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Surface Impedance of Superconductors*
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A detailed calculation of the surface impedance of superconductors is given based on the gerieral theory
of the anomalous skin effect in normal and superconducting metals given by Mattis and Bardeen. It is
found that there are large corrections to the extreme anomalous limit value of the superconducting to
normal surface resistance ratio; corrections to the surface reactance ratio are much smaller. The theory
is compared with recent experiments on the surface impedance of aluminum and of tin. It is found that
the theory gives satisfactory agreement with experimental data on the surface impedance, both in absolute
value and in its temperature and frequency dependence over a wide range of temperatures and frequencies.

HERE has been a large amount of recent experi-
mental work on the surface impedance of super-

conductors, with special emphasis on Al and Sn.'—8 The
Sardeen-Cooper-Schrieffer theory of superconductivity'
has shown good quantitative agreement with many of
the experimental properties of superconductors and it
is of some interest to extend this quantitative agreement
to the surface impedance. Mattis and Bardeen, and
independently Abrikosov, Gorkov, and Khalatnikov
have derived a general theory of the anomalous skin
eGect in normal and superconducting metals based on
the BCS model of the superconductor. '~I2 In this paper
we use the Mattis-Bardeen theory to compute the
surface impedance of superconductors and compare
the results with experiment.

The general result of Mattis and Bardeen" may be
conveniently written in terms of the Fourier com-
ponents of current j(q) and vector potential A(q) by
defining E(q) as,

j(q) = —c(4 )-'&(q)A(q),
where

3 oe 1

X(q) = " " """—"(1—')
ch epA( )0~p ~ r

XI(~,R,T)dttdR, (2)

and where the integration over I is the angular inte-
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gration. Using the notation of reference 10, I(co,R,T)
may be written as:

r"
I(co,E.,T) =—s-i ~ t'1 —2f(E+trtco) j

&(t g(E) cos(cree) i sin(cree)5e' "dE

—~z {k1 2f(E+ho))3
pep

)&Lg(E) cos(cres) —i sin(cree)]e' "
—

t 1—2f(E))Lg(E) cos(aer)

+i sin(crer)$e c~")dE. (3)

The surface impedance is defined by

For random scattering at the surface of the metal, the
surface impedance is given by ' "

at p

A simple approximation to the surface impedance
given by (5) is the extreme anomalous limit approxi-
mation. Here one assumes that for all q of importance
in the integral one has

qs gptep(0)/epJ»1, q)pt ep(0)/Aced»1, and qt&)1. (6)

In this approximation,

3srfuo jr or o, y
&(q))t~'(0) =

t
i—+—

t,
4ep(0)qsrgp & otr asj)

where crt/az and as/crier are the integrals given by

'P R. B.Dingle, Physics 19, 311 (1953).
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TABLE I. The complex conductivity as a function of frequency
and temperature.

From (5) and P) we get,

Z„,/Z„„=[( —i )/ (10)

