NEGATIVE CURRENT-VOLTAGE CHARACTERISTICS IN H.

the experimental points seems satisfactory, considering
that both the area and vy were assumed to remain con-
stant. This agreement would seem to indicate the
reasonableness of the space charge explanation of the
negative characteristics. The lowering of the breakdown
voltage is also given by the calculations with reasonable
accuracy.

At the largest experimentally measured current, the
field at the cathode is calculated to be seven percent
higher than the average applied field. Thus, for the
currents for which experimental data are available, the
E/p values are well within the region for which Eq. (3),
with the values of the constants 4 and B as used, is
valid, namely 18 <E/p<22 volt (cm mm Hg)™.

Although the assumed discharge area for the calcu-
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lations is 17 cm?, the illuminated area (image of the arc)
of the cathode was only about 10 cm?, but this is a lower
limit if the possibility of reflections of ultraviolet light
from the anode and walls onto the cathode is considered.
The previously mentioned glow covering the entire
anode suggests possibly a much larger discharge area.
The calculations are not too sensitive to the precise
area chosen. This may be seen in Fig. 4 where calcula-
tions are shown for the largest value of 7, for 34 as well
as for 17 cm?. Taking all of the above factors into con-
sideration, 17 cm? is not an unreasonable area to assume,
although the proper value is somewhat uncertain. In
fact, it seems reasonable to assume that the effective
discharge area varies somewhat with current even
below breakdown.
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The splitting of the fivefold degeneracy of free atom d electron states by nonspherical components of
a crystalline field is calculated. The crystal potential employed is that of a lattice of positive point charges
screened by a uniform distribution of electrons. The calculation is done to first order in the cubic field,
using hydrogenic electron wave functions. The triply degenerate d state is lowered with respect to the
doubly degenerate one in both body-centered and face-centered cubic lattices. Numerical results are given
for both lattices. Finally, analytic atomic wave functions are used to estimate the splitting in iron and
copper at the observed lattice spacing. The crystal field splitting of these levels is found to be much smaller
than the overlap splitting as obtained in previous calculations for both materials.

I. INTRODUCTION

N a recent calculation, perturbation theory was used
to study d bands in the body-centered cubic lattice.
The crystal potential employed was that produced by
a lattice of point charges of atomic number Z and
lattice parameter a, screened by a uniform distribution
of valence electrons. The energy of an electron state

in this potential can be expressed as (atomic units’

throughout)
E=(Z/a)f(Za)

where f(Za) is a function proportional to (Ze)™! for
small Za. The parameter Za is a measure of the tightness
of the binding, and the perturbation calculation re-
ported contained the first three terms in the expansion
of the function f(Ze) for certain interesting states.
The calculation could only be expected to be valid for

1J. Callaway, Phys. Rev. 115, 346 (1959). For a review of
energy band calculations, see J. Callaway in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press, Inc., New
York, 1958), Vol. 7.

small Za, but the apparent behavior of the series for
large Za led to the conjecture that the d bands in this
limit would split into two sub-bands. Within the model
considered, such a split could arise only from the
departure of the crystal potential around a lattice site
from spherical symmetry.

The situation is similar in many respects to that
considered in crystal field theory, in which the presence
of cubic terms in the crystal potential produces a split
of the fivefold degeneracy of the d states of a single
electron into a triply degenerate state T, and a doubly
degenerate state E,.2 We estimate this splitting for a
metal. The calculation, which utilizes the ideas of the
tight-binding approximation, considers the potential
produced by the lattice of point charges previously
mentioned; it can probably be generalized to more
complicated situations.

