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Expressions for the transport coeScients are obtained by studying the average changes with time which
occur in members of a canonical ensemble when the initial state of one particle is partially speci6ed. One
calculates, both hydrodynamically and statistical mechanically, an appropriately weighted average of the
spread of the initial knowledge. In this way expressions analogous to the Einstein equation for the self-
diffusion of a Brownian particle are obtained; viz. , the viscosity is proportional to a mean-square center of
momentum displacement and the thermal conductivity is related to a mean-square center of energy displace-
ment. These expressions may be converted into the integral of autocorrelation function formulas derived
previously by others.

1. INTRODUCTION

HE path to construction of nonequilibrium distri-
bution functions, the goal of the Kirkwood trans-

port theory, ' appears to be strewn with difficulties. The
question thus arises as to whether irreversible phe-
nomena can be described with equilibrium ensembles,
the distributions of which are well known. EGorts in this
direction have met with considerable success in recent
years. Generally speaking, the result is the following.
The transport coefficients may be expressed as equi-
librium ensemble averages of dynamical variables whose
explicit speci6cation requires a solution of the E-body
equation of motion. Equations (2.14) and (2.20) are
illustrations. The 6eld is thus open to various approxi-
mate solutions, or evaluations in the limit, of the
mechanical equations, such as Mori's' binary encounter
calculation or Montroll and Ward's' cluster develop-
ment. This paper, however, will not be concerned with
that problem. What will be discussed is a derivation of
the transport coefficient expressions based on what we
feel is a more pictorial argument than has previously
been presented. It is hoped that greater physical insight
into not only the Anal results but also the approxima-
tions may be gleaned. Let us begin by brieRy reviewing
the previous work.

' J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 22, 817
(1950).

2 H. Mori, Phys. Rev. 111,694 (1958).'E. W. Montroll and J. C. Ward, Physica 25, 268 (1959).

The problems encountered may be classified into two
types. Properties such as conductivity and magnetic
susceptibility are related to the admittance of the sys-
tem to an external conservative force. (Such admittances
have been shown by Callen and Welton, 4 Kubo, ' and
others, to be related through the so-called Quctuation-
dissipation theorem to time correlation functions. ) Con-
cisely put, the derivation is based on a solution of the
Liouville equation (or its quantum analog, the equation
of motion of the density matrix) for the linear deviations
from equilibrium induced by the switching on of the
external force. The possibility for such a solution arises
from the fact that the external forces are derivable from
a potential which may be made an additive part of the
Hamiltonian. Possessing the distribution function, one
may use standard methods of statistical mechanics to
calculate the response to the force, then identify the
admittance as the constant of proportionality.

The other type of problem deals with properties such
as viscosity and thermal conductivity which are not
strictly admit tances. McLennan' has extended the
above technique by assuming that nonequilibrium states
are maintained by reservoirs which may be considered,
on the average, as acting through external forces, albeit
nonconservative ones. While it is not possible to detail

4 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); M. Lax, Phys.
Rev. 109, 1921 (1958).

6 J. A. McI.ennan, Phys. Rev. 115, 1405 (1959).
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completely the nature of these forces, fortunately one
can obtain just the information about them which is
necessary for the solution of LiouviBe's equation. Using
the distribution function arrived at in this manner the
Quxes may be evaluated to terms linear in the forces; the
constants of proportionality are identified as the trans-
port coe%cients.

Mori' had developed a diferent technique for de-
termining the distribution function. He hypothesizes
that an ensemble artificially constructed at a given time
with a local equilibrium canonical distribution will relax
to the nonequilibrium ensemble appropriate to the given
temperature, chemical potential, and velocity distribu-
tion in a time short on the scale of macroscopic varia-
tions. This provides an initial condition for the solution
of Liouville's equation (or the quantum analog). The
time derivatives of the local energy, density, and velocity
which arise are replaced by divergences of flows ac-
cording to the macroscopic equations of motion (con-
servation equations).

Two approaches to this problem have appeared in
which calculation of the distribution function is not re-
quired. The work of Kubo, Yokota, and Nakajima' is
based on the Onsager assumption that the average
regression of Auctuations follows the macroscopic linear
laws. One may then invert the linear laws wherein the
time derivative is written as a finite difference quotient.
One studies the entropy production in order to identify
the variables. Equivalence between the behavior of
macroscopic thermodynamic Auctuations and their cor-
responding microscopic mechanical variables is im-
plicitly assumed.