A
A
A
A
A
A
A
A
A
A
A

Limit

3.33
3.33
3.33
3.33
3.33
3.33
3.33
3.33
3.33
3.33
3.33

1.74
1.V4
1.14
1.74
1.74
1.74
1.14
1.74
1.74
1.74
1.74

0.700
0.700
0.700
O.VOQ

0.700
0.700
0.700
0.700
0.700
0.700
0.700

0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300

0.0567A
0.0850A
0.113A
0.199A
0.283A
0.425A
0.567A
0.850A
1.13A
1.99A
2.83A

asA~~
0.198
0.297
0.396
0.692
0.990
1.48
1.98
2.97
3.96
6.92
9.90

0.130
0.196
0.261
0.457
0.652
0.978
1.30
1.96
2.61
4.57
6.52

0.105
0.158
0.210
0.368
0.526
0.788
1.05
1.58
2.10
3.68
S.26

0.101
0.151
0.202
0.353
0.504
0.756
1.01
1.51
2.02
3.53
5.04

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.424

0.596
0.505
0.444
0.326
0.257
0.186
0.143
0.0936
0.0673
0.0887
0.478

1.54
1.38
1.24
0.992
0.835
0.665
0.548
0.396
0.304
0.449
0.673

1.60
1.47
1.38
1.20
1.06
0.924
0.812
0.715
0.762
0.868
0.921

1.25
1.19
1.14
1.04
0.972
0.940
0.944
0.950
0.958
0.979
0.987

55.4
36.9
27.6
15.8
11.0
7.30
5.43
3.52
2.53
1.03
0.419

49.7
33.2
24.9
14.3
10.1
6.70
5.01
3.27
2.3S
0.883
0.384

29.7
2Q.3
15.4
9.00
6.44
4.40
3.35
2.22
1.59
0.499
0.237

7.38
5.11
3.97
2.46
1.83
1.31
1.01
0.568
0.352
0.117
0.057

4.99
4.99
4.99
4.99
4.99
4.99
4.99
4,99
4.99
4.99
4.99

2.50
2.50
2.50
2.50
2.5Q
2.50
2.50
2.50
2.50
2.50
2.50

1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13

0.400
0.400
0.400
0.400
0.400
0.400
0.400
0.400
0.400
0.400
0.400

0.285
0.428
0.570
0.998
1.43
2.14
2.85
4.28
5.70
9.98

14.3

0.160
0.239
0.319
0.558
0.798
1.2Q
1.60
2.39
3.19
5.58
7.98

0.113
0.170
0.227
0.397
0.567
0.850
1.13
1.70
2.27
3.97
5.6V

0.102
0.153
0.203
0.356
0.509
0.764
1.02
1.53
2.03
3.56
5.09

0.149
0.122
0.104
0.0714
0.0530
0.0359
0.0260
0.0160
0.0112
0.00604
0.434

1.064
0.923
0.822
0.632
Q.513
0.389
0.308
0.211
0.155
0.222
0.550

1.73
1.56
1.44
1.24
1.04
0.866
0.737
0.565
0.449
0.697
0.819

1.35
1.27
1.21
1.09
1.00
0.893
0.886
0.910
0.91V

0.954
0.975

Mattis and Bardeen":

ep(T) /kT Ace/kT o'1/o'N o'2/uN eo(T)/kT Aau/kT o'1/o'x o'2/o'1v'

54.4
36.3
27.2
15.S
10.9
7.20
5.36
3.48
2.50
0.999
0.414

42.6
28.4
21.4
12.5
8.74
5.89
4.43
2.91
2.09
0.733
0.326

17.6
11.4
8.69
S.21
3.78
2 ~ 73
2.05
1.36
0.884
0.273
0.125

2.74
1.96
1.58
0.970
0.734
0.504
0.331
0.190
0.119
0.0406
0.019

where the subscript ~ henceforth denotes the extreme
anomalous limit approximation and s and n denote
superconducting and normal states, respectively.

Ke wish to make a better approximation than the
extreme anomalous approximation, since in general the
conditions of (6) are not satisfied for all the q values
of importance in the superconductor. For this purpose
we observe that in most experiments on pure metals
the mean free path, l, is greater than 10 ' cm. Also the
detailed theory of the surface impedance in the normal
state, including relaxation eGects, has been given by
Dingle. "His numerical results show explicitly that for
microwave frequencies the surface impedance for
i=10 ' cm differs from the impedance at l= ~ by the
order or 3%. We expect approximately the same dif-
ference in the superconductor since the same factor
e ~f' enters into the current density. This has been
verified experimentally by Sturge, ' since he found very
little change in surface resistance between two diferent
superconducting Sn specimens with /=10 ' cm and
l=5X10 3 cm. Also the eGect on the static penetration
depth of the e ~i' factor in the current density shows
approximate agreement with experiment. ' Thus we
are justified in taking l= ~ in the theory. Then we may
carry out the angular integration in (2) to get

12si (
E(q) =

~

» [1—2f(E+Aco)j
c Avpgk(0) (~ s ep-sr'

