
P H YSICAL REVIEW VOLUME 118, NUMBER 4 MAY 15, 1960

Surface Transport in Semiconductors
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A transport theory is given for electrons and holes in space-charge layers at semiconductor surfaces. For
diffuse surface scattering, the efkctive surface mobilities may differ significantly from the bulk mobility for
any strength of space-charge layer. Agreement with SchrieBer's formulas is found only for strong space-
charge layers, and the discrepancy is explained. The results are extended to cover an arbitrary degree of
diffuseness of surface scattering and to cover samples of small thickness.

1. INTRODUCTION
' 'T is well known' that it is possible to induce in a
~ - semiconductor a surface space-charge layer con-
taining enough additional carriers to alter strongly the
conductance parallel to the surface. SchrieGer' has
presented a transport theory for this situation, taking
into account the decrease of mobility due to diGuse
scattering from the surface. His treatment follows, in
general, the analyses of Fuchs' and Sondheimer' of
the conductance of thin metal 6lms, but introduces the
additional feature of a space-charge potential into the
Boltzmann equation and into the equilibrium distri-
bution function. In SchrieGer's theory, ' however, the
space-charge potential was approximated by a formula
that suppresses the bulk current. The resulting formula
for the mobility of the induced carriers is then satis-
factory only when they are in deep potential wells at
the surface.

Several attempts have been made to improve on
this theory by taking into account the presence of the
bulk current. Zemel' and Flietner' treated a truncated
linear potential, and Frankl~ treated the Poisson
potential, all for in6nitely thick slabs.

The present paper gives a surface transport theory
retaining the exact Poisson potential, but otherwise
following SchrieGer in the use of constant eGective
mass, constant relaxation time, and nondegenerate
statistics. The case of a thick slab with completely
diGuse surface scattering is treated in Sec. 2. The total
current is shown to consist of a bulk current term plus

' J. Bardeen, Phys. Rev. 71, 717 (1947); W. Shockley and
G. L. Pearson, Phys. Rev. 74, 232 (1948); W. L. Brown, Phys.
Rev. 91, 518 (1953);J. Bardeen and S. R. Morrison, Physica 20,
873 (1954).' J. R. Schrie6'er, Phys. Rev. 97, 641 (1955).' K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).

4 E. H. Sondheimer, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1952), Vol. 1, p. 1.' J. N. Zemel, Bull. Am. Phys. Soc. 3, 255 (1958).

H. Flietner, Ann. Physik 3, 396 (1959).' D. R. Frankl, Bull. Am. Phys. Soc. 4, 179 (1959).

a term containing the product of the surface excess of
carriers and their eGective surface mobility p, z.

This p~ agrees with SchrieGer's result for deep
potential wells, as expected. However, contrary to
what is usually expected, pz may be appreciably less
than the bulk mobility, p, even when the well is shallow
or inverted. The formulas are evaluated for the par-
ticular case of electrons and holes in germanium and
silicon at room temperature and presented graphically.
It is pointed out that in some circumstances p8 is not
a true mobility and that, in fact, it may be negative.

In Sec. 3, the theory is extended to cover slabs whose
thickness is comparable to the electrostatic screening
distance, and whose surface scattering may not be
entirely diGuse.

In Sec. 4, the formulas are discussed. A rough
intuitive argument is presented to describe the main
physical features of the theory. The reader not inter-
ested in the mathematical details of the Boltzmann
theory may get most of the physical picture from this
section.

2. BOLTZMANN THEORY FOR THICK SLABS

We consider a slab whose thickness 2d is much
greater than the electrostatic screening distance'
LD (skT/8s. e,e') l. If an electric field E, is induced
normal to the surface s=0 the resulting equilibrium
electrostatic potential sr, (in units of kT/e) goes from
the surface value uq at 2'=0 to the bulk value u~ for
s))LD. Measuring the potential relative to the intrinsic
Fermi level, the variation in u is related to the variation
of the carrier concentrations by

N=e;e", P=n, e ".
Schrieffer' shows that the Boltzmann equation (in

the ohmic approximation) for the electron distribution
function f in the presence of a small uniform electric
field E„parallel to the surface, can be readily solved

s W. Shockley, Bell System Tech. J. 28, 435 (1949).
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xB

generates fi at all accessible interior points of the
domain, viz. , the shaded regions of Fig. 1.

