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Theory of Magnetism and the Ground-State Energy of a Linear Chain
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The theory of strong magnetic effects is investigated from the point of view of orthogonal atomic functions
for the case of one dimension. Thus, the exchange integral is considered positive and the interaction between
the polar and the nonpolar states for all possible arrangements of electron spins is included in our formulation
of the problem. The resulting secular equations are solved for both large and small interactions between
states for the case of only one electron spin oriented in a direction opposite to all other electron spins, and
they are solved for small interactions between states for the more general case of any number of electron
spins being in a given direction. It is shown how inclusion of the polar states can yield either a ferromagnetic
or an antiferromagnetic ground state depending on the difference in absolute magnitude between the
exchange integral and the sum of other integrals representing electron-nuclei interactions.

I. INTRODUCTION

"TN this paper we shall investigate the ground-state
~ ~ energy of a one-dimensional array of atoms. Each
atom, in its isolated state, is considered to have one
outer electron which is in an s state, all other electrons
being in closed shells. We shall consider this problem
from the point of view of rigorously orthogonal atomic
functions. Thus, the exchange integral is positive for
all cases, and the interaction between polar states and
nonpolar states for all possible arrangements of electron
spins is included in our formulation of the problem.
The resulting secular equations are solved rigorously
(for both large and small interactions between energy
states) for the case ot only one electron spin oriented
in a direction opposite to all other electron spins and
are solved for small interactions between polar and
nonpolar energy states for the more general case of any
number of electron spins being in a given direction.
We shall show how the eGect of polar states can yield
either an antiferromagnetic or a ferromagnetic ground
state depending on the diGerence in absolute magnitude
between the exchange integral and the sum of other
integrals representing electron-nuclei interactions. Inas-
much as this is for one dimension, we do not imply an
ordered antiferromagnetic state nor do we attach any
stability to a ferromagnetic ordered state, these being
essentially three-dimensional effects.

The problem of extending the theory of magnetism
to include the eGect of polar states was considered by
Slater' for the ferromagnetic case. Thus, Slater con-
sidered the interaction of a lowest state where all the
electrons had their spins oriented in the same direction
with the set of states where one electron only is dis-
turbed from this lowest state by reversing its spin
direction and either remaining on its original atom or
forming a polar state by migrating to a different atom.
The solution to the resulting configuration interaction

problem is obtained by means of perturbation theory
between the nonpolar states and those excited states
consisting of the single electron migrating no further

' J. C. Slater, Phys. Rev. 52, 198 (1937).

than to a neighboring atom. In this paper, the reversal
of the spin of only one electron is considered as a
special case of the more general problem. The solution
does not involve the use of perturbation theory and is
thus valid for large as well as small interactions between
the unperturbed nonpolar and polar energy states.
Comparison is made between the two results in the
region where they are both valid, and Slater's results
are equivalent to ours. In the region of large interactions
between states, the results obtained bear out the
predictions made by Slater on the basis of his results
for small perturbations.

The problem of a linear chain or ring where any
number of electrons may reverse their spin was solved

by Bethe and Hulthen" where, however, the interaction
of polar states was not considered. To compensate for
this, the exchange integral was allowed to take either
positive or negative values for the ferromagnetic and
nonferromagnetic cases respectively. By extending the
theory to include interactions with polar states, we are
able, for small interactions between polar and nonpolar
states, to obtain results with the use of a positive
exchange integral and to show how the ground-state
energy varies as a function of the configuration inter-
action or correlation energy. Before proceeding to the
mathematical formulation of the problem, we mention
that this type of problem is being attempted by
Mattheiss4 using the methods originally formulated by
Dirac, Van Vleck, and Serber' ' using group theory.
In this paper, we have considered the problem from
the point of view of Slater determinants.

II. FORMULATION OF THE PROBLEM

Consider a periodic array of E atoms arranged in a
closed linear chain or ring such that, counting in a
counterclockwise direction from a given atom which we

2 H. Bethe, Z. Physik 71, 205 (1931).' L. Hulthen, Arkiv Mat. Astron. Fysik 26A, 1 (1938).
4L. F. Mattheiss, Quart. Progress Rept. on the Solid State

and Molecular Theory Group, M.I.T., July 15, 1959.
~ P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).' J. H. Van Vleck, Phys. Rev. 45, 405 (1934).
~ R. Serber, Phys. Rev. 45, 461 (1934).
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arbitrarily choose as being at position one, the X+1
atom is this same atom. Each atom, in its isolated state
is considered to have one outer or valence electron
which is in an s state. The total energy of our system is
represented by the Hamiltonian

and
+(f, ';f" f.),—

+(f' i' f ' ' 'f ).