&([g(E) cos(nes) —i sin(ne&))e' '&

~00 00

&(R(x)dxdE+ I ([1—2f(E+Acv))
kp dip

&&[g(E) cos(nes) i sin(n—e2)fe' "
—[1—2f(E)][g(E) cos(ne~)+i sin(net))

0'1 2
[f(E)—f(E+A )jg(E)dE

A ~,o

1+—
AM ~ ep —Scu

02 1

LD i ~p —pu, —ep

[1—2f(E+Aco) jg(E)dE, (8)

[1—2f(E+A~) $(E'+e(2+A~E)
X dE. (9)

(ess E2)$[(E+A~)2 e 2j

)&e '-~)R(x)dxdE ~, (11)

where @=A and

R(x) = (1/x') [(sinx/x) —cosx). (12)

ln doing the integrations of (11) we use the following
de6nitions and lemmas:

F(u) = sin(ux)R(x) d—x
Jp

=-', [2u+(1—u) in[(1+u)/(1 —u)[j, (13)

"P. B. Milier, Phys. Rsv. 113, 1209 (1959).

The second term of (8) does not appear unless Ace) 2es
in which case the lower limit of the integral in (9) is G(u)= ' cos(ux)R(*)d*=O

6p Instead of 6p —Aco. Numerical values of the complex
&p = (x,/4& (1—a'& for u(1.

conductivity integrals are given in Table I.
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A large part of the integration over x in (11) may be
done exactly by using (13) and (14) but the subsequent
integration over E cannot be performed exactly. How-
ever we may get approximate formulas for E(q) by
expanding in a power series in q. The integrations are

lengthy so that only the final results are given. For
large q we get

3~
t

Ao) -~i
E(q)Xz, '(0) = i—+-

4qs-gp ep(0) o~

16 ep' (Ao) ) '
ln(q~Pp) —

I

pr(q

primp)

Pp'(0) 4 2eoi

for (qprgp)ep(0)/ep)&1 and qgpeo(0)/App»1. (15)

Note that in the limit co —+ 0, this reduces to the appro-
priate formula given by BCS. Also in the limit co ~ 0,
this reduces to the correct formula for the normal metal.

In the opposite limit of small q we find for the real

part of E(q):
t ep(0) q

E(q),)~, (0)=1+-', (q g,) ((A~)
[f(E) ]dE

X~ 1+8 o'
"~(.(16)

J (Es e s)$(4EP ipo) j

In the limit eo —+ 0 we get the correct equation for the
normal state. Also for T=O we get a result identical
to that of Khalatnikov and Abrikosov. "Note that the
leading term in (16) for small q gives the full London
value for E(q) with all the electrons being accelerated
by the electric field. Equation (16) is clearly not valid
for or =0. For the imaginary part we get

E(q)r)ir, '(0)= 0 for q &o)/ep and Ao) &2ep, (17)

ep'(qs. tp)' (eo (0)) '
E(q).&z'(0) =

10eo(0)[(A'~p'/4) —ep']l L. Aoi )
X I 1—2j'(AM/2)]

eo(o)
for (qpr$p) «1 and Api)2ep. (18)

(A'cp' —4ep')1

Note that for q&o)/ep and Aoi&2ep there is no absorption
of energy by the electrons. This corresponds to the fact
that a free electron cannot absorb a quantum unless the
velocity of the electron is greater than the phase
velocity of the wave. This follows directly from con-
servation of energy and momentum. For Ace&2&0 there
is an added absorption in the superconductor given
by (18), this added absorption clearly being zero in

the normal state. Equation (18) is derived from the
following integral formula, valid for q&oi/ep.