Green' begins by deriving a Fokker-Planck type
equation to describe the time evolution of a 5/larkoffian
set of variables ("complete set of gross variables" in his
terminology). If the long wavelength components of the
microscopic particle, momentum, and energy density
are considered to be such a set, then the dissipation
coefficients of these Fokker-Planck equations, which are
expressible as time integrals of correlation functions,
may be related to the transport coeKcients.

While all the above work has appeared rather re-
cently, description of a transport process by means of an
equilibrium ensemble actually dates back to Einstein's
study of diffusion of a Brownian particle. "This work
was based on a physical picture which it is our purpose
to extend to the description of phenomena such as
viscosity and thermal conductivity in a classical system.
The result will be expressions for the transport coe%-
cients which emphasize their nature as measures of
dissipation. The new equations can be shown to be

7 H. Mori, Phys. Rev. 112, 1829 (1958).
R. Kubo, M. Yokota, and S. Nakajima, J.Phys. Soc. Japan 12,

1203 (1957).
M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).

'0 A. Einstein, Ann. Physik 17, 549 (1905).R. Furth, in his notes
to A. Einstein, Theory of the BrovrnitJn Movement (E. P. Dutton
and Company, New York, 1926),p. 99, presents a clear description
of the model upon which the Einstein calculation was based.

equivalent to the previous ones when an assumption
about fluctuations of the wall forces is made.

Bc,/Bt= —7 j,, (2.i)

where j; is the particle diffusion current. As will become
evident, except at zero time, gradients of c; are small, so
if we assume that the average behavior of i follows the
macroscopic laws, then

j,= —DVc;, (2.2)

D being the self-diffusion constant. Combining Eqs. (2.2)
and (2.3) yields the usual diffusion equation, which,
after a consideration of the symmetry of the problem, is

Bc„/Bt =DB'c;/ctx'. (2.3)

One boundary condition is that at t=0, i is de6nitely at
Ix;0, or

c;(x,OI x;p') = 6(x—x,p')/A .. (2 4)

Let us consider throughout a system which is infinite in
extent in such a way that l„ l„, l„and X—+ ~ while
X/V=c, where the volume V is the product of the
lengths l, l„,l„and A = l „l„etc.In this case the second
and third boundary conditions arise from the fact that
the particle i cannot arrive at infinity in finite time, so
that

c,(a ~, t
I
x;p') = 0. (2.5)

2. SELF-DIFFUSION

To arrive at an expression for the self-diffusion
coefficient we will attempt to describe the average
spread with time in our knowledge about the location of
a particle. Comparison between a phenomenological and
a statistical mechanical approach to this problem will

yield the desired formula.
Consider an ensemble of systems canonically dis-

tributed. At time t=0 in each of the systems measure
the x position of the particle which has been designated
as the ith. The ensemble may be divided into suben-
sembles such that at t= 0 the ith particle of every mem-
ber of a subensemble has the same x position. (Physically
we have in mind allowing a range about this x position
and having the range approach zero. ) Characterize the
subensembles by this position, for example x;O'. Now
allow the systems to evolve for a time t, after which the
x position of the ith particle is again measured. The
number of systems in a subensemble which have i be-
tween x and x+dx at time t, divided by the total number
of systems in that subensemble is

c,(x t
I
x p') A gx,

where A is the cross-sectional area perpendicular to the
x direction. The notation has been chosen to indicate
that c; is the concentration of i at any point on the plane
x after a time t in the subensemble characterized by x;0'.

Being a concentration, c; satisfies the equation of
continuity
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The solution to this problem is well known to be

(x—x;p')'-
c,= — — exp—

2A. (rrDt) l

This distribution is a Gaussian, representing a broaden-
ing of the original delta function, which may be re-
garded as the limit of a Gaussian.

The product of D and t characterizes the spread of the
concentration or its second moment which, by (2.6), is

M, l &= t (x—x,')'c(xttxo')dx=2Dt/A, . (2.7)

In order to set the pattern for succeeding work, although
it adds nothing in this case, let us reassemble the
ensemble by multiplying this second moment by the
probability density of each subensemble, integrate over
all initial positions of i, and sum over i. The required
probability density is

We find
f"o&(x;p') =1/l. .

cv

Il &=+ 3fo' 'f" o&(x,p')dx;o',
~=i 40

=2ÃDt/A, .