(3a)

(3b)

Type (3a) designates those polar states formed by the
migration of an electron with plus spin form the position
f; to the position f; i, where by the—Pauli exclusion
principle the electron originally at position f;—1 has a
minus spin. Further, as in type (2), there exist electrons
with plus spins at each ot the positions fi f„where
we include the plus spin associated with the polar
atom in the r plus spins, while electrons of minus spin
are at the remaining positions. Type (Bb) is similar
except that the electron with plus spin at position f; has
migrated to the position f+i We adopt he.re the
convention of labeling the polar electrons so that the
electron with minus spin is labeled first, and one of
these electrons bears the label associated with the
position containing no electrons. Thus, in type (3a)
we have an electron with minus spin at the position
f; i and we label it f; i,—and an electron w—ith plus

where H(i) represents the energy of the ith electron in
the Geld of all the nuclei and bound electrons, e'/r, ; is
the Coulomb interaction potential between the ith and
jth electrons, e is the absolute value of the electron
charge, and r;, is the distance between the ith and jth
electrons. The prime on the last summation sign
indicates that the case i equals j is excluded.

Our unperturbed ground states are those where each
atom has one outer electron whose spin is oriented in
either the plus s or minus s direction. We label the one
electron eigenfunctions associated with the positions
f= 1, 2, S as gr(x)ay(l;), i= 1, 2, where |i signifies
that the spin associated with this electron is oriented in
the plus z direction while l2 indicates the minus direc-
tion. We postulate that these atomic type gy functions
are so constructed as to be orthogonal and normalized.
Further, we label all those electrons with plus spin
by the symbols fi, f2, f, where r is the total number
of electrons with plus spin and fi&f2«. . f, with
respect to position in the ring. We then construct, by
the usual method of Slater determinants, antisymmetric
wave functions of the nonpolar type

+(0;f" f.),
which are states consisting of electrons with plus spins
at each of the positions fi f„and electrons with
minus spins at the remaining positions; and anti-
symmetric wave functions of the polar type

spin at the position f, i b—ut labeled f; T. his convention
should lead to no confusion since our notation clearly
indicates which positions contain polar atoms and which
positions contain ionic atoms —atoms missing an
electron.

For the case of only one electron spin oriented in a
direction opposite to all other electrons, these are the
only polar wave functions. For the case of more than
one oppositely oriented electron spin there are of
course wave functions consisting of more than one
polar atom. However, in contrast to the single reversed
spin problem, we restrict our solution of the more
complicated many spin problem to the case of small
interactions between functions of the form (1) and (2).
In this case, the additional wave functions are not
needed (see Appendix A).

We now form the functions C(r) composed of the
linear combination of all possible functions of the type
(2) and (3) with r electrons having their spins oriented
in the plus 2' direction. Thus,

~N

c()= 2 ~(f,i; fi f.)
~=—2N f1 ~ ~ .f~ ~ ~ fr

x+(f,,i; f f.), ("4)

III. r=1

We Grst consider the relatively simple case of all
electrons having their spins oriented in the minus 2'

direction except for one electron having its spin in the
plus s direction. This case was erst considered by Bloch'
and later extended by Slater' to include the interaction
of polar states —a final expression being obtained by
the use of perturbation theory. We here extend these
results by obtaining an exact solution for the one-
dimensional problem.