3 QO QQ

E(q)rkr, '(0) =
2(qprto)eo(0) "o " o —)i

p pp [(E+Aa)'—ep']i —[E'—ep']l )
[1—2f(E+Aoi)] [g(E)—1]cos~

(q~(p )ep(0)

[(E+A )'—eo']1+[E'—.o']'q
+[g(E)+1]cos( i

R(oo)dxdE . (19)
qpr $p )eo(0)

Term (19) only appears for App) 2ep. The physical inter- momentum Aq and the final state is that of two single

pretation of (19) is that a ground pair of the super- particles. This interpretation may be justified in detail

conductor is broken up by the incoming photon of by writing (19) in the limit of small q:

3 [1—2f(A~p/2)) r"
t r —(s Is) ( x [(E+Aoi)' —ep']'*—[E'—ep']* )

E(q)rXr, '(0) =- [g(E)—1]cos~ ~E(~)d~dE, (20)
2 (qprgo)ep(0) "o "—v —(pals) &qprtp ep(0)

where
y= [ep(0)/App][(A'cps/4) —ep']:(qpr&p). (21)

O

hC

O
0 E= —(ee'+e ')'* (22)

We identify the dummy variable of integration E with
one half of the negative of the energy needed to break
up one ground pair

Then applying conservation of energy and momentum
to the process we find that for a given q the maximum
allowed range of E is

OI
OI LO io

lf'/2 qio L~'= (—App/2) ay (23)
Fio. 1. The real part of IC(q)hsp(0) is plotted versus (e./2)qfo

for a frequency ko=1 SkT„and for variou. s reduced temperatures. which agrees with the limits of integration in (20).
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r, for Al over a wide range of frequencies and tem-
peratures. ' They have also calculated the skin depth
in superconducting Al from the measured frequency
dependence of the surface resistance ratio and the
use of the Kronig-Kramers integral transforms. ' By an
approximate analysis of their data they find an energy
gap at absolute zero of

Eg (0)= (3.25&0.1)kT, . (24)

Using the detailed theoretical results given by Fig. 3,
we find best agreement with experiment for an average
energy gap given by

(25)Zg(0) =3.37kT„

and by assuming the same temperature dependence of
the gap as the BCS theory. It has been shown that one
may introduce an anisotropic energy gap into the BCS
theory and that the only resulting change in the BCS
theory is that the square of the energy gap ess(T) is
everywhere replaced by FJ*(k,T) where k is the
momentum of the excitation. "' This gives a natural
justification for treating the energy gap as a parameter
in the BCS theory.

The experimental curves given by Biondi and
Garfunkel' together with the theoretical points com-

puted asstlming (25) are shown in Fig. 6. The agreement
with experiment is quite good. The small deviations at
low temperatures might possibly be due to anisotropy
of the energy gap. The skin depth, 8„, determined by
Biondi and Garfunkel is also compared with the theo-
retical skin depth in Fig. 7. The energy gap of (25)
has again been assumed in computing the theoretical
skin depth. The theoretical curve was determined by
use of curves for Al which are not shown here because
the correction to x„was only of the order of 5 %. Both
energy-gap values (24) and (25) are in approximate
agreement with other experiments on thermal con-
ductivity" and on nuclear spin relaxation. "

The comparison of theory and experiment for Sn is
carried out in a diferent way, mainly because most of
the reliable experimental data lies well below the
energy gap. The surface resistance of the normal state
in Sn is highly anisotropic so that we compare the
theory with results on polycrystalline specimens, or
averaged single crystals. Many recent experiments have
shown that at intermediate temperatures and in a large
frequency range

(Ace 0.01AT, to A&o 1.0kT,)

the surface resistance ratio, r, may be written as'—'
I.O

r =g (I)A (v), (26)

0.9—
IIol

IIIO e
I

I
I

I
I

I
I

P7»
CI:

I~ 0.6—
O

l2
III
as 0.5—
C
C7

8
4lo: @4-'
O
CS

he

~ 05-

7L

OO 0,5 I.O 1.5 2.0 2.5 5.0
Energy (in units of kT~)

5.5 4.0

o I I & I I I I I I I I I I I0 I 2 5 4 5 6 7 8
h p~kTo

FIG. 6. The experimental curve of resistance ratio, r, for Al
plotted versus reduced frequency for various values of reduced
temperature (Biondi and Garfunkel). The dashed curve is the
experimental data extrapolated to T=O. The theoretical points
shown have been computed assuming an energy gap at T=O of
3.37kT,. There are no theoretical points shown to correspond to
the dashed curve at T=O.