(2 g)

(2.9)

A statistical mechanical analysis of the same phe-
nomenon may also be performed. The concentration, c;,
is the average over the appropriate subensemble distri-
bution function of the dynamical variable 5(x,—x)/&, .
If the subensemble distribution function at time t is
f'~&(R~,P~,3 ~x;o') then c, is given by

The second moment iV2'D' and the integral I&a) may be
written in terms of (2.12). After performing the inte-
grations over the 5 functions and equating the statistical
result to the quasi-phenomenological expression. of Eq.
(2.9) one finds that

where

Jg&7)

J,=dG(R ~,p,~)/dr,

(2.15)

r

D= (1/2&,') ' (x, ,—x,p)'

y fix,o&(R N P N)dR xdP N (2 13)

where x;&——x,, (RpN, PP, t) is a solution of the mechanical
equations of motion. Introducing a more succinct nota-
tion in which Ax, =x;i—x;p, and ( ) denotes equilibrium
ensemble averaging over zero time variables, we have

(2.14)

A few words should be said about the duration t. It
must be of sufficient length to allow the hydrodynamical
processes employed in the initial part of the derivation
to become predominant. Thus t must at least be long
compared with a mean collision time. A more quanti-
tative estimate, following from the work of Uhlenbeck
and Ornstein" with the I.angevin equation, is t))mD/IpT.
This estimate also sufFices for the considerations of the
next paragraph. DifFiculties of an upper limit are
avoided in the infinite system since Poincare recurrence
times probably go at least exponentially with size.

Expressions such as Eq. (2.14) for D may be con-
verted to a form involving an integration over time of an
autocorrelation function. We carry out the derivation
with a general dynamical variable, G(R~,I'~), for future
use. Write

&(f (R,p, ttx o')dR dP . (2 1O) and examine

c,(x,t i
x~o') = (f,/&.)3(x;,—*)&(x,o —*,o')

For a canonical transformation of the variables of
integration to zero time variables, Liouville's theorem
tells us that dR~dp~=dRp~dpP and f'N'(R~ P~, taxis')
= f'~'( R~o, p ~o,

~
O;x)p, where we consider the phase

point R~P~ as a function of RPpp~ and 1. By the
method of construction the exact zero time distribution
function is known to be

fi~&(Ro~ Pp" i=0~x,p')

=~(x'p —*'o')f' "(Ro",Po )/f""(* o) (»)
the zero superscripted distribution functions being those
appropriate to an equilibrium canonical ensemble. This
relation expresses the fact that at zero time particle i
was de6nitely at x;0, instead of being distributed with
probability f i' '&(x,p). The concentration is given by

(2.16)

Due to the stationarity of the equilibrium ensemble and
the time symmetry of the equations of mechanical
motion we have

After a change of variables to o-=7-' —r, a change of
order of integration, and the performance of one inte-
gration, Eq. (2.16) becomes

(2.18)

If the autocorrelation function (JpJi) vanishes in
sufficiently strong a manner for infinite time then the t

"G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823
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may be chosen large enough for the upper limit of The equation and boundary conditions are identical
integration to be extended to ~, and Eq. (2.18), be- with those encountered in Sec. 2, so that the solution is
comes asymptotically

((DG)')=2t ~ (JoJ.)d . (2.19)

/
Piop p(x —x,p')'

n„= — exp—
2A. (~qpt)» . 4qt

Specifically applying this result to Eq. (2.14) for D, one
has

The spread of this Gaussian is proportional to gt and
may be characterized by the second moment

f
D= (1/m') (p, *op,.i)dt, (2.20)

po0

M2«) = (x—x;0')'or, „(x,t j x,()' p;„0')(Ex

where p;, is the x component of momentum.
Equations (2.14) and (2.20) are well-known results.

They have been developed here for the sake of illus-
trating the technique which will now be applied to a
study of the shear viscosity.

3. SHEAR VISCOSITY

At time t=0 in each system of a canonical ensemble,
observe the x position and simultaneously the y mo-
mentum of the ~th particle, and make subensemble
divisions based on the results of this measurement; for
example, group those with x;0', p, „p'. At a time t later
measure the y velocity of the Quid at each plane x in the
systems. )The precise meaning of this measurement is
clarified in the statistical mechanical section by Eq.
(3.10).j Form a subensemble average to determine the
mean y velocity, I„(x,t

~

x;p', p;„p'). After sufficient time
this velocity satisfies the equation of motion

= 2p;„0'gt/p'A, . (3.7)

f ' (x o,p o )
=&, '(22rm&&) ' exp/(pioo')'/2mkr). (3.8)

To symmetrize in particle name, sum over i. The result
1s

Note that when we consider 2 —+ ~, then N„~ 0
and the use of linearized equations is justified. What this
amounts to physically is that while, in general, individual
member of the ensemble do not have transition proba-
bilities given by solution of a linearized hydrodynamic
equation (or for that matter a nonhnearized hydro-
dynamic equation), the average behavior is described by
such an equation.