We define the integrals

A~i(1) I&(1)I4.(1))=&, (&)

(4~i(1)4e(2) Ie'/r»I4. (1)A(2))=&a (8)

S. Schubin and S. Wonsowsky, Proc. Roy. Soc. (London)
AWS, lS9 (&934).' F. Bloch, Z. Physik 61, 206 (1930).

where fi f; f„ indi.cates the sum over all possible
con6gurations having r plus spins and i=0 indicates a
nonpolar state such as (2). The construction of this
type of wave function was done by Schubin and
Konsowsky' who then proceeded along diGerent lines.
Inasmuch as the set of functions C (r), r=0, 1,
are constants of the motion with respect to the Hamil-
tonian given in Eq. (1), our problem is to determine the
eigenvalues or energy levels Z, corresponding to the
eigenfunctions 4 (r) of the operator H, i.e.,

HC (r) =Z„C (r), (5)

where we note that

(+(f,i; fi" f.) I+(f~',i'; fi'" f'))
=b, by, r~bI„y, ,»" ».... (6)
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Q.(1)e.(2) I
e'/r» le.(1)4.(2)&= W,

(4.(1)4 (2) I
"/r l4.(1)4~ (2)&=C,

(P (1)P„~~(2)le'/r»lg„(2)$~+~(1))= J. (11)

Since the H(i) represent the energy of the ith electron
in the field of all the nuclei and bound electrons, we
see that E is related to the interaction between the
electrons and the nuclei and thus to the splitting of the
energy bands. For q=p or p+1, the integral N, is a
two center integral and cannot be neglected. For qWp
nor p+1, this integral is either a three or four center
integral and is small. Nevertheless, in the work follow-

ing, it is found that Ã and E~ always occur in the form

M= N+Q—,g~ N, (12)
=(4.+ () IH()

+Z.*.(@.(2) I
e'/r&214, (2) & I l.(i)&.

Remembering that the standard Hartree equation is
given by

LH(i)+Za*n (4a(2) I
e'/r» I4.(2) &]4n

= e,y„+Pm„X„,y„(13)

where the X~, are the additional LaGrangian multipliers
caused by the orthogonality conditions on the p„we
see that if one used the Hartree equation as a solution
for the p„, then the quantity M could be represented by
X„,„+&, and the finiteness of M rejects the orthogonality
conditions imposed on the p, . The integral W is the
Coulomb energy between two electrons located on
the same atom and represents part of the unperturbed
energy of the polar states. The integral C is the Coulomb
energy between two electrons located on diferent atoms,
while the integral J is the usual exchange integral for
rigorously orthogonal atomic functions and is always
positive.

The three center integral

(&~(1)&n+~(2) I e'/r»I4n+~(1)4&+2(2))

has been discussed by Slater' who showed that it is
small and can be neglected. We also neglect all four
center integrals as well as those integrals containing
two atomic type functions which are separated by
more than one interatomic distance as is customary.

We now multiply Eq. (5). by Eqs. (2) and (3) in
turn, and noting that r = 1, obtain the set of equations

ZfLa(0; f)(+(0; f') IHI+(0; f))+a(f,1)( (o; f') IHI+(f, 1)&

+a(f —1)(+(0' f') IHI+(f —1))]—E~a(0 f') =o (»a)

&f La(0; f)(+(f'—1, 1) IHI+(o; f)&+a(f 1)(+(f'—1, 1) IH I+(f 1))
+a(f, —1)(+(f'—1, 1)

IHIP'(f,

—1))+a(f2)(e(f'—1, 1) IHle(f 2))]—E~a(f' —1, 1)=0, (13b)

Zf La(o; f)(+(f', —1) IHI+(0; f)&+a(f, 1)(+(f', —1) IH I +(f,1)&+a(f, —1)(+(f', —1) IHI+(f, —1)&

+a(f, —2)(+(f', —1) I
HI%'(f, —2))]—E,a(f', —1)=0, (13c)

+f La(f 1)(+(f'—2 2) IHI+(f, »&+a(f 2)(+(f'—2 2) IHI+(f 2)&

+a(f 3) (+(f' 2, 2) IH I+(f—3)&]—E~a(f' —2, 2) =0, (13d)

Zf La(f —1)(+(f' —2) IHI+(f —1))+a(f —2)(+(f' —2) IHI+(f —2))
+a(f, —3)(4(f', —2) IHI&I (f, —3))]—E~a(f', —2) =0, (13e)

+f La(f 2)(+(f'—3 3) IHI+(f 2)&+a(f») 5'(f' —3, 3) I HI+(f 3)&

+a(f 4) (+(f' 33) IH I +(f,4—)&]
—Eia(f' —3 3) =o, (13f)

where we have recognized that

(+(f,i) IHI+(f' —i)&=o (14)

