
by a variational calculation described elsewhere.5:

The remaining terms in Eq. (5) serve to define the
nuclear motion. The calculations discussed here have
been done in two approximations; in the first approxi-
mation all the O;; are set to zero, in the second only the
lowest order term, Og, is retained. When atomic units
are introduced, the equation for the vibrational motion
is written

{V'n2+ (Mn/Me)[Wv— Wo(fﬂ) - 2/7’"]})(0,, (7’,,)
= — O00X00 (7).
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Here the first subscript on the x designates the lowest
electronic state of the system, and the second subscript
is introduced to distinguish the various vibrational
states belonging to this lowest electronic state.

The radial equation for a state of total orbital angular
momentum J is obtained by introducing the substitu-
tion ¢eo="7zx0» and separating off the angular part of
¢0. The first index on ¢ can be suppressed, and the
radial equation becomes
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where goo=— Ooo; goo is tabulated by Cohen et al.®
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The solutions for the ¢, and the W, have been ob-
tained by numerical solution of Eq. (7) using the
IBM 701. The integrations extended over the range
0<7,<20 (in units of the Bohr radius ao), the integra-
tion proceeding in steps of Ar,=0.05. For these calcula-
tions we have taken M, /M ,=918.334. The calculations
have been done for the /=0 and J =2 rotational states,
and for a few of the upper states for J=4 and J=7.

In the first approximation the goo is set equal to zero.
In this approximation the potential function for large 7.
tends to the limiting value

et
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which differs from the correct limiting value, i.e., the
atomic rydberg,

m et
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In second approximation the lowest order coupling
term, goo, has been included. The inclusion of this term
removes to lowest order in #/M the discrepancy in the
asymptotic value of the potential present in the first
approximation.® Table I is a comparison of some of the
eigenvalues in first and second approximation, given in
units of the atomic rydberg.

The eigenvalues calculated in second approximation
are listed in Table II. For the J=0 (parahydrogen)
state we find nineteen bound vibrational states. For the
higher rotational quanta the potential function deforms
in such a way as to reduce the number of bound states;
at J=4 there are eighteen bound states, at J=7,
seventeen bound states.

The error in the eigenvalues is determined primarily
by the inaccuracies in the potential function. On the

TasBLE II. Vibrational eigenvalues for the
J=0, 2, 4, and 7 rotational states.

J=0 J=2 J=4 J=T

v=0 —1.1944982 —1.1929112

p=1 —1.1745327 —1.1730291

=2 —1.1557255 —1.1543024

=3 —1,1380388 —1.1366937

v=4 —1.1214401 —1.1201708

=5 —1.1059022 —1.1047073

=6 —1.0914036 —1.0902817

v=7 —1.0779281 —1.0768785

=8 —1.0654659 —1.0644884

v=9 —1.0540136 —1.0531084

=10 —1.0435752 —1.0427433

=11 —1.0341627 —1.0334056

=12 —1.0257969 —1.0251171 —1.0197711
=13 —1.0185092 —1.0179104 —1.0132400
=14 —1.0123427 —1.0118297 —1.0078827
=15 —1.0073536 —1.0069335 —1.0059878 —1.0037775
=16 —1.0036121 —1.0032941 —1.0025902 —1.0010305
=17 —1.0011962 —1.0009937 —1.0005668

=18 —1.0001323 —1.0000669

Dissociation limit=W{(«» )= —1.0000000
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basis of the comparison of the first-approximation
potential function used here with the previous exact
calculations,” 8 we conclude that the correct eigenvalues
are systematically lower by 4 to 5X1073 electron volt
than the values calculated here. Note that this absolute
error is of the same order of magnitude as the go term.
We believe the differences in the eigenvalues are more
accurate than this error in the absolute values, however.

To test the convergence of the numerical integration
for the rapidly varying higher state wave functions, the
integration was done for an interval Ar,=0.025, and by
using a linear interpolation for the potential at the inter-
mediate points; this test shifted the eigenvalues down-
ward approximately three parts in 105, which is small
compared with the effect of the uncertainties in the
potential.

7E. A. Hylleraas, Z. Physik 71, 739 (1931).

8 D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. Roy.
Soc. (London) A246, 215 (1953-1954).
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III. D,* ION

As a final calculation we have determined the number
of bound states of the D;t ion. The number of bound
states is one less than the number of nodes of the lowest
free-state solution. For this calculation the goo term
appropriate to D,* was neglected ; the integration pro-
ceeded in steps of Ar,=0.025, using a linear interpola-
tion of the potential. In this approximation and for
J=0 we find 27 bound states for the Dyt ion.

Note that for Dy* there are V2 times as many levels
as for Hz*. This result would follow rigorously for a
parabolic potential or in the limit of applicability of the
WKB solution.
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The frequencies of the magnetic resonance spectrum of the NO molecule has been recalculated by using
the new value of spin-orbit coupling constants and by taking the effect of / uncoupling into consideration.
The agreement between the theoretical and experimental results is improved over the previous calculation.
By combining the magnetic hyperfine and nuclear quadrupole coupling constants the ratio of the quadrupole
moment to the magnetic moment of the nitrogen nucleus is obtained. The nuclear quadrupole moment of
nitrogen is found to be (0.0163-0.007) X 10~ cm?. The uncertainty of this value is chiefly due to that of
the coupling constants rather than to the nature of the method itself.

HE theory of the hyperfine structure of the
microwave spectra of NO and the interactions
between the various spin angular momenta have been
discussed in several papers in the literature.l® Recently
Favero, Mirri, and Gordy® have measured the rota-
tional transitions of the NO molecule in the 2r; state
and by combining the frequencies of this set of lines
with those associated with the *r; levels they made an
accurate determination of the hyperfine coupling
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constants. They also obtained the spin-orbit coupling
constant as 122.094 cm™ instead of 124.2 cm, the
value determined by optical spectroscopy.!* The theory
of magnetic resonance spectrum of NO has been given
by Lin and Mizushima.® These authors used the old
value of spin-orbit interaction constant in their calcula-
tion and were able to fit the experimental data only
within 5§ Mc/sec. They suggested that this discrepancy
might be due to the uncertainty in the spin-orbit term.
With the new value of the various coupling constants
given by Favero, Mirri, and Gordy™ we have recal-
culated the frequencies of the resonance spectrum.
The calculation has also been slightly modified to
include the effect of / uncoupling® which was neglected
in reference 8. The results are given in Table I. It may
be noted that with the exception of H; the theoretical
frequencies agree with experiment within 1 Mc/sec.

' M. Guillery, Z. Physik 42, 121 (1927); F. A. Jenkins, H. A.
Barton, and R. S. Mulliken, Phys. Rev. 30, 150 (1927).



