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In their theory of superconductivity, Bardeen, Cooper, and Schrieffer made use of a reduced Hamiltonian
which included only scattering of pairs of particles of opposite momentum and spin. It is shown that the
solution they obtained by a variational method is correct to O(1/#) for a large system. The single particle
Green’s function is derived and used to calculate the interaction energy.

IN Ttheir theory of superconductivity, Cooper,
Schrieffer, and one of the authors! made use of a
reduced Hamiltonian which included only scattering
of pairs of particles of opposite momentum and spin.
They suggested that the solution obtained by a vari-
ational method might well be correct to O(1/#) in the
number of particles, #. They showed in particular that
(Hyea?) differs from (Hyea)? by O(1/n) for p=2,3 and
very likely for p<<n, where the averages are taken with
respect to the variational wave function for the ground
state. If this were true for all p, the energy would be
exact. Anderson? showed that the reduced problem is
analogous to one of a system of interacting spins and
gave a physical argument, based on the correspondence
principle, which also indicated that the solution is
correct to O(1/x). Particularly because the validity of
the solution has been questioned, we thought it desirable
to give a direct proof based on the structure of the wave
functions. We also derive the single particle Green’s
function for the system and use it to calculate the
energy of Hpq from an expression given by Galitskii
and Migdal.?
The reduced Hamiltonian may be written in the form:

Hrea=2 1,0 (exFu)roe*cxot 2, Viwbi by, 1)

where cx,* is a creation operator for a particle in a state
of wave vector k and spin ¢, bx=c_xicxt destroys the
pair k= (k¢, —k{) and ey is the Bloch energy measured
from the Fermi energy, u. For simplicity we assume
that the interaction Vg =V is real. The ground-
state wave function ¥o of Hyeq is a linear combination
of configurations in which the single particle states are
occupied in pairs of opposite momentum and spin.
Following BCS it is convenient to decompose ¥, into
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parts with definite occupancy of a particular pair, k:
Wo=ubi* pox (n—2)+vkpox(n), 2

where #2=1—1,2=A(k) is the probability of occupancy
of k. Here ¢ox(#) is a function of # particles in which
the pair k is not occupied.

The functions ¢ox may be further decomposed into
parts with definite occupancy of some other pair k’:

Dok (n) = ukk’bk* Pokk’ ("— 2)+'Ukk' Pokk’ (n) (3>

This function is similar to ¥, except that it contains no
configurations in which the pair k is occupied. To terms
of O(1/n), the coefficients of this second decomposition
must be independent of k and the same as those in (2),
ie.,

ukkr=uk:-|—0(1/n), (4a)

v =0 +0(1/n). (4b)

This is true because the occupancy of k' depends on

_the interaction of pairs in k’ with all other pairs, and

can be changed only to O(1/#) if configurations with
one pair state, e.g., k, are omitted. In the BCS solution,
there is no correlation between the coefficients of the
first and second decomposition, which corresponds to
omitting the terms of O(1/%) in (4). The interaction
energy to this order is:

U=Z (Ol kafbkl*bk[())
=3 Viw[wxvsmve+01/n)]. (5)

As the size of the system is increased, keeping the
particle density constant, the matrix element Vi is
inversely proportional to volume and thus to #, so that
the total interaction energy is proportional to ». The
terms of O(1/n) would contribute only a constant
energy, independent of volume.*

To calculate the Green’s function,® we need the

41t should be noted that a similar argument cannot be applied
to the complete Hamiltonian. There are then #? interaction terms
and errors of O(1/#) can pile up to give a correction proportional
to #. In fact, almost the entire normal-superconducting transition
energy comes from the interaction terms in Hreq, and these contain
only O(1/n) of the total interaction.