(eg —W+C —2J)a(f—1, 1) Ja(f, —1)—M—La(0; f)
—a(0; f 1)+a(f 1, 2) ——a(f—2, 2—)]=0, (17b)

(+(f, ai) IHI+(f', ai+e)&=0, Iel &2. (15)

Then, if we define e„as the energy difference between
the energy eigenvalue E, and the energy of the nonpolar
state in which all electron spins are parallel,

e,=E, e+NJ, —(16)
where e is the sum of the one electron and Coulomb
interaction energies of the system, Eqs. (13) reduce to
(dropping the primes)

e&a(0; f)+Jga(0; f+1)+a(0;f 1)—2a(0; f)]-
—MLa(f, —1)—a(F1, —1)

+a(f 1, 1)—a(f, 1)]=0, —(17a)

(sg W+C 2J)a(f,——1) J—a(f 1, 1)—M—
l a(0; f—)

—a(0; f 1)+a(f, —2) a—(f+1, —2)]=0—, (17c)

(eg —W 2J)a(f 2, 2) M—/a('f 2—, 1) a—(f 1, 1)—— —
+a(f—2, 3)—a(f—3, 3)]=0, (17d)

(eg —W—2J)a(f, —2) —MLa(f, —1)—a(f—1, —1)

+a(f, —3)—a(f+1, —3)]=0, (17e)

(eg —W —2J)a(f—3, 3) Mfa(f 3, 2) ——a(f—2, —2)

+a(f 3, 4) a(f 4, 4)]=—0, (1—7f)—
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A. Sma11 Interactions

We shall 6.rst solve these equations for the coefficients

u(0; f), a(f,1), and a(f, —1) only, assuming all other
coeKcients are zero. This will yield the results obtained

by Slater valid when the interaction energy (resulting
in the term M) between the unperturbed ground state
wave functions a(0; f') and the excited polar wave
functions is small. We shall then expand on this method
and obtain a general solution valid for all values of M.

Thus, subtracting Eq. (15c) from (15b), we get the
result

~(f 1, 1)=—~(f, —1)

Using this and putting f= f+1 in Eq. (17c), we again
subtract Eq. (17c) from Eq. (17b), and substituting
this result in Eq. (17a) obtain

si~(0 i f)+{J+[2M'/(si —~+C—3J)$}
X[a(0;f+1)+a(0;f 1)—2ii(—0; f))=0. (19)

Fig. 1.Various ground-
state energy level curves
for one antiparallel elec-
tron spin as functions
of k, the spin wave
number. Curve (1) is
for no interaction and
curve (2) for small
interaction between
polar and nonpolar states
in units of J, the ex-
change integral. Curve
(3) is for large interac-
tions in units of ) M (,
the interaction term.

C,

4J-

-2INI

-4lg

But this equation is of the same form as that solved by
Bloch' for the case of nonpolar states. The only differ-
ences are that in our case J is always positive as it
contains only the Coulomb interaction potential as the
perturbing energy term, and that we have the extra
term 2M'/(s, —3J—W+C). Thus, we can immediately
write the exact solution to this equation,

a(0; f) =e'"~ k=2~p/E, p=0, 1.~ E 1, (20)—
which yields for e&, the energy of the system with
respect to its energy when all electron spins are lined

up, the equation

si ——si (W—C+5J—2J cosk)&si[(J+2J cosk+W —C)'
+16M'(1—cosk) j'*. (21)

We note the following: (1) when the term M (which
arises from the interaction of the unperturbed polar
and nonpolar states and which is discussed in the
second paragraph of Sec. III), is zero, i;he ground-state
energy reduces to si ——2J(1—cosk), the original expres-
sion obtained by Bloch. (2) For 3IP((J' we may expand
the square root obtaining the solution (see Fig. 1)

si= 2(1—cosk)

X{J—[2M'/(W C+J(1+2 cosk—))]}, (22)

is thus equivalent to his I&. Thus, we have essentially
the same form.

