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Ground-State Energy and Green's Function for Reduced Hamiltonian
for Superconductivity*
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In their theory of superconductivity, Bardeen, Cooper, and Schrie8er made use of a reduced Hamiltonian
which included only scattering of pairs of particles of opposite momentum and spin. It is shown that the
solution they obtained by a variational method is correct to O(1/I) for a large system. The single particle
Green's function is derived and used to calculate the interaction energy.

'N their theory of superconductivity, Cooper,.. SchrieGer, and one of the authors' made use of a
reduced Hamiltonian which included only scattering
of pairs of particles of opposite momentum and spin.
They suggested that the solution obtained by a vari-
ational method might well be correct to O(1/I) in the
number of particles, e. They showed in particular that
(Hree&) differs from (P„e)& by O(1/rt) for p=2, 3 and
very likely for p« ts, where the averages are taken with
respect to the variational wave function for the ground
state. If this were true for all p, the energy would be
exact. Anderson' showed that the reduced problem is
analogous to one of a system of interacting spins and
gave a physical argument, based on the correspondence
principle, which also indicated that the solution is
correct to O(1/st). Particularly because the validity of
the solution has been questioned, we thought it desirable
to give a direct proof based on the structure of the wave
functions. We also derive the single particle Green's

function for the system and use it to calculate the
energy of II„d from an expression given by Galitskii
and Migdal. '

The reduced Hamiltonian may be written in the form:

parts with definite occupancy of a particular pair, k:

@p= ttkbk*topk (st—2)+ ok q sk(N), (2)

where stks = 1—eks ——h(k) is the probability of occupancy
of k. Here bosk(st) is a function of tt particles in. which
the pair k is not occupied.

The functions qol, may be further decomposed into
parts with definite occupancy of some other pair k':

bosk(st) Nkk'tk pekk'(I 2)+t'kk"pskk'(st) ~ (3)

This function is similar to 0'0 except that it contains no
configurations in which the pair k is occupied. To terms
of O(1/n), the coeKcients of this second decomposition
must be independent of k and the same as those in (2),
i.e.,

(4a)

(4b)

Nkk~ =Nk~+O(1/rt),

ckk. = sk.+O(1/n).

This is true because the occupancy of k' depends on
the interaction of pairs in k' with all other pairs, and
can be changed only to O(1/rt) if configurations with
one pair state, e.g. , k, are omitted. In the BCS solution,
there is no correlation between the coefFicients of the
first and second decomposition, which corresponds to
omitting the terms of O(1/I) in (4). The interaction
energy to this order is:

JJr~=Zk, .(ek+tt)ck. *ck.+Q Vkk &k *erik, (1)

where cl„*is a creation operator for a particle in a state
of wave vector k and spin o, bk=c ktckt destroys the
pair k—= (kt, —kg) and ek is the Bloch energy measured
from the Fermi energy, p. For simplicity we assume
that the interaction Vl, l, = Vl, l, is real. The ground-
state wave function %o of II„d is a linear combination
of con6gurations in which the single particle states are
occupied in pairs of opposite momentum and spin.

Following BCS it is convenient to decompose 40 into
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U —Q (o~ Vkk4*&k~0)
=g Vkk pttksklk t k +O(1/rt) $. (5)

As the size of the system is increased, keeping the
particle density constant, the matrix element Vt, k is
inversely proportional to volume and thus to e, so that
the total interaction energy is proportional to n. The
terms of O(1/I) would contribute only a constant
energy, independent of volume. 4

To calculate the Green's function, ' we need the

4 It should be noted that a similar argument cannot be applied
f to the complete Hamiltonian. There are then n2 interaction terms

and errors of O(1/g) can pile up to give a correction proportional
to n. In fact, almost the entire normal-superconducting transition
energy comes from the interaction terms in H„d, and these contain
only O(1/n) of the total interaction.