Thus, an additional b.c. is needed for the unshaded
regions, ' and here we set

p (a) fi(-v*s) =fii (2 5)

VI
UB-"S

Vzg

Fzo. i. Domains of
solutions of Boltz-
mann equation; (a)
for electrons at-
tracted to surface,
(b) for electrons re-
pelled from surface.

where v,& is the s velocity of electrons in the bulk with
"energy" given by

v=mv, ss/2kT, v,s&0. (2.6)

This condition, which is consistent with (2.3), requires

fi to approach, as z~d, the distribution function
given by the theory of bulk mobility.

The solution of (2.2b) satisfying (2.5) and (2.3) is

(2.7a)

p (b) where, for ug&ug,

k= expL —E(v„v,s)j for v&0, (2.7b)

k = expL —E(v„v,s)] for v& 0 and v, &0, (2.7c)

for v& 0 and v.&0, (2.7d)

(2.2a)i (z,v,)=mv, /ksT —(u —us).

by transforming from ordinary (z,v,) space to a (v,v,)
space where k= expL E(v„v—,s) j for i &us —us

and v,&0, (2.7e)

where

The Boltzmann equation then takes the form h=0

(B/Bv.)fiex= fir(B/Bv, )e, (v= const), (2.2b)
k=0 for v&up —ua. (2 7g)

for v&ug —ug
and v, &0, (2.7f)

fi=f fp-
fp rs, (m/2rrk T)——1 exp (u mv'/2—k T),

fir= erE,v,fp/—kT,

(2.2c)

(2.2d)

(2.2e)

The behavior of fi near the other surface z=2d is
easily gotten from (2.7) by symmetry arguments.

The electron current density and the electron current
in a unit strip are

E=E(v„v,i) = —~ mdv, /erE„(a=const). (2.2f)
&zl

(2 8)

We adopt, with Schrieffer s the b.c. (boundary
condition) of random surface scattering at z=0 (a
more general condition is used in Sec. 3)

(2.3)

=2sE.Isla„(m/2irkT)l dz
~0

where e,q is the s velocity of electrons leaving the
surface s=0 with "energy" v given by

v =mv, s'/2kT (us —us), vms& 0—(2.4)

However, (2.3) does not determine fi completely. For
electrons not bound in the surface potential well an
additional b.c. is needed. The reason for this may be
seen as follows: The domain of integration of (2.2b) is
the strip in the (v,v,) plane bounded by the parabolas,
Eq. (2.2a), for z=0 (u=us) and z=zs (u=us), shown
in Fig. 1. Equation (2.3) fixes fi everywhere on the
locus of v,s (heavy lines in Fig. 1) and integration of
(2.2b) along contours v= const (vertical lines in Fig. 1)

X dv, (1—k) exp( —v), (2.9)

where li =er/m is the bulk mobility. The first term of
(2.9) may be integrated once directly, and the second
term may be integrated once after transforming the
integration variables to (v„v). Note that the trans-
formation Jacobian is ( kTIJ. /e) (BE/Bv,)—and that'
E(v,s,v, s) = ~. After some manipulation one finds

I„=2eE esy, „(d Xt„) 2eE,Ij„shN, (2.10a—)—
9In Schrieffer's approximation, only the accumulation layer

for electrons is treated, and the parabolic strip is of infinite width,
so that no additional b,c. is needed.
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where

ds (e—ns) (d—+m)

where
&S B

(2 1()b) 2E = —(Lr»/)» )7r ) d(&N)(&u+v) 1/F&0.
—V

(2.13c)
is the surface excess of electrons, ' "

X„=7 (kT/2s. ns) & (2.10c)