~(f 1, 1)=~(—f —1)

a(f 2, 2)= —a(f, —2), —
(24)

(25)

and an equation analogous to that of Eq. (19), i.e.,

2M'(1 —cosks)23II'
sic(0; f)+ J+

ci—3J—W+C— si —2J—TV

X[ (0 f+1)+ (o;f—1)—2 (0;f)7=0, (26)

where we have used the standard notation for continued
fractions,

b2 b3 b4 bn=~ii+-
as+ ~s+ii4+ +&

B. General Solution

We now obtain a general solution to Eqs. (17) valid
for all values of M. We do this by first solving (17a)
through (17e) simultaneously but neglecting coefEcients
of the type a(f,3) and a(f, —3). Following a procedure
very similar to that just used, we obtain the results

for the minus sign in Eq. (21). We may compare this
equation with the result obtained by Slater' using
perturbation theory. He obtains the expression [his
Eq. (31) for one dimension]

si ——2J(1—cosk) —4Wn'(1 —cosk)/Ii, (23)

~s+bs

as+b4

g4 ~ ~ ~

(27)

where I& is the difference between the energy of the
unperturbed polar and nonpolar states. We may
connect our term 3P with his H/g' while the factor
J(1+2 cosk)+W —C may be written as the difference
between the unperturbed polar energy 3J+W —C
and the unperturbed nonpolar energy 2J(1—cosk) and

and where k2 independently tak.es on the same values
as k in Eq. (20), i.e., k& 2s.p&/X, and p&

——0,——1 .E 1. —
We now solve Eqs. (17a) through (17g) simulta-

neously, neglecting coeKcients of the type a(f,4) and

a(f, —4), and obtain the results of Eqs. (24) and (25)
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ega(0; f)+ J'+

— .,—2X—r — .,—u —r
La(0; f+1)+a(0; f 1)——2a(0; f)3=0. (28) e~ ——2 (1—cosk) LJ—(2M'/W) g. (32)

above, the additional relation a(f 3—, 3)=a(j, —3), when all electron spins are oriented in the same direc-
and the equation tion. Thus, the ferromagnetic state is not the most

23P stable state even though the exchange integral is
positive, (see Fig. 1).

eg —3J—W+C For the intermediate case, W) I
M

I )J and C,

2M'(1 —c k ) 2M'(1 — k )—cos 2g
—COS 3)

the continued fraction is still summable if we again
assume that all the k, have the same value, and we
obtain

Thus, since further equations, (15h), (15i), etc. , are of
the same form, we may write for the general solution to
the system of X equations given in (15),

2M' 2M'(1 —cosk2)
ei —2 (1—coski) J+

eg —3J—W'+C — eg —2J—W

2M'(1 —cosk~~2)
=0. (29)

2M'(1 —coska)

~g —2J—5' — — ~g —2J—8'

For k& ——0, the solution to Eq. (29) is e~
——0 as is to be

expected. We have already considered the case 3P((J'
in Sec. IIIA. For the case M')&J', i.e., the case oJ
strong interactions between the energy states of the
unperturbed wave functions, we must sum this con-
tinued fraction and solve the resulting equation in e&.

If
I
M

I
))J, W, and C, we may drop the terms containing

these quantities in Eq. (29). If we now assume that all
k; have the same value, (this is an added restriction
inasmuch as the k; take on any one of the E values
given in Eq. (20) independently), then the continued
fraction is summable with the result, for S not small,

e&
———2%2IMI (1—cosk)&. (30)

Further, it is apparent that Eq. (30) yields both an
upper bound (i.e., k=o) to the root ot eq corresponding
to the ground state as well as the more interesting lowest
energy value corresponding to cosh= —1. Thus, there
exists the lowest energy state

(31)
and we see that for a large absolute value of M Lwhere
the nature of 3f is discussed in the paragraph following
Eq. (11)$, the energy of the state r= 1 is less than that

In this equation, the sign of c&, which determines
whether the energy of the single reversed spin is greater
or less than the ferromagnetic state, is determined by
the quantity J—(2M'/W). If W, the difference between
the energy of the excited polar states and the un-
perturbed ground states is suKciently large, then,
even when the electrons are quite close and the Fermi
energy or electron-nuclei energy is larger than the
exchange energy, the ferromagnetic state is still the
most stable state.