The ensemble is now reassembled in the following
manner. Multiply the second moment by p, „p' and
average over the probability density

(»pu/Bf = 7 ~ ((r—pllll)+CK, (3 1)
p'00 ~2 "'f ' (x o',p o')dx o'dp',0''

where K is the external force per particle and p=mc is
the mass density. For the stress tensor e we will assume
the Newtonian form

=2k', hatt/p. (3.9)

(2= —Pl+»0(V' u)1+22)e, (3.2)

Blat 'g t9 Qy

Bt p Bx'
(3.3)

The boundary conditions are

where I' is the pressure, 0=-';(Vu+Vut) —-', (V' u)1 is the
divergen. celess symmetric part of V'u (known as the rate
of shear tensor), and )t and q are, respectively, the shear
and bulk viscosities.

By the symmetry of the problem all variables are
functions of x and t only. The walls are at infinity, in the
previously defined limit, so that the external force term
may be neglected. Employing these facts in Eqs. (3.1)
and (3.2), and linearizing in u, one obtains as the y
component of (3.1)

Note that failure to multiply the second moment by
P,„p' leads to a zero.

Next, consider the statistical mechanical description
of the same procedure. The mean velocity, u„, is ex-
pressible as a subensemble average of the dynamical
variable (1/1V)p, (p;/m)1, 5 (x; x); viz. ,

—

2iy(x»)t i
xio &Pioo )

(' few t.b(x, x)—
m

0(f'") (R P",t
~
x,()',p;„()')dRNdPN (3.10)

A canonical transformation may be made to zero time
variables. The subensemble distribution function at t= 0
is, by construction,

N„(x,0ix;p', p;„p') =p;„0't)(x—x;0')/pA „
No (~ 00 ) t ) x io y Pi 00 )=0.

(3.4)

(3.5)

f(N)(R N P N0(x. & p. &)

=h(x x;0')5(p;„0 p;„0')— —
y f(N, p) (R N P N)/f (1,0) (x, ~ p, &) (3 11)
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Therefore, we may write

p „ie„=—P lA(x;, —x)B(x,o-x,o')
Xi=i4 ~ m

Xf' "(Ro~,Po~)/f&"&(x 'p, „o') dRo dPo~ (3..12)

The second moment M2~» and the integral I'» are
easily calculated due to the presence of the 5 functions.
Equating the result so obtained to the phenomenological
Eq. (3.9) we find for large t

~=E1/(2Vk») j( 2 (»~ —x'o)'p'vip'oo& (3 13)

Let us review the origin of the factors: (x;i—x;o)' arises
in taking the second moment; p;„~ is from the dynamical
variable which defines e„ in Eq. (3.10); p;„o originates
from the weighting employed in the dednition of I(».
Using conservation of momentum it is possible to
transform the shear viscosity to

&=E1/(2Vk»)3(EZ (x' p' ~ x'op o)j ), (3 14)

The calculation of the bulk viscosity proceeds along
lines similar to the previous two derivations, although
some additional complications enter. At time zero the x
position and x momentum of the ith particle of each
system of a canonical ensemble is measured, and
subensembles constructed on the basis of this result.
After a time 3 the velocity in the x direction at every
point in the Quid is determined and subensemble aver-
aged to yield a quantity e,(x,t ~

x,o',p;,o') satisfying the
equation of motion (3.1). Considering the symmetry of
the problem and employing the Newtonian stress tensor,
(3.2) we arrive at the linearized equation

Be, 1t B'e 1 BP

8$ p 8$ p 8$
(4.1)

where f= oo+-",it. We shall drop the term p 'BF/Bx. The
reason for the neglect of this term will be examined in
detail later.

The calculation goes through in complete analogy to
Sec. 3 with p, replacing p„. For ip we Gnd

&=E1/(2Vk»)$( p (x~g—*,o) p;, ip;,o), (4.2)

lected in the hydrodynamical equation, (3.3), is evident
from the case of bulk viscosity discussed below.