'The Green's function for II„d has been derived by others,
P e.g. , L. P. Gorkov, J. ExptL Theoret. Phys. (U.S.S.R.) 34, 735

(1958) [translation: Soviet Phys. —JETP 34(7), 505 (1958)7, by
use of wave functions with variable numbers of particles. It is
believed that the present derivation is new.
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matrix elements of c~,* and c~, which connect the
ground-state Co of e particles with excited states of
n+1 and n—1 particles, respectively. The excited
states of interest are what are called. single particle
excitations in BCS and consist of linear combinations
in which one state of a given pair is occupied in all
configurations and the other is not. Thus, we shall
denote by 4'(ko. , n+1) an excited state of a system of
n+1 particles in which ko is certainly occupied and
the remaining particles are in ground pair configu-
rations. It should be noted that there are no terms in
B„& which scatter an electron in a singly occupied
state. It is this fact which makes possible the deter-
mination of the excitation energies and matrix elements
to O(1/n) from the structure of the wave functions
without use of a perturbation or diagram expansion.

We shall use Lehmann's expression for the mo-
rnentum-energy representation of the single-particle
Green's function in a form given by Galitskii':

( p+(k,E) p (k,E) ~

0p t E e—ib E—+e ibJ—
where p+(k, E) and p (k,E) are defined by

p+(k, E)«=+qi (k, n+1[cq*i0) i',
E&E&&E+dE; (7a)

p (k,E)«=K~I(» n —1lc~l0) I'
E&Eg&E+«. (7b)

The single particle energies, E~ are defined by'

in the form:
Wp(n) =Wpg(n)+2ei, h(k)+Up, (12)

W(k, n+1) =Wpg(n)+eg+p. (13)

Here Wpq(n) is the energy corresponding to gpss(n) and
is what the ground-state energy of the system would be
if the state k were omitted from the Hamiltonian. The
last two terms of (12) represent the contributions of
the kinetic energy and of the interaction energy U&

from the pair state k to Wp. The expression (13) follows
because the singly occupied state k cannot contribute
to the pair interaction energy of II„z and the Fermi
energy p is unchanged to O(1/n) if one particle or one
state is added or subtracted from the system. From
(8) we find

Et, eg = —2e—gh(k) —Ug. (14)

The explicit expression for V~ is

U, —(0~Z, .V» b,.*b,+Z, V~,b, b, ~0)
= 2Z&.V».Lh(1 —h)h'(1 —h') j&+O(1/n). (15)

Another expression for U~ can be obtained from the
equations of motion for G, or, perhaps more directly,
for c~. For a pair interaction,

U~ ——$0) (H,c~*)clr cg (H, cJr) —2(ej,+p)cj,*cg~0j
= $0

~
Hey Ctr 2cg Hcg+—Ck CtH

—2(e.+p)c.*c.I03 (16)

For our case, this reduces to

Ug ——h(k) $2Wp —2 (Eg—p+ Wp) —2 (eg+p) 7
= —2 (et,+Eg)h(k). (17)

Eg——W(k, n+1)—Wp(n) —p, ,

Eg W(k, n 1) ——Wp—(n)+—p,

(Sa) The same result may be obtained by an expression
derived by Galitskii and Migdal for pair interactions
in terms of the Green's function:

in which W(k, n&1) are energies of @(k,n+1) and
8'0 is the ground-state energy of B„z.

To terms of O(1/n),

z

Ug ———"(e—eg) G(k, e)de.
2&~c

Thus

(kg, n+1[cgt*[0)=ng ——P1—h(k)ll,

(kt, n —1~c qt~0)=v~ ——h(k)i.

1—h(k) ()
G(k, e) =

Eg e tb Eg+e sb

@(ki', n+1) = cj,t*q pg(n),

@(kf, n —1)=c ~tips~(n),

so that the matrix elements are

10b) h(k) =-', L1—(e ~/Et, )). (19)

Finally, from (14), (15), and (17), we obtain an
integral equation for h(k) which is the same as Eq.
(2.33) of BCS.

The integral is over a contour C in the complex e plane

(9) which consists of the real axis and a semicircle over the
upper half-plane.

By combining (14) and (17), we get the same relation
between Ej, and h(k) that was found by BCS from their

(

variational method:

The energies Wp(n) and W(k, n+1) may be expressed

Our Eq is identical with E, of Galitskii (reference 3).
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