As Slater' points out in his paper, his formula, Eq.
(23), being derived from perturbation theory, is not
very accurate for large perturbations, and so cannot be
compared with our results (29) through (32). Neverthe-
less, it should be pointed out that the predictions made
by Slater on the basis of his results for small W&
are borne out by the above calculations.

IV. r&~-',N

We now consider the general case where no limit is
placed as to the number of electrons whose spins may be
parallel or antiparallel. This was first considered by
Bethe and Hulthen" for nonpolar states. We here
extend the theory to include polar states, keeping J
always positive, and finding conditions for the lowest
energy state. However, we restrict ourselves to the case
of small interactions between the unperturbed wave
functions of the ground state given by Eq. (2) and those
of the excited polar states of the type in Eqs. (3).Thus,
as explained in Appendix A, we only consider the wave
functions given by Eqs. (2) and (3) where i is put
equal to one. Multiplying Eq. (5) by each of the
functions (2) and (3) in turn, our secular equations are

x(+(0 f~' f')I»I+(f~, —1 f~ . f))+~(0;f~ "f)(+(0 f~' f')I»I+(0 f~ f))j
—z„~(0;j,'" f„')=o (33)

and
+~(0; f~ f.)(+(f'' "l, l; f~'" —f') I »I+( Of~".f ))j—E.~(f~' —1, 1 f~'" f') =o (34a)

L~(f~,1; f~ f.)(+(f~', —1; f~'" f') I»l+(f~, 1
& f~ "f))

+~(0;f," f,)(e(f, —1;f,' "f„')l»le(0;f," f„))]—z„~(f,', —1;f,'" f„')=o (34b).
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We note that Eqs. (33) and (34) are representative equations for functions whose spin distributions, indicated by
primes, are identical. We expand, the antisymmetric functions 4, in terms of the one electron atomic type functions
p, and using the definitions given in Eqs. (7) through (12), reduce Eqs. (33) and (34) to

r
"a(o; fy . ")+. J@La(0; fy+I ")—a(o; fy". ")](1—byy+~"+')

7=1

+La(0; f 1—").-a(0; f . ")](1—byy-' ')}—3fZ (La(f—1, 1;"f" )

+a(f, , —1; . f; .)].(1—by; &y' ') —La(f;,1; f; ..)+a(f;+1, —1; f; ).](1—byy+yy&+')) =0, (35)
r

(e, W—+C 2J—)a(fy 1 1' ' ' f" ''') Ja(fy 1' ' ' f" ' '')+J 2 {Pa(fy 1~ I i
' ' f'+1'' ' ')

i=1 (i&j)

—a(f, 1, 1—; f, )](1—by,«+')(I by—y~ ')+/a(fy 1,—1; ~ f; 1—) a(f;—1, 1—; ~ ~ f; )]
&((1—by; g« ')}—MLa(0 . f . .)—"a(0; f; 1—)](1—by;, y~'—') =0 (36a)

(e„—W+C 2J)a—(f; —1 . f ) "Ja(f;—11 — f; ~ )+JQ ([u(f& —1 f;+1 )

a(f, ——1; " f' ".)](1—by~~"+')(I —by" ')+La(f., —1' " f' 1".)—a(f ——1 f' ")]. .

~ (1—by'-~" ')) —yell:a(0 f )—a"(o; f~ 1)—](1—byy-i" ') =o, (36b)

where we have made use of the delta function to take into account those configurations having electrons with plus
spins adjacent to each other or to the polar atoms. Thus, by;+&y'+ is unity if the f,~& plus spin is at position f;+1
and is zero otherwise. Rembering that the fe are the same in Eqs. (36a) and (36b), we subtract the second equation
from the first to get the relation

(" W+C —J)d (fy—, ".f-'" )+JE'*y(l:d-(A; "f'+1" ) d (fy;"—f-' ")](1—»"+')(1—by" ')
+Ld-(A . f' 1") d —(f'—-"f'"')](1—by'-~" ')) =0 (37)

where
d (f f"")=a(f—I I f" ) a(f"——I "f' ) (38)

is a function which is antisymmetric in the position coordinates of the polar atoms. Recognizing Eq. (37) as the
equation for the energy of the excited polar states, we note that the solution is analogous to that given by Bethe
and Hulthen for the energy of states with no polar atoms, i.e.,

and thus

r

~'»d-(f~ "'f'+
&=1(u~~)