To understand the physical situation in more detail,

2 A recent review of crystal field theory is given by W. Moffitt
and C. J. Ballhausen, Ann. Revs. Phys. Chem. 7, 107 (1956).
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consider a hypothetical cubic metal with both s and d
electrons, such that the s electrons are distributed
reasonably uniformly throughout the atomic cell, but
the d electrons are rather tightly bound so that d wave
functions on the atomic sites overlap only slightly. The
degeneracy of the d levels of the isolated atom would
be broken both by the overlaps of the wave functions
and by the nonspherical components of the crystal
field. For very tightly bound & functions, we would
expect the crystal field splitting to be large compared
to the overlap splitting. The d levels would then form
two sub bands. This is essentially the model which
Mott and Stevens® have proposed for the body-centered
transitions metals. One of the principal reasons for
undertaking this calculation was to determine whether
the Mott-Stevens model could reasonably be expected
to apply to iron. None of the existing energy band
calculations for iron supports the Mott-Stevens model!;
however, all the calculations have neglected crystal
field effects.

One of the problems in a tight-binding calculation of
energy bands is to determine the expectation value of
the crystal potential using atomic wave functions on a
single site. This quantity, which is often considered to
be the same for all the states in the band, actually
contains the crystal field effects in which we are in-
terested. If for simplicity we consider hydrogenic d
electron radial wave functions:

Ra= (/6 ))lr2eber (1)

the appropriate dimensionless parameter characterizing
the physical situation is ae (@=2Z/3 for a Coulomb
potential). We will later be able to obtain the crystal
field splitting for more general wave functions con-
sisting of sums of terms of this form. Large values of
aa correspond to small overlap and tight binding.
While both the overlap splitting and the cubic field
splitting go to zero as aa— o, the overlap splitting
goes exponentially while the cubic field depends on
(ea)—* as we will show. Thus, for sufficiently large aa
the cubic field will dominate.

The problem of crystal field effects in metals has
previously been discussed by Leigh.* He considered a
similar model of the crystal potential, but quite different
wave functions. He estimated d band splittings at the
observed interatomic spacing only, in iron and copper.
The present calculation is of greater generality.

This calculation also contains substantial improve-
ments with respect to conventional crystal field studies
which are made possible by the use of a simple model of
the crystal potential. We use an expression for the
potential which is exact for this model, and do not
restrict ourselves to a multipole expansion valid only
at distances from the central atom less than the nearest
neighbor distance. The use of simple radial functions

3N. F. Mott and K. W. H. Stevens, Phil. Mag. 2, 1364 (1957).
4R. S. Leigh, Proc. Phys. Soc. (London) 71, 33 (1958).
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makes it possible to obtain explicit expressions for all
radial integrals, which are conventionally regarded as
parameters to be determined from experimental data.
Finally, we have evaluated all the pertinent lattice sums.

II. THEORY

The use of a simple lattice model and approxi-
mate d electron wave functions permits us to estimate
the cubic field effects for a large range of the appro-
priate parameters. To be precise, we wish to calculate
the difference in the energies of the d states of
Tes (Y, ¥2, 2¢) symmetry and those of I';; symmetry
(x2—19?% 322—12) ® (45, and e, respectively in another
notation), of a single electron in a potential field pro-
duced by a lattice of positive point charges (atomic
number Z) screened by a uniform distribution of elec-
trons so that each cell is electrically neutral. The
calculation is the first order in the cubic field only.
Spin-orbit coupling is neglected. We define

AE=E(I')— E(I') = f [4(Tas) |2
— ¥ @w) 2TV (r)dr. (2)

AE defined by (2) is the negative of the quantity
called 10 Dg in the literature of crystal field theory.
We put

Y(T25) = Ra(r) K05 (6,9),
Y(T'12) =Ra(r)X2,12(0,9),

where Ry is given by (1) and &;; functions are the
appropriate kubic harmonics® (order / and representa-
tion I';). For example we have

15\t xy 1/715\%
Ka, 250 = ( “—; 3€2,12=“(*)
2\ 4z

Then

3)

(#=y)
? y. 4)

AE= f R (r)LK22,05 (0,00) — K%2,12(0,6) IV (1)d7.  (3)

Since V (r) belongs to the completely symmetric (')
representation of the cubic point group, it follows that
if ¥ (r) is expanded in kubic harmonics, the only ones
which appear are the X;i. From the orthonormality
properties of the spherical harmonics it follows we
need only consider coefficients of Xy, ;.