4. BULK VISCOSITY

P= E1/(2Vk») j(EZ (*'p*. —*' p'* )j') (4 3)

by the procedure outlined in Appendix I. The shear
viscosity is found to be proportional to the mean-square r f w g " rgum o App

x displacement of the center of y momentum.
Equation (2.19) may be applied to this last result

with i=1

Gioi =Q x,.p,.„ This, in turn, may be converted to the autocorrelation
function form

J«&=+ E(p;.p;„/m)+x;F, „+x,K,„], (3.16)

so that in autocorrelation function form

where

P= (1/VkT) (J «iJ,«i)dt,

N
J&»=g E(p, ,p, ./m)+x, F;.+x;K,.j.

(4.4)

l

&=(1/Vkz') ~ (Jo&oiJ,«i)dt.
J~

(3.17)

In definition (3.16) the force on i has been divided into
an intermolecular part, F;, and an external part, I,.

To obtain correspondence between this autocorrela-
tion function equation and previous results7 it is neces-
sary to assume that the fluctuations of P; x~;„from
the average value have short relaxation time or are
small compared with fluctuations of g;E(p;,p;„/m)
+x;F;„jand that these two quantities are uncorrelated.
Then g; x;K;„may be replaced by its average value,
zero.

The necessity of including external forces in the me-

chanical equation of motion, whereas they were neg-

Note that J&&' and J«& are, respectively, the xx and
xy terms of a dyadic which we might label J«'"i.

Again, this is the result of previous authors~ when

P; x;K;, is replaced by its average value, FV. —
In order to understand the reason for neglecting the

term p'BP/Bx in Eq. (—4.1) let us examine the effect of
its inclusion. The assumption will tentatively be made
that the average behavior of I, is governed by the
hydrodynamic equations of change under isothermal
conditions, in keeping with the employment of a
canonical ensemble. We shall assume, for argument' s
sake, that the pressure is in instantaneous equilibrium
with the density (later we shall point the finger of
accusation at this assumption for yielding the erroneous
results). Under these terms the equation of continuity,
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(2.1), may be written as

t'BPq Bu,

&Bp)z Bx
(4 6)

Details of the simultaneous solution of this equation
with Eq. (4.1) are discussed in Appendix II. One finds
that the second moment of the velocity distribution is

3E2«) = (x—x,o')'u gx

= (2p'*o'i ~*)LV/ )t+l"'t'j, (4.7)

where c, is the isothermal sound velocity, c,'= (BP/Bp) r.
Physically this result is easily understood. The solution
for u can be approximately decomposed into a propa-
gation in the positive and negative directions, with
velocity c„of the disturbance originated at x,p', and
Gaussian spreading about these centers, x;p'~c, t. There
are further terms which represent a crossing of the two
effects but these do not contribute to the second moment.
The term proportional to Pt in Eq. (4.7) arises from the
dissipative spreading, while the term containing the
factor c, t' is due to the nondissipative propagation.

If Eq. (4.7) for the second moment replaced the
analog of Eq. (3.7) in the phenomenological part of the
P calculation then we would have obtained instead of
the final result (4.4) the equation

1 r't' o)
&+'pc't= -I 1—— l(jo"'I "'&&, (48)

UkT~o & t j

1 i'( o)
', pc,'t= -((VaP)'),

i
—1—— id .

VkT
(4.9)

Regarding I' and T as the independent variables we 6nd,

~ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecllar
Theory of Gases awd Liquids (John Wiley 8z Sons, New York,
1954), p. 134.

where the cr/t of Eq. (2.18) has been retained. From the
equilibrium statistical mechanics of the pressure, based
on the virial theorem, "we see that trace J' "' has the
character of a pressure Quctuation. If we wish to be
consistent in employing Eq. (4.1) to describe the time
evolution of average mechanical properties, then we
would predict that as a- becomes large the autocorrela-
tion function (Jo(&&J,&&') does not approach zero but
rather has the coherent part ((VAP)'). The fact that
pressure Quctuations are conserved by the equations of
motion (4.1) and (4.6) is demonstrated in Appendix III.
The short time part of the autocorrelation function may
be considered as giving rise to the viscosity coefFicient P
by the method employed in the initial paragraphs of
this section, so that the remainder of Eq. (4.8) which
must be examined is

by the method outlined in Landau and Lifshitz, " that
the isothermal mean square fluctuation ((AP))' are

k—T(BP/Bt) T or kTpc, '/V. The validity of Eq. (4.9) is
thus con6rmed.