Z' d-(f"" f' 1)=d (f — f -")Z'
Le,+C—W —J—2J Q~~y(1 —cosh„')]d (f;; . .f,' ) =0,

(39)

(40)

where the k~' are determined by the boundary conditions, (see Appendix 8). We use the solution d (f;; ~ f, )"
=0, or

a(f » "f"—)=a(f -I " f"") (41)

Noting that, except for the case where f;+1=f,+&, Eq. (36b) is also valid for configurations where f; is put at
f;+1 and all other plus spins are made to retain their original positions, we make this substitution and subtract
the resulting equation from Eq. (36a). If we further observe that the terms

(" W+C 3J)d(fy;—. f'"—.)+J"&'*~{Ld(A;" f.+1 ")—d(A;" f'" )](1—by~~"+')(I —»" ')
+t:d(f '."f' 1" )—d(A; "f—'" )](1—»-"-') (42)

and their counterpart for f, placed equal to f,+1, where

d(f f )=a(f -"I""f"")+a(f 11 "f"")—
may be represented as (see Appendix 3),

Le,—W+C—3J—2J Q~gy (1—cosk„')]d(f;; f," )

I e„—W+C—3J—2J P„+, (1—cosh~')](1 —by;+&y~+')d( f+1: f; )
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respectively, then, we obtain after summing over all j, the equation

[e,—W+C —3J—2J Q»; (1—cosk, ')] Q; [d(f;) ~ f; )—(1 8—;pe~ +')d'(f;+1; f," .)]
+2M Q; {[a(0;. f,+1. )—a(0; . f," . )](1 —»&+yr~+')

+[&(0 " f 1.—")—~(0 . f ")](1—»-' '))=o (43)

Finally, using Eq. (41), we substitute Eq. (43) into Eq. (35) and get

~„g(0; f,". )+{J+[2M'/(~„—W+C—3J—2JP»;(1—cosk, '))]) P;{[a(0; . f+1 .)—a(0; ".f, . ")](1 a&,„—'+)+Pa(O; ".f,—1" )—~(0;" f, ")'](1—», ,'-)) =0. (44)

But this equation is of the same form as that solved by Bethe and Hulthen for the case of nonpolar wave functions.
The only diGerence is that J is always positive and there is the extra term

2M'/[e„—W+C—3J—2J P»; (1—cosk„')] (45)

which, compared with the extra term in Eq. (19) for only one spin reversed, contains the additional sum over p
part. From Bethe and Hulthen's work, we can write down the exact solution as

r r r

e„(k,)= J2+-', (W—C)+J Q (1—cosk„')+J g (1—cosk, )+{[-',J+J P (1—cosk~')
I=1 (@~2) @=1 v=1 (@&i)

r r—J P (1—cosk,)+-,'(W —C)]'+4M' P (1—cosk,))'. (46)
q=l @=1

e„—2
l
M

l [P, (1—cosk, )]' (4g)

and we see that the energy continues to decrease as r
increases, reaching its lowest value at r=-,'N. For
W&3 &'J,

e„2P, (1—cosk, )[J—(2M'/W —C)], (49)

we again get a criterion for stability between the
relative magnitudes of the ratios J/lMl and lMl/W
as we did in Sec. IIIB for just one reversed spin,

We conclude with the general statement that con-
sideration of the polar states allows the use of orthogonal

We note the following: (1) when M is zero (i.e., no
interaction between the unperturbed wave functions),
the energy e„reduces to the original expression

e„=2JP, (1—cosk, )

obtained by Bethe and Hulthen. (2) For M'((J', (weak
interaction between the unperturbed wave functions),
we may expand the square root in Eq. (46) obtaining
the solution

e,= 2JP, (1—cosk, )
X{1—[2M'/(J'(1+2 cosk)+ JW —JC)]) (47)

where we have neglected the small difference between
k, and k„', (see Appendix B), and written k for k;.

It would be desirable at this point to consider the
case of strong interactions, M'&)J', as in Sec. IIIb.
However, as pointed out in the Appendix, when the
interaction terms represented by M are large, the
solution for r ~&2 becomes questionable. Thus, we
merely indicate the general trend by noting that for
M'»J' and W, the energy expression given by Eq. (46)
becomes

functions, (implicitly assumed in most ferromagnetic
and antiferromagnetic calculations), and thus a positive
exchange integral while still yielding conditions for a
ferromagnetic or antiferromagnetic state, bearing out
Slater's statements concerning this matter.