S/21N\} fxt+yit3t 3
5(’,4,1=— —-) (-——————). (6)
4w rt 5

& Notation according to L. Bouckaert, R. Smoluchowski, and
E. Wxgner Phys. Rev. 50, 58 (1936).
( F;)C Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
194
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We then deduce
5
2(217)

f REDK1O.8)V(®dr. (1)

We use the Fourier series expression for V (r)
V(1)=2 b(K,) exp(iKa-1), 8)
where K, is a reciprocal lattice vector,

Kn= (27!'/(1) (%1,%2,%3),

b(K,)=—8rZ/QK 2= —2Za%/nQn2 ©)

Q is the volume of the unit cell.

In evaluating (7) we make use of the fact that the
kubic harmonics are linear combinations of spherical
harmonics of order /; for example,

Kaa=(7/12)}[ Vot (5/19}(Yest Yos) ],

where the Y, are normalized spherical harmonics as
given, for example, by Bethe and Salpeter.” Also, the
Fourier transform of a spherical harmonic is propor-
tional to the same spherical harmonic in % space:

(10)

f 5 7Y 1, (0,0)d2=4mi 5, (kr) VimOr,pr)  (11)

where £, 0%, ¢, are the spherical polar components of k.
Thus if we substitute (8) into (7) and perform the
integration over solid angle, we obtain

AE=—10(7/21)} 3" 6(K,)34,1(0r,0r)
X f R2(r)ja(kr)ridr. (12)
The radial integral can be done for the radial d function
given by (1):
32(5)a
B(14-02/ k)"

If we substitute (13) and (9) into (12), we find after
some rearrangement

1280 ©Z 4« )* K.,?

f 7%= j4(kr)dr= (13)

prreE e

AE=—— —(—

3 Qut\21

Some further simplification is possible using (9) and
the explicit representation of the kubic harmonics.
The type of lattice (body-centered cubic or face-
centered cubic) is involved in (14) through the ex-
pression giving the cell volume in terms of the lattice
parameter and in the choice of reciprocal lattice
vectors K,. For the body-centered lattice (Qo=2a%/2),

7H. A. Bethe and E. Salpeter in Handbuck der Physik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 35, p. 91.
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we have finally
400 Z /2m\* n?
22
3r a \aa (14-47%n?%/a%a?)t
mitnattnyt 3
X(—————————) (15)
n* 5

while for the face-centered lattice, the numerical coeffi-
cient is greater by a factor of two. The procedure used
here may also be applied to more complicated crystal
potentials by suitable choice of the coefficients &(k,) in
(8).

The series in (5) is not difficult to evaluate for
moderate values of aa; however for large aa (say
aa>20) the convergence of (15) is slow.

For large values of ag, it is necessary to transform
the series to a more rapidly convergent form. This can
be done in the following manner.

We define the function

f(h) =%k, g(h—K,) (16a)
where
g(h)=h2(1+h%/a®)~%%4,1(64,65). (16b)
Then
1280/ w\* «Z
AE:T(Z) sT.a/(O)' (17

f(h) is periodic function of h and thus may be expanded
in a Fourier series in the direct lattice.

f(h)=>"r, a(R,) exp(—ih-R,).

R. is a direct lattice vector. The coefficients a(R,) are
given by

(R, =[20/(2r)7] f 7(h) exp(ih-R,)dh.  (19)

(18)

With the use of (16), (19) may be expressed as
a(R,)=[2/ (2m)"] f ¢(h) exp(ih-R,)dh.  (20)

Then using (11) and (16), we have

o © 14, (hRy)
oR)=—usOnp) [ — ik (1)
2a* o (1+h/a?)e

With the use of (15), we transform the integral over % to
the form

[, e
o (14+h/a?)®  32(5))

X f f 1564 (hr) jo(hR)dhdr.
[] ]
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Fic. 1. The cubic field splitting eAE/Z is shown for body-

centered cubic and face-centered cubic lattices, based on the
numerical data of Table I.