Kingston and Neustadter" have given a convenient
graphical solution of the Poisson equation for surface
space-charge situations such as the present one (i.e.,
uniform donor and acceptor concentration, complete
ionization, nondegenerate statistics):

(eLr»/k T)E,=F(ag,gs) = F( AN—, —N—s), (2.11a)

where

F(b,e,gs) = 2 sinh

"""'"-'"1'
X icoshls 1+tanhls (2.11b)

coshAu —1

and hu=u —u~. The surface excesses of electrons and
holes are then expressed as

DN=ri, LDG( —Ns, —Ns), (2.12a)

where
AP = tl,Lg&G(Ns, Qs), (2.12b)

Q»S—'gB

G(—ss» —Qs) = e+"s ~ d(AN) (ea —1)/

F(AN, us). (2.12c)

Using these solutions of Poisson's equation we may
re-express (2.10) as

p~s/IJ ~= 1—
e (e)/ L)o

[e~s-~s 1
G(—Ns, Qs)

(Is&ms), (2.13a)

e"»»()»„/Ln)
IJns/IJ~= 1—

ii dve "(1—e'x")
G(—ss» —Ns) ~us —»»s

(Ns) ms), (2.13b)
'0 R. H. Kingston and S. F. Neustadter, J. Appl. Phys. 26, 718

(1955)."C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376
(1955).

is a thermal mean free path, and p„q is the effective
surface mobility, given by

p„s=li„[1—(X„ns/AX) (e" s"s 1)—], r», s&Ns, (2.10d)

( )I.„es
u.s=p.

i
1—

I
e "(1—e' i"*''l)dv

I»)Ag ~ ug —ug

The corresponding formulas for p,„s/p„ for holes may
be obtained from (2.13) by replacing Ns and us by—Ns and —us, respectively, v by —v in (2.13c) and
rs by P, throughout.

We have evaluated p„s/p„and p„s/p„numerically
for a range of values of uq and ug for germanium and
silicon. Using the data compiled by Conwell" for the
conductivity effective masses and drift mobilities of
I-Ge and n-Si one finds (at 300'I)

LD/X,„=33.3 (Ge), = 2270 (Si).

Also we use

LD/X», &=54.8 (Ge), =4610 (Si) (heavy holes),

LD/X, i= 18.3 (Ge), (light holes).

Here we obtained the mobilities of the light and heavy
holes in germanium from the formula

~.= (Psu"+Pil .i)/(Pi+Ps) (2.14)

using the ratio p,/p, =0.0423 given by Lax and
Mavroides" and using the ratio @~i/p, s ——8 estimated
from the magnetic field dependence of the Hall co-
efBcient by Willardson, Harman, and Beer'4 and from
magneto-surface experiments by Zemel and Petritz. "
The corresponding situation in silicon is somewhat
obscure, but we provisionally represent p-type silicon
in this calculation by neglecting the light holes.

Programs for evaluating ps/p numerically from (2.13)
have been written by Thomas" for an IBM 704 com-
puter and A. Brown" for a Bendix G15D computer.
These results are presented in Figs. 2-6 in a somewhat
unconventional form, suggested by Brattain, " that
minimizes the amount of interpolation needed to
obtain the usual plot of ps/p vs Ns for arbitrary values
of u~. The latter is illustrated in Fig. 7 for light holes
in germanium at 300'K.

The values of LD/X in Figs. 2—6 cover a sufficiently
broad range that most practical cases can be handled
by interpolation with respect to this parameter, re-
membering to change the signs of ug and u~ whenever
the sign of the carrier charge is changed.

3. THIN SLABS

We now consider a semiconductor slab having
surface charge density or on both faces, counterbalanced

"E.M. Conwell, Proc. Inst. Radio Engrs. 46, 1281 (1958).
»3 B.Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1955).' R. K. Willardson, T. C. Harman, and A. C. Beer, Phys. Rev.