The above argument is, of course, not physically
meaningful, but the mathematical manipulations do
give us an insight into its faults and the reason for not
retaining the BP/Bx part of the hydrodynamic equations
of motion. %hile these equations of motion do appear to
be useful in describing the average spread of a micro-
scopic mechanical Quctuation, in some cases they also
erroneously predict a conservation of the magnitude of
the Quctuation. The difficulty is that the microscopic
variables do not behave like thermodynamic variables in
that they do not tend to drive the pressure to new local
thermodynamic values. Thus the pressure should not be
regarded as in equilibrium with the density, as implied
by the equation of continuity, (4.6), but rather as
remaining uniform as implied by the neglect of BP/Boo in
Eq. (4.1).

S. THERMAL CONDUCTIVITY

The now familiar pattern of dividing a canonical
ensemble into subensembles according to the results of a
measurement is repeated. In this case at zero time the
x position and total energy of a single particle is to be
measured. Typical results of this determination might
be x p and B 'p, where the tilde denotes excess above the
average particle energy; i.e.,

E;o'=E,o' —(E;),

E,=(p,o/2m, )+-; Q V,,

At a time t later measure the excess energy density at
each point in the Quid and take subensemble averages to
determine a quantity E(x,t

~
x;o',E;o').

This average energy satisfies the conservation equation

c(BE/BT)+cu r7E=e i7u —'7 js (5.2)

where c is the concentration in particles per unit volume
The energy Qow, jz, we will assume to be given by the
linear law

jg ———(~/c„)V'E, (5.3)

where c„ is the heat capacity (BE/BT)„, and ~ is the
coefficient of thermal conductivity. Combining Eqs.
(5.2) and (5.3), linearizing in deviations from equilib-
rium, simplifying the vectors by means of the system's
symmetry, and neglecting the nondissipative ideal Quid
term, —pBu, /Bx, yields the diffusion type equation

BE/Bt= (~/cc„) (B'8/B ') (5.4)
I' L. D. Landau and E.M, Lifshitz, Statistical Physics (Addison-

Wesley Publishing Company, Reading, 1958), Sec. 111.Here, too,
the assumption of thermodynamic equilibrium among the Quctua-
tions is made. This may account for the lack of the nonthermo-
dynamic term for this external reaction fluctuation fR. H. Fowler,
Statistical Mechanics (Cambridge University Press, Cambridge,
1955l, p. 755j.
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The boundary conditions are

E(x,0 i
x,p', E;p') = (8;p'/cA, )6(x—x,p'), (5.5)

E(W pp, t
f
x;p', 8;p') =0. (5 6)

Actually, the 6rst condition involves neglect of the
correlation of the energy and position of the other
particles with that of ~. This will be discussed more fully
below.

In analogy to previous sections one finds the second
moment of E to be

Mp &"& = )t (x—x;p')'Edx

x;o' and measuring its energy we ~ould measure the
energy in a macroscopically narrow but microscopically
wide region about x;O'. We could then argue that the
energy correlations decrease in importance inversely
with the width of the region. If we did this, however,
difhculties of particle energy correlation would enter in
the statistical calculation which follows, so it is not clear
that the approximation can be avoided here.

Paralleling the technique of previous sections we may
derive a statistical mechanical expression for the integral
I'") or, equivalently, J~. No assumption about inde-
pendence of particle energy is necessary. We find

a = L1/(2 VkT't) j(Q (x, ,—x;p)'E, ,E,p). (5.12)

=2E,p'~t/c'c„A, . (5.7)

In reassembling the ensemble we weight each suben-
semble with a factor E;0' and its probability of occur-
rence, f"P&(x;p')f(E, p'), integrate over x,p', E;p', and
sum over i, to obtain

The origins of the terms are again easily perceived Lsee
the discussion following Eq. (3.13)].

With the principle of conservation of momentum re-
placed by conservation of energy the method of
Appendix I may be employed to convert a to

I&"=Q E;p'll, &'(1/t, )f(E,p')dx, p'dE;p'
,=i J „ =t 1/(2VkT't) j(t Z(*,E„x.u-,.)j), (5.13)

2zt

C C1&A g '=i -oo
(5.8)

The integral shall be evaluated in an approximation
equivalent to the previous one, namely, independence of
particle energy.