This integral over % can now be done,® leaving an
elementary integral over . We obtain

7!'0[11 R o0
(R—5 f rYV¢—dr+ R* f re“""dr)
576(51) 0 R
105+ 8 x° Ox°
T L-3(@R)]; @<x>=e—x[z !
2R5 =0 s! 10!

But, from (17) and (18)

AE =@( )if—Z—Za(Rn)

_ 112002 (21) ( ) Ko1(0r,68) [1—®(Ry)]

adat

where in the last line we have introduced the lattice
parameter explicity. Then using (6) for X4, we finally
have

AE=

~z(——) [1-(@R,)]

(aa)
X (Rvi*+Ru2*+Rus*— 2Ry /Rt (24)

Since ®(aR,) is an exponentially decreasing function,

8 Erdelyi, Magnus, Oberhettinger, and Tricomi, Tables of
Integral Tramsforms (McGraw-Hill Book Company, Inc., New
York, 1954), Vol. II, p. 47.
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for large aa we may write
7000 Z a\"

(ca)t ; E)
X (Ry1*+Rys*+Rys*— 2Ry /Ryt (25)

Equation (25) may also be obtained more directly by
a multipole expansion, as is shown in Appendix 1.

III. RESULTS

It is not necessary to employ sophisticated methods
to evaluate the lattice sum in (25) unless great pre-
cision is desired. These sums have been carried out
approximately for the body-centered and face-centered
cubic lattices. The results are —2.131 and —5.163,
respectively, with an accuracy of about 4-0.003 in each
case. Thus we have

aAE/Z=—1.492X10*(aa)~* for the bcc,
aAE/Z=—3.614X10*(aa)™* for the fcc.

Numerical results for the splitting ¢AE/Z are presented
in Table I and shown graphically in Fig. 1, based on
evaluation of (15) and (26). We can conclude that the
cubic field splitting tends to lower the energies of
functions of the type I'ss with respect of those of I'j,
symmetry for all values of the relevant parameters.

A check on the numerical work is provided by the
agreement between the values of ¢AE/Z computed for
the bec lattice for (aa)?=12x2. The sum of the series
(15), including 102 different reciprocal lattice vectors is
a aE/Z=-0.0653. Equation (26) yields for this value
of aa; —0.0664. The agreement is already quite good;
and inclusion of the function ®(aR,) in the lattice sum
using Eq. (24) gave aE/Z=—0.0653. A similar agree-
ment between (15) and (24) was found for the fcc
lattice at ae=8xr.

It is possible to use these results to make a reasonable
estimate of the contribution of the cubic field to the
T'25, I'1s separation in iron at the actual lattice spacing.
Of course, d-electron wave functions are more compli-
cated than the simple form (1), but it appears to be
possible to express free atom d functions in the form

Ra=12); Ny deir, 1))

In recent calculations, four terms are included in the
sum.%-10

AE can then be found as a sum of term of the form
(15) or (26) provided the change in normalization of the
basic functions is properly included. This calculation
has been carried out for iron with two different electron
wave functions: that found by Lowdin and Appel®;
and the one determined for the average of all con-
figurations based on d® by Watson.?

(26)

9 P. O. Lowdin and K. Appel, Phys. Rev. 103, 1746 (1956).

1 R. E. Watson, Technical Report 12, Solid State and Molecular
Theory Group, Massachusetts Institute of Technology (June 15,
1959) (unpublished).



CUBIC FIELD SPLITTING

TasBLE I. The cubic field splitting a AE/Z is given for body-
centered cubic and face-centered cubic latties as a function of aa.
The evaluation is based on Egs. (15) and (24) of the text. For
values of aa greater than those given in the table, the simple
formula of Eq. (26) will generally suffice.