96, 1512 (1954).
~ J. ¹ Zemel and R. L. Petritz, Phys. Rev. 110, 1263 (1958).
E. G. Thomas, U. S. Naval Ordnance Laboratory Report

NAVORD-6754 (unpublished).
'7 A. Brown (private communication).
'8 W. H. Brattain (private communication).
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Fro. 3. Surface mobilities of electrons with LB/X=33.3, e.g. , electrons in germanium at 300 K.

(1—w„) exp[—E(v„—v, s)+2E(v, s,v„)]
h =

1—w„exp[2E(v, s,v,d)]

puted as in Sec. 2, resulting in an expression similar to
(2.10a)»

f &I ~ (0 (3 4d)
I„=eE,esIJ, „[2d 2X„(1—w„)—]+2eE~p~shd1Y, (3.5a)

and, for Is&la

h =0 for v& Q~ —Q8, (3.4e)

where

ds(rs —rrs),(1—w„) exp[ —E(v„v,s)]
h„=

1—w„exp [2E(v,s,v,d)j
(1—w„)X„NB (

fol v&NB +s& vs&0, (3 4f) P~@fr'~= 1
I

e'"s " ' —1
~.x

(3.5b)

(1—w„) exp[ —E(v., v.s)+2E(v.s,v:)—]h„=—
1—w„exp[2E(v, s,v,d)]

for v & NB Ns, v,(—0. (3.4g)

The everpresent factor (1—w„) in h„serves as a re-
minder that h describes the momentum dissipation
by the surface scattering mechanism. The modulation
of this dissipation by the surface electric field is less
apparent but can be seen to occur via the functions E.

The current (per unit strip of y direction) is com-

"' dv exp[ —v+2E„(v,s,0)]—(1—w„) '

B B 1—w„exp[2E„(v,s,0])

dv exp[ —v+2E„(v,s,v,d)]q—(1.—w„)
1—w„exp[2E (vms, vied)] ~

Ns& us, (3.5c)
' Note added in proof: When X„&d and b,qN~O one can show

that p,„,DION remains Qnite and I„remains positive.
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FIG. 4. Surface mobilities of holes with Lz&/X=54 8, e.g. , heavy holes. in germanium at 300'K.
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FIG. 6. Surface mobilities of holes with Lo/X=4610, e.g. , holes in silicon at 300'K.

(1—w„)X„es (
s/& 1~—s("s—~s) —1

AglV

dv expL —v+2K„(e,s,e,a)])
& s —s 1—ts„expk2E (&.s,&*d)j ~

When

these formulas simplify somewhat because then

—2E(e,s,tt, q)))1,

(3.6a)

(3.6b)

Ns(gz. (3.5d) except for the few electrons having v))1. Equation
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(3.5) then yields

t
"a-"'dv expt —v+2E„(v,s,0)])

&
&&&&

—»s 1 w&& exp)2E&&('vgs&0) j

(1—w„)X„na=1- (e(»s &&» —1 )

for us& ua, (3.7a)

for us& ua. (3.7b)

was (1—u&„)),„na f=1—
~

e~"s-"»—1
Age

where
AN

F(lou&ug&ua) = 2 slIlh coshug 1+tanhus

t&'sinhAu —Au(sinhua/sinhug) )
xi (3.9b)

cosh~I —1
~ ~

This is a somewhat more cumbersome calculation than
that for a thick slab inasmuch as some preliminary
numerical calculation is necessary here even to get Nz
and Nd. These are determined from the auxiliary
formulas

du/F (Au, ug, ua)
&

(3.10)

These formulas may be written in a form analogous
to (2.13) if we extend the formalism of Kingston and
Neustadter" to cover the electrostatistics of slabs of
6nite thickness. The solution of Poisson's equation now
has to satisfy the symmetry condition

and (Gauss' law)

F(hsu, ud, ua) =co/2n, eLD (Asu= us ua), (3.11)—
where co is the surface charge density on each face.
The analog of (2.12) for the electron and hole excesses is

E =0 at sd. (3.8)
ds (n na)—

The electric field E, is then given by

F(rfu, ud, ua) =ATE./eLa
F( au, —ug, —ua), (3.9—a)—

=n;LDG( us, —
ud&

—ua),—(3.12a)