Consider the fluctuations in energy in a canonical
ensemble of systems:

((E—(E))')

=kT'Ec,

E,Pf(&r, P&dRxdPn

~= (1/VkT') (1 p&~&J ~~&)dt (5.14)

where the flow J&"& is given by

Jt"&=—Q r,E,
dt '

a form analogous to Eqs. (4.3), (3.14) and the Einstein
relation (2.14). The thermal conductivity is pro
portional to the mean square x displacement of the
center of energy.

Another transformation may be made by Fq. (2.19)
to yield the autocorrelation expression

+Q Q ~E,E,f&~ P&dR~dP~. (5.9)

If the particle energies are in'dependent, the second term
on the right-hand side may be neglected so that

X (PP l+-,' Q LV(r, ,)1+r,tF,,j
'=& &2m

—( E)lyr, K,
~

—. (5.15)

~
QO

NkT'= —Q ~' (E,p')' f(E,p')dE;p',
c, '=i~

(5 10) The force, F;, has been resolved into pair components

I ~ "& = 2Nk T'ld/c'A, . (5.11)

Previous authors have seemingly circumvented the
explicit neglect of particle energy correlations by a
coarse graining in space."That argument as applied to
the present method would introduce a modification of
technique as follows. Instead of locating one particle at

' For the most complete discussion see Sec. A and the appendix
to reference 9.

F,=QF, ;,

and use has been made of the Newton law

F&~= —C r~V(r, ;)= Vr, V(r;,) = —F,,
The vector separation is defined as r;;=r;—r;. To
achieve identity between Eqs. (5.14—15) and the results
of previous workers' P, r;K; p, must be identifmd with
its spatially averaged value, —(1/N)Q, (PV)p, .
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6. CONCLUSION

The purpose of this work has been to present a
simple, somewhat more pictorial basis for recent theories
of irreversible processes. The transport coeKcients have
been shown to be measures of the average spread with
time of knowledge after the microscopic state of a single
particle has been specified. In the cases studied the,
average transition probabilities followed a Gaussian law. '

Attention was fixed on the second moment which turned
out to be proportional to the transport coeflicient and
the time. The equivalence of these second moment
expressions to the usual forms involving autocorrelation
functions was demonstrated.

The question arises as to whether the second moment
expressions have greater validity than the Gaussian
curves upon which they are based. " Consider the
simplest case, which is self-diRusion. If the Gaussian
distribution for c;, Eq. (2.6), was rigorously valid then
one should be free to characterize it, for example, by the
fourth moment instead of the second. If this had been
done we would have found the expression

D'= (1/»&')&(»')4) (6 1)

which for equivalence with Eq. (2.4) requires that

&(»')')=3D(~ ') )~ (6.2)

Uhlenbeck and Ornstein" have shown that the I angevin
equation implies this result as well as the entire Gaussian
distribution for c; for times j))1/P and distances

(x—x;0')))tt */P where ttts is the friction constant equal
to kT/D, and I * is the x component of some charac-
teristic molecular velocity; i.e. , tt,*=(kT/ttt)'.

There appears to be a further degree of arbitrariness
in our work, the significance of which is not fully
understood. In "reassembling the ensemble" for the
shear viscosity calculation we found that by weighting
each subensemble with p, „o' we avoided an odd inte-
grand which would have yieMed zero. At the time there
appeared to be nothing unique about this manner of
weighting, and yet later we found that this particular
procedure was essential in deriving the mean square
displacement expression, (3.14), and the autocorrelation
equation, (3.17). A similar situation arises in bulk
viscosity, thermal conductivity, and even self-diffusion

(where the weight unity is employed). This does not
imply that there is anything wrong with the final results
but rather that other expressions of the same type may
be valid.

APPENDIX I

This Appendix is devoted to outlining the procedure
which transforms Eq. (3.13) into Eq. (3.14). We begin
with

& =
& Q (Xjt'—2X;oX;,+*,o')P;w, P;„o), (A1.1)

=&K, xo'p op' o) (A13)
&?

+i0 iy0 (A1.4)

follow, respectively, from conservation of momentum, a
canonical transformation, and the evenness of the
distribution function in momentum. Similarly we find

s 1?