(aa/27)? aa aAE/Z (bce) aAE/Z (fcc)
0.0 0.000 —0.00000 —0.0000
0.5 4.443 —0.02351 —0.01245
1.0 6.283 —0.1187 —0.08174
1.5 7.695 —0.2228 —0.1867
2.0 8.886 —0.2938 —0.2873
3.0 10.883 —0.3344 —0.4110
4.0 12.566 —0.3034 —0.4391
5.0 14.050 —0.2538 —0.4146
6.0 15.391 —0.2063 —0.3695
8.0 17.771 —0.1353 —0.2748

10.0 19.869 —0.0918 —0.2011
12,0 21.766 —0.0653 —0.1493
16.0 25.133 —0.0373 —0.0886

We find E=—0.094Z (ev) using the Lowdin func-
tion and E=—0.128Z (ev) using the Watson function.
The number of free electrons is contained as a parameter
in the results, but it is probably reasonable to take
Z=1. The difference of the results given is of significance
only insofar as it indicates the sensitivity of the calcu-
lated splitting to the compactness of the wave
functions. We can conclude that the cubic field splitting
is of the order of —0.1Z ev at the observed interatomic
spacing. This would appear to be considerably smaller
than the d bandwidth,! for any reasonable value of Z,
and is in essential agreement with the result of Leigh,
obtained in a cruder calculation.? These considerations
do not support application of the Mott-Steven d-band
model applied to iron.

We have also estimated AE for copper by the same
procedure, using an analytic wave function for Cut
from Lowdin and Appel. The result is a cubic field
splitting —0.03Z ev at the observed interatomic spacing.
The splitting is smaller than in iron because of the
greater compactness of the Cut wave functions.

APPENDIX

We give here a derivation of Eq. (25) based on the
conventional multipole expansion of the crystal poten-
tial. This furnishes a check on the algebra involved in
the derivation of that equation. The expansion can be
obtained without difficulty, following the work of
DeWette and Nijboer.!! We note first that in the crystal
model considered here the uniform distribution of
negative charge can contribute only to the spherically
symmetric part of the potential, so that we may con-
sider only the point charges. Let these be located at
lattice vectors Ry. Then

V(n=—=2Z 3 |r—Ry\|™1 (A-1)
(except for the contribution from the negative charge).

1F, W. DeWette and B. R. A. Nijboer, Physica 24, 1105
(1958).
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We use the expansion
® 1 4 7yl

r=Ri|7=% ¥ —
1=0 m=1 2]+1 R)\H!

XY in*0,0)Yin(Or,0r) (A-2)

which is valid for » smaller than the nearest neighbor
distance. We are only interested in the part of the
expansion involving /=4, which we call V. The lattice
constant ¢ is also introduced;

e oo (2)

X Y4m(0R,¢R)]- (A-3)

On account of the symmetry of the crystal, the sums in
(20) must produce the kubic harmonic X4 It is

found that
27 fr\*
V= ——(—-) K4,1(0,0)B
a \a
where B is a numerical coefficient

B=4—;—r(g)§ 2Ry Yao(Or,$r) (R‘%)s- (A-5)

(A-4)

With the use of (A-4), the explicit representation of the
radial function, and the orthonormality of the kubic
harmonics, AE, as given by Eq. (7) may be evaluated:

2.52X10¢ BZ
AE=——— .
(217)}  a(aa)*

(A-6)

We must now evaluate B. Since the atoms are in “cubic”
positions, the sum of ¥4 over all the atoms of a given
type [say those located at Ry=a(3,2,1)] is proportional
to the kubic harmonic &4,;. We find that

o (2)

X (Ri*+Ro*Rs*—ERa)/Rat. (A-T)
Equation (23) is substituted in (A-6) to obtain
7000 Z a\®
a7 (2)
(ea)t a Ry
X (Ri*+R4+Rs*—ER\/Ryt. (A-8)

Equation (A-8) agrees exactly with (25) of the text.

If we replace Eq. (A-2) by the complete multipole
expansion which has radial dependence RyY/r**! for
7> R\. we obtain, by a similar procedure, Eq. (24). This
result demonstrates the complete equivalence of the
procedures based on the Fourier series and on the multi-
pole expansion of the crystal potential.