"L.N. Cooper, Phys. Rev. Letters 3, 17 (1959).
"N. N. Bogoliubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34,

58 (1958) Ltranslation: Soviet Physics-JETP 34, 41 (1958)j.

FIG. 7. The skin depth for Al, 5„ is plotted versus the reduced
frequency, hv/kT, . The solid curves were gotten by Siondi and
Garfunkel from their experimental data and use of the Kronig-
Kramers integral transform. Case II refers to use of the detailed
theory of Dingle for the normal state, Case I to the use of the
extreme anomalous limit for the normal state. The points shown
are the detailed theory oi this paper with E~(0)=3.37k7;.

'7 C. B. Satterthwaite, Cambridge Superconductivity Confer-
ence, 1959 (unpublished).

"A. G. Red6eld, Phys. Rev. Letters 3, 85 (1959).
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where t is the reduced temperature. The experiments
show that at intermediate temperatures the function
y(«) is

I.O

9-

4 («) =«'(1 —«')/(1 —«')' (27)

The range of validity of the p(«) law differs somewhat
in diferent experiments but most of the data show that
the P(«) law is valid from approximately «0.4 to
approximately t 0.8.

We have compared the theoretical results with the
temperature law of (27). We find that the p(«) law is
approximately valid to within about 10% in the fol-
lowing temperature and frequency range. It is valid
from Ace=0.01kT, to Aco=2kT, and from t 0.4 to
«0.7. (The values for hei(0. 12k', were obtained by
an approximate extrapolation of the low-temperature
curves of Fig. 2.) For low frequencies (has 0.1kT,) the
g(«) law remains valid up to about «0.8 as the uppper
bound and the lower bound goes somewhat below t 0.4.

A large amount of data by diGerent experimenters for
A (i) has been summarized in Fig. 8."The data is for
polycrystalline specimens or the appropriate average
of single crystals. The figure also shows the results of
the detailed theory and of the extreme anomalous limit
theory. The detailed theory gives a curve which has a
very similar shape to the experimental data but is
roughly 25% greater in absolute value. The extreme
anomalous theory diR'ers in absolute value by a factor
of about 2.5 from the experimental points. In view of
the large anisotropy in the absolute value of A (p) in Sn
single crystals and several other complicating features
of Sn such as an anisotropic energy gap, "the agreement

I.O

hfs«/k

.6-

4-

.2-

I

0 .I
I I ~l I I I I I

.2 3 4 .5 .6 .7 .8 .9 I.O

I'IG. 9. The theoretical surface resistance of Sn is plotted versus
reduced temperature in the high-frequency region.

with the detailed theory is satisfactory. Also the abso-
lute value of A(i) depends sensitively on the value of
the parameter $s/Xz, (0) whereas the shape of the curve
is approximately independent of this parameter.

We have plotted theoretical curves for the surface
resistance ratio, r, for Sn at frequencies near the energy
gap in I'ig. 9. There does not seem to be any reliable
experimental data in this frequency range. We have
also plotted theoretical curves of the skin depth of Sn
in Fig. 10. This curve was computed using the graphs
of x/x„given in Fig. 5. Qualitatively the skin depth of
Sn behaves similarly to the curves given for Al. How-

.ever there is very little experimental data available on
the skin depth in Sn at microwave frequencies. The

14-

A(V) O.I-
I3-

.OI
O.I I.Q IQ

v(KMc/sEc)
IOO

E IQ

O
9

40

Fio. 8. A (r), the frequency dependent part of r, as a function
of frequency. 0—Kaplan et al (reference 2); X, +, h.—Sturge
(reference 3) (three different averaged single crystals); P-
Pippard (reference 6) (averaged single crystal); P'—Pippard
(reference 7) (polycrystal); G—Grebe nkernper (reference 4)
(polycrystal); F—Fawcett (reference 5) (averaged single crystal);F'—Fawcett (polycrystal). The upper curve is the detailed theory
of this paper. The lower curve is the extreme anomalous limit
theory.