APPENDIX A

A more general unperturbed antisymmetric wave
function than that given in Eq. (4) is

NI2

~()= Z
m=o &1 ~ &m y1. .ym f1. fr

X~(pi p, &i. &; fi f.)
X~(p," p„, i, '„;f," f,), (A1)

where m is the number of polar atoms and the symbols

p; and i; designate the migration of an electron with
plus spin from the position p; to the position p, +i,.
For r&1, this expression gives wave functions not
considered in our paper. However, wave functions
having two or more polar atoms of the type given in
Eq. (A1) have no direct interaction with nonpolar
wave functions, i.e.,

&+(p p- - f f)l&l
X@(0;fi'. fr')) =0, nz &~ 2. (A2)

Also, there is no direct interaction between the nonpolar
wave functions and those wave functions consisting of
one polar atom whose extz'a electron has migrated
further than one interatomic distance, i.e.,

(4'(p;,i;; fi f„)lHl+(0; f,' .f,'))=0, .
li;l &2, (A3)
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where we are using the conditions discussed in the
paragraph following Eq. (11).Similarly, wave functions
of three or more polar atoms, of one polar atom whose
electron has migrated more than two interatomic units,
and of two polar atoms with both electrons having
migrated further than nearest neighbors have no
direct interaction with the wave functions considered
in Eq. (4) for i &~1. It is true of course that wave

functions consisting of one polar atom whose extra
electron has migrated from an atom further than one
interatomic distance and of two polar atoms whose
extra electrons come from neighboring atoms do have
interaction terms of the type M with our one polar atom
wave functions given in Eq. (3) for i=1, and this
modification, in turn, may inQuence the ground-state
energy. In fact, the secular equation is of the form

Hog)

0,
0,

+10)
II1—E,

+21)
0,

0,
+12)

II2—E,
+32)

0, 0,
0, 0,

H23, 0,
II3—E, H34, =0

where

and

(AS)

(A6)

$] ~ ~ ~ $m P] ~ ~ ~ Pm fI ~ ~ ofr

X~(p1 ' pm' ~1' ' '~m j fl ' 'fr)

X+(p" p-, i" '-;f "f.). (A7)

Neglecting all but the erst two elements in rows one
and two (as well as terms contained in these elements
such as iq ~&2) is equivalent to assuming the interaction
terms between the unperturbed states are small. It
would of course be desirable to obtain a general solution
for both large r and large interaction terms. Work. is
proceeding along these lines.

APPENDIX B

Equation (37) is identical in form with Eq. (III,15)
of Hulthen' except for the added restrictions with
respect to the two atomic positions for the polar and
ionic atoms. Essentially, one could consider Eq. (37)
as the problem of a linear chain with fixed end points
occurring at f,+1 for one end and f,—2 at the other
end. Further, that there are r—1 electrons with plus

spin and a total of X—2 electrons. A solution to this
problem may be obtained by a typical application of
Born-Von Karman boundary conditions, i.e., we add a
hypothetical atom having an electron with a minus
spin on each end and impose the requirement that the
hypothetical electron of minus spin at position f; have
the same phase as the electron at f; 2 I—f N. is a large
number and the interaction is short range (both factors
true in this case), the additional atoms cannot affect
the nature of the frequency distribution and at the
same time they take proper account of the number
degrees of freedom. Thus, the solution is the same as
that obtained by Bethe and Hulthen, except that
Eq. (III,21) of Hulthen, i.e.,

Nk, +2m-X;+Qgb;(, X,=O, 1, 2 N —1,

where the P; represent the phases in the solution is
replaced by

Nk/+2m', +Q) P,(', X,=O, 1, 2 N —3. (B1)

Since, in this paper, we are not concerned with X;)2X,
we may assume, as the only significant difference in the
solution of Eq. (37) from the usual Bethe-Hulthen
solution, the fact that we have only r—1 spin waves.
In Eq. (47) we even neglect the small difference between
u; and u, '.