+&fF ds (p pa) = n;LaG(us, uv, ua), (3.12b)
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where

G(—us, —ue, —ua)

Hence, the bracketed factor in (4.1) becomes

p s=p„L1—(li/2L) (1—e 'z~")]. (4.2)

„s—a d(hu) (expgu —1)
(3.12c)

F(au, ud, ua)

The Boltzmann result (2.13b) can be identified as a
suitable energy average of (4.2) by rewriting (2.2f) in

the form

Using (3.12), we find analogs of the thick slab formulas

(2.13):
E„(i.s,o) =— t

z&"& ds L(v)
(4.3)

(1—w„)e a(X„/La)
~~s/v~=1 — e" s a—1—(1——u„)

G( us~ —ue, —ua) I

""dv exp( —v+2E„(it,s,0)]
X

~ +B &s 1 ie„exp(2E„(vms 0)]

(d))X„, us& ua), (3.13a)

(1—vr„)e a(X„/LD)
y.s/p. =1— Le"s- —1]

G( —us, ue) —ua)

(d))&., us& ua). (3.13b)

Here E„ is as defined in (2.13) except that F(hu, ua)
is replaced by F(du, ue, ua). The corresponding formulas

for holes are obtained by the same process as in the
thick slab case, described after formulas (2.13).

4. DISCUSSION

The formulas derived in Sec. 2 can be made plausible

by the following rough arguments. Consider a slab of
thickness 2d with electron concentration ng and, oo
each face, a square potential well of width J having
additional concentration An. The eGect of the surface

scattering can be represented as producing a "stagnant
layer" at each face. For the bulk carriers, not confined

in the well, the thickness of this layer should be of the
order of the bulk mean free path A, , whereas for the
excess carriers, confined in the well, the layer will have
some other thickness l, to be determined. The total
electron current per unit strip will than be

I„=2eF.,asap (d —h)+2eE, (LAe) p„(1—//L), (4.1)

which essentially agrees in form with Kq. (2.10a). Now,
as an estimate, we set l= gJ, where g is the probability
that the electrons in the well collide with the surface
rather than in the bulk. For all the electrons starting
at depth s, this probability is

-,'exp( —z/X)+-,' expL —(2L—s)/li],

and, averaging over s, we find

g = (li/2L) P1—exp (—2L/li) ].

The foregoing treatment, though instructive, suGers
from the defect of relaying on an artificial separation
of the carriers into two sets. Actually, the surface
mobility formula includes not only the current con-
tribution of the excess carriers, but also an alteration
of the mobility of the bulk carriers brought about by
the bending of their trajectories toward or away from
the scattering surface. The competition between these
two effects may be seen if we rewrite p„8 in the form
(Appendix A)

pns ~~no t

dv e "Le'x"—2E„—1]
I& ua —us

+2
Jo

ds f e*a
(4 4)

for electrons when u8&u&. The first term is always
positive, while the second is negative because v, &~,g
when u8&u~. It is the latter term that is responsible
for the sharp decrease in p„q when uq —u~, apparent
in some of the curves of Fig. 7. If JD is sufFiciently
small, it is even possible for p„g to become negative
when the bands are nearly Oat.

Although the formulas for depletion di8er from those
for accumulation, p ~ is a continuous function of ug
at ua=ug. The limiting value is

p.s/p. =1- (ua ——us).
La/ (cosliua) l

(4.5)

Noting that the true bulk screening distance is
La (cosliua), it is clear that the flat-band surface
mobility becomes negative when the bulk screening
distance becomes less than A. , so that the space-charge
region is narrower than the "stagnation layer. " In
such cases p z is not a true mobility. In fact a strict
local proportionality between current density and field
does not exist when the field varies appreciably within
):instead the current density at a point is inQuenced

by the field strength at all points within a few mean
free paths.