5The Green’s function for Hreq has been derived by others,
e.g., L. P. Gorkov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 735
(1958) [translatlon Soviet Phys.—JETP 34(7), 505 (1958)], by
use of wave functions with variable numbers of particles. It is
believed that the present derivation is new.
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matrix elements of c¢x,* and ¢y, which connect the
ground-state ¥q of # particles with excited states of
n+1 and #—1 particles, respectively. The excited
states of interest are what are called. single particle
excitations in BCS and consist of linear combinations
in which one state of a given pair is occupied in all
configurations and the other is not. Thus, we shall
denote by ¥(ks, n+1) an excited state of a system of
n—+1 particles in which ke is certainly occupied and
the remaining particles are in ground pair configu-
rations. It should be noted that there are no terms in
H.q which scatter an electron in a singly occupied
state. It is this fact which makes possible the deter-
mination of the excitation energies and matrix elements
to O(1/n) from the structure of the wave functions
without use of a perturbation or diagram expansion.

We shall use Lehmann’s expression for the mo-
mentum-energy representation of the single-particle
Green’s function in a form given by Galitskii®:

® ot(kE) p(kE)
G(ke)=
(e j; dE(E—-—e—i& E+e—ia)’ ©)

where pt(k,E) and p~(k,E) are defined by
P+(k’E)dE=Zk[ (k: n+1l6k*[0) lZ!

E<Ey<E+dE; (7a)
o~ (k,E)dE=3 x| (k, n—1[cx]0) |2,
E<Ey<E+dE. (7b)
The single particle energies, Eyx are defined by?®
Ex=W(k, n4+1)—Wo(n) —pu, (8a)
E=W(k, n—1)—Wo(n)+u, (8b)

in which Wk, n=1) are energies of ¥(k, #x1) and
W is the ground-state energy of Hed.
To terms of O(1/%),

¥ (kt, n+1)=cxr* pox(n),
U (kt, n—1)=c_xs pox(n), )

so that the matrix elements are

(kt, n+-1]cr*|0) =ux=[1—h(k) ]},  (10a)
(kt, n—1]c_xt| 0) =vi=h(k)%. (10b)
Thus . K
1—4 h
G(k,e)= ® ® (11)

Ex—e—id Exte—id
The energies Wo(n) and W (k, #+1) may be expressed

6 Our Fy is identical with E, of Galitskii (reference 3).
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in the form:
Wo(’ﬂ)=W0k(%)-|—2€kh(k)+Uk, (12)

W(k, n—]—1)=W0k(n)—|—ek+,u. (13)

Here Wk () is the energy corresponding to ¢ox(#) and
is what the ground-state energy of the system would be
if the state k were omitted from the Hamiltonian. The
last ‘two terms of (12) represent the contributions of
the kinetic energy and of the interaction energy Ux
from the pair state k to W,. The expression (13) follows
because the singly occupied state k cannot contribute
to the pair interaction energy of Hra and the Fermi
energy u is unchanged to O(1/#) if one particle or one
state is added or subtracted from the system. From
(8) we find

Ek'— €Ex= —Zékh(k)—Uk (14)

The explicit expression for Uy is
Ur= 0]|ZxViwbe*betZw Vi rbi*bi | 0)
=22V [h(QA—B)K 1—K)+0(1/n). (15)
Another expression for Uy can be obtained from the

equations of motion for G, or, perhaps more directly,
for ¢x. For a pair interaction,

U=[0] (H,ex*)cxc—cx™ (H ,c1) — 2 (ex+p) ox*cx [ 0]
= [0 | Hck*ck— 2cx*Hex+cx*eH

- Z(Ek—l—u)ck*Ck ! 0:] (16)
For our case, this reduces to
Ux=h(&)[2W—2(Ex—p+Wo)—2(ex+n) ]
= —2(ex+Ex)h (k). an

The same result may be obtained by an expression
derived by Galitskii and Migdal® for pair interactions
in terms of the Green’s function:

7
k= €— €x k,é €.
— fc (e— )Gk, e)d (18)

The integral is over a contour C in the complex e plane
which consists of the real axis and a semicircle over the
upper half-plane.

By combining (14) and (17), we get the same relation
between Ey and (k) that was found by BCS from their
variational method:

h(k)=3[1— (ex/Ex) . (19)
Finally, from (14), (15), and (17), we obtain an
integral equation for %(k) which is the same as Eq.
(2.33) of BCS.
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