&i0 jy t iy0 i0 iy0 ~ (A1.5)

In Eq. (3.14) there appears the factor

N

( 2 (xjtxitPjwtPiwt 2xjtxioPjwtPiwo
i, ?'=1

+x;ox;op; „Op,„o)). (A1.6)
The equalities

(Q xttx tPjw&tP&wt) (Q xjoxioPjwoP&wo)& (A1.~)
?

+i0 iy0 ) (A1.8)

follow by a canonical transformation and the evenness
of the distribution function in momentum. Putting
pieces together it is seen that 3=8.

Since total momentum is not strictly conserved due
to wall interactions we have assumed above that the
correlation of the deviations with the other factors are
either small or short lived.

APPENDIX II

We wish to find a simultaneous solution of Eqs. (4.1)
and (4.6). The zero of pressure in these equations may
be regarded as the constant value at infinite distance
since only derivatives of P' appear. The Fourier trans-
form with respect to x of these two equations may be
written as the one matrix equation

where
88/Bt= Ms,

~tt. (k, t) ~

E Q(k, ~) )

(—k'&P/p ik/p )
M=I

I ipc,ok O )

(A2.1)

(A2.2)

(A2.3)

4 is the transform variable and the German type
denotes transform. The initial condition is

o=
I

Lg(k, o) j (A2.4)

The boundary condition analogous to Eq. (3.4) would be

from Eq. (3.13). The equalities

(Z xjt'p wt p p;wo)=&&* t'pjwtp;wt) (A1.2)

'~ A similar question has been raised by M. Lax, Revs. Modern
Phys. 32, 25 (1960). N, (x,o) =P; 0'8(x—x;0')/PA„ (A2.5)
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so that ci'M
t BM )''

+to~
~ (g e—~km;o')

c)'k c)k ~=o
(A2. 11)11 (k ())—p. s

e' *~o'/pg (A2 6)

The initial pressure condition turns out to be immaterial
for the final result and a reasonable choice is

(2lt/p 0) t'c, 0 ) (p; o'/pA, )
/+t'/

/ / I
(A2»)

& o 0& Eocsj ( o )'$(k,o) =o, (A2.7)

corresponding to uniform pressure initially. The solution
of E . A2. 1 is

APPENDIX III

q ( )
from which Eq. (4.7) follows.

It is easily shown that the second moment is related to
the Fourier transform by

M &&& = (x—x;o)'rt, (x,t)dx

82

fu, (k,t)e *"**o'j's
o

Bk2
(A2.9)

Sy conservation of a pressure fluctuation we mean

that the integral of the instantaneous pressure over all

space is independent of time. To show that Eqs. (4.1)
and (4.6) imply this result we must examine

One Ands that ~c'(x,t)dx=g(o, t). (A3.1)

" (x x;o')'Z(x—,t)dx

82

(g(k t)e "*'o'j-
Bk

The matrix M is zero for k=o so that Eq. (A2.8) ex-

presses the conservation condition in the form $(o,t)
(A2 1()) =$(0,0). (We are no longer assuming that at zero time

there are no pressure fluctuations. )
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Effect of the a Transition on the Atomic Distribution in Liquid Helium by
Neutron Diffraction
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Neutron diffraction patterns for samples of liquid helium at 1.06'K, 2.29'K, and 2.46'K have been
measured over the angular range 4' to 64' using 1.064 A neutrons. The liquid structure factor i(s)+1 was

deduced for each curve and these show a change which is associated with the X transition which indicates
that the spatial order in the liquid is smaller below the X point than above. The measurements were trans-
formed to give the radial distribution function 4rropp(r) —po$ from which was deduced the number of
neighbors under the first shell of atoms and the nearest distance of approach of two atoms in the liquid.
These lie between 8.; atoms and 9.8 atoms and 2.35 A and 2.40 A, respectively.

l. INTRODUCTION

KNOWLEDGE of the atomic distributions,
atomic motions and effective potentials in liquids

is important in the theory of condensed systems. In-
formation about the atomic distribution in liquids can
be obtained from either neutron or x-ray di8raction
patterns while information about the atomic motions

can be obtained from determinations of the change in

energy of inelasticaOy scattered neutrons. Such informa-

tions are of particular importance in the case of liquid

helium because the details of the ) transition have not
been explained and because liquid helium at low tem-

peratures is essentially in its ground state and therefore

the liquid most amenable to theoretical investigations.
Both neutrons' and x-rays' ' have been used to in-

vestigate the atomic distribution in liquid helium while

the excitation curve has been obtained through measure-

ments of the change in wavelength of neutrons inelasti-
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