APPENDIX Ae ALTERNATE FORM OF Pisg

Integrating both terms of (2.9) in the (v„v) co-
ordinate system one finds, for u8&u&
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In 28E+SgPnhn becomes

I„=2eE,rttsts„(d X„—)+2eE,I3.Xtt „

dv e "$e ~"&" "'&+2E„(uzttyuee) 1—j j. (A.1)

x t'
dv e

—"Le'~.—2E„—1)

E„(v,tt, v, s) =—

t
"ds rtt. tt —n, q

t+2 ' dv e " -—
~

— ~, (A.4)
~ s r ( 'vzvett )

I

"*srttdu, =
J

ds/~ve (A.2) from which (4.4) follows.~..~ e~Z,

ds rve —'vettp

rvzB 40 r ( verhB
(A.3)

Thus, for d&)X„, the first term of the second integral in
(A.1) vanishes, and, noting that v=rrtv, tt'/2kT, (A.1)
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Zeeman Effect of Impurity Levels in Silicon*

SQLQMoN ZwERDLING, KENNETH J. BUTTQN, AND BENJAMIN LAx
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Completely resolved Zeeman spectra for the bismuth donor in silicon including optical transitions from
the 1s donor ground state to the excited states 2po, 2p+, 3po, 4po, 3p+, 5po, 4p+, and 5P+ are presented. The
transitions were observed at liquid helium temperature, using linearly polarized radiation alternately parallel
and perpendicular to the magnetic 6eld, and 6eld intensities up to 38.9kilogauss oriented along each of the three
principal crystallographic axes. Both linear splitting of the p+ states and a quadratic dependence on 6eld
were observed. The use of impurity Zeeman spectra is demonstrated for evaluating effective mass param-
eters, determining the nature of energy bands and 6nding and identifying impurity excited states. The
transverse effective mass for the electron in silicon was found to be (0.186+0.006) mo in agreement with
recent cyclotron resonance results. From Zeeman splitting, electron effective masses up to 0.5 mo can be
measured to within &-,% at infrared frequencies in a field of 40 kilogauss. The behavior in a magnetic field
of the first two donor excited states could be explained by treating the magnetic terms of the Hamiltonian
as a perturbation to 6rst order. Interactions among the higher closely-spaced Zeeman levels were observed
above 20 kilogauss and were evaluated with a second-order treatment. The Zeeman structure for the alumi-
num acceptor reflected the complexity of the valence bands and the acceptor ground state and was in quali-
tative agreement with the theoretical results of Kohn and Schechter. Transitions were observed to eight
excited states converging to the series limit. Evidence is given for the degeneracy of each state.

I. INTRODUCTION

' 'T has been realized that measurement of the Zeeman
~ ~ effect of the excited states of the monovalent donor
and acceptor impurities in semiconductors offers a
means of studying the energy band structure and the
effective masses of carriers. Theoretical evaluation' '
of the linear Zeeman eGect for donors in Ge and Si had

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.' B. Lax, R. D. Puff, and W. H. Kleiner, Bull. Am. Phys. Soc.
3, 31 (1958).' R. R. Haering, Can. J. Phys. 8, 1161 (1958).' B. Lax, L. M. Roth, and S. Zwerdling, J. Phys. Chem. Solids
8, 311 (1959).

indicated that the Zeeman splitting should be resolvable

by spectroscopic techniques. For germanium, a linear
splitting for the transition 1s —+ 2p~(nt= &1) for
both As and P impurities was reported by Fan and
Fisher, ' and similar measurements in the far infrared
region were also reported by Hoyle' for As impurity.
Transitions from the ground state to quantized mag-
netic levels in the conduction band were also observed
and the eGective mass of the electron was determined.
For silicon, both linear and quadratic Zeeman eGects
were observed for the bismuth donor' and a preliminary
Zeeman spectrum for Si(Bi) was presented by Zwerd-

4 H. Y. Fan and P. Fisher, J. Phys. Chem. Solids 8, 270 (1959).
~ W. S. Boyle, I. Phys. Chem. Solids 8, 321 {1959).