"The experimental points of this plot are reproduced from
reference 2."R. W. Morse, T. Olsen, and J. D. Gavenda, Phys. Rev.
Letters 3, 15 (1959).
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PIG. 10.The theoretical skin depth of Sn is plotted versus reduced
frequency, for various values of the reduced temperature.
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6nal numerical results for Sn have assumed the BCS
value of Eo(0)=3.53kT,.
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The Varley mechanism is examined, according to which Frenkel defects are produced in the halogen
sublattice of alkali halides subsequent to multiple ionization of the halide ions. Arguments are presented to
show that the lifetime of a positive halogen ion against recapture of electrons in orders of magnitude smaller
than the ejection time of the halogen, and thus that the Varley mechanism is inoperative. The arguments

may not be applicable for inner shells alone, but experimental evidence is adduced to eliminate this case.

HE so-called Varley mechanism' for the x-ray
production of interstitial halogen, negative-ion

vacancies, and F centers in alkali halide crystals has
recently been receiving increasing attention. This
proposed mechanism postulates the multiple ionization
of a halide ion in its normal position surrounded by
positive alkali ions, thus resulting in the presence of a
post'tt've halogen ion in a region of high-electrostatic
(Madelung) potential, from which the halogen may be
ejected under the inQuence of lattice vibration. This
would give rise to the presence of interstitial halogen
and negative-ion vacancies, which could easily trap
electrons to become F centers. There are indications
from experiments on multiple ionization in rare gases
that if the Varley mechanism were the only one opera-
tive, a sizable fraction of multiple ionization events in
alkali halides would have to result in the production of
F centers, in order to be consistent with the efFiciency
of coloration at low temperatures.

Though no direct evidence has been adduced for this
mechanism, it has increasingly been invoked because of
its apparent consistency with low-temperature experi-
ments for which most other mechanisms seem
inappropriate.

Howard and Smoluchowski' have commented on
some of the critical factors involved in this mechanism,
one of which is the lifetime of the positive halogen ion
against recapture of an electron from the conduction
band, and they estimate this quantity in terms of the

*Research supported in part by the U. S. Air Force Once of
Scienti6c Research of the Air Research and Development
Command.

~ J. H. Varley, Nature 174, 886 (1954); J. Nuclear Energy 1,
130 (2954).

~ R. E. Howard and R. Smoluchowski, Phys. Rev. 116, 314
(1959).

concentration and mobility of free electrons, They
conclude that if the electron concentration in the
conduction band is &10'~ cm ', the probability for
recapture of one electron (sufficient, in the case of
double ionization, to "turn ofP' the Varley mechanism)
is less than 10" sec ', the reciprocal of which, they
suggest, is a reasonable characteristic time for the
ejection of a positive halogen ion from its lattice site.

The above views are seen to be expressed in terms of
a "hard billiard ball, "or "very tight binding" approxi-
mation, as if the removed electrons can be localized
on a particular lattice site. The purpose of this note is
to point out that if this extreme point of view is re-
laxed, another and far more probable mechanism exists
in many cases for rendering inoperative the Varley
mechanism.

In the tight-binding approximation, when we allow
for a nonzero overlap of neighboring halogen wave
functions, so as to give a nonzero width to the valence
band, we suspect that in a very short time an electron
will be "sucked" by the strong Coulomb field to the
postulated positive halogen ion from an adjacent halide

ion, thus producing two adjacent halogen atoms.
(This initial transition, which in itself is suKcient to
render inoperative the Varley mechanism, could be
followed by other jumps of electrons, further separating
the neutral halogen atoms. ) The initial jump time will

of course depend on the extent of overlap, and if the
latter is not zero, the former is not indnite. This point
of view, while suggestive, does not easily allow a
computation of the original jump time nor a description
of what happens to the original large potential energy.

These questions are readily answered, at least in

part, on going to an energy-band picture. In this
description we would say that double ionization corre-


