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Quantum Mechanical Transport Theory. I. Incoherent Processes
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Department of Physics, University of California, Berkeley, California
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The transport of particles through a scattering medium is studied. A generalization of a technique due to
Placzek and Wick is used to handle sums over states of excitation of the medium. The collision processes
which occur are classified as "inelastic, " "elastic, " and "quasi-elastic" and correspond to different orderings
of the Placzek-Wick series. The inelastic scatterings are described by an essentially classical transport
equation and the elastic scatterings by assigning a refractive index to the medium. The "quasi-elastic"
scattering involves the excitation of low-lying states of the scattering system. The coherent interference
of waves scattered from nearby scatterers is important in this case and depends upon the structure of the
medium. In this paper the general theory is developed in terms of a systematic sequence of approximations,
of which the first gives just the classical form of transport theory. The correction terms then appear as
quantum-mechanical corrections to the classical transport problem.

I. INTRODUCTION

K consider the transport of particles through a
~

~

~

~

medium of scatterers under conditions such that
a quantum mechanical treatment is required. It is
assumed that the density of scattered particles is
su%.ciently low that their mutual interactions may be
neglected. Thus we need consider only the interaction
of the scattered particles with the medium. We shall

simplify the problem by assuming that the energy of
the scattered particles is large compared to the binding
energy of the scattering particles (hereafter, referred to
as "scatterers") within the medium. Also, the scattering
mean-free-path within the medium is supposed large
compared to the de Broglie wavelength of the scattered
particles.

Under these conditions the discussion of multiple
interactions proves to be relatively simple if the proper-
ties of the medium are understood. In this connection,
sums over states of excitation of the medium are
handled by a generalization of the technique of Placzek'
and Wick '

Because the "orbits" of the scattered particles are
described by waves, it is necessary to distinguish waves
which interfere with each other (that is, are coherent)
from those which do not (are incoherent). For this
purpose we classify the scattering as of three kinds:
First, inelastic (and incoherent) scattering is described

by a "classical" transport equation. Elastic scattering
is described by assigning a refractive index to the
medium (more generally, an optical model potential).
Finally, we call scattering "quasi-elastic" if only states
of the medium having very low energy are excited.
Each of these types of scattering will be discussed

qualitatively by means of simple models in this section—the general theory being given in later sections.
As a particular example, we have in mind the

scattering of fast particles by atomic nuclei. Then the
inelastic scattering will be found to lead to a generaliza-

' G. Placzek, Phys. Rev. 86, 377 (1952).
2 G. C. Wick, Phys. Rev. 94, 1228 (1954).

tion of the Goldberger transport theory. 3 The optical
model has been used frequently for describing elastic
scattering. Our detailed handling of quasi-elastic
scattering will be given in Part II.

is the probability of finding particle cr at Z . [If the
scatterers have spins, a sum over spin states is implied
in Eq. (1).In the interest of keeping our notation simple
we shall not explicitly write such spin sums. g The
density of scatterers is

t (r) =&P(r). (1a)

It will be assumed that p(r)~constant within the
medium, ' where

P(r) = e(1/V).
' M. L. Goldherger, Phys. Rev. 74, 1269 (1948).
4 Our results are easily extended to systems containing several

kinds of scatterers.' K. M. Watson, Phys. Rev. 105, 1388 (1957). The notation
developed here will be followed in our present discussion.

6Actually, there is no difficulty in the development of our
theory if we consider p =0 to be an arbitrary state and eventually
average over a statistical ensemble of states "7=0."

7 Strictly speaking, for our later applications it is necessary to
assume only that p—constant over distances large compared with

A. Scattering Medium

The medium in which the particles are scattered
consists of X identical "scatterers. '" (We shall refer
to the "scatterirsg particles" as "scatterers" to distin-
guish them from the scattered particles, which will be
called just "particles. ") The eigenstates of the medium
are described by a set "y" of quantum numbers. The
eigenenergies will be written as F'7 and the correspond-
ing eigenfunctions as g~.' Before scattering has occurred,
we shall suppose the medium to be in its lowest state
y=0.' We assume 1V to be a large number and that the
scattering medium occupies a volume 'U large compared
to the range of the force between particle and scatterer.

If Z (n=1, 2, ltd) represents the position vector of
the oth scatterer, then

f
P(Z.)—= ~gs)'g d'Ze
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Indeed, when p= constant within the medium,

P(r) = 1/'U, (2)

This may be re-written in terms of the "pair correlation"
function G(x) as

P(Z„Zp)=P(Z )P(Zp)l 1+G(Z —Zp)]
=(1/'U')L1+G(Z- —Zp)] (4)

(This last form is, of course, valid only when Z. and Zp

both lie within "U.) It will be assumed that G(x) is of
order unity only for x&R„where R, is referred to as
the "range of correlation. " It is important for our
purposes to assume that

This means that our medium is "liquid-like, " rather
than crystalline.

If we use the second form of Eq. (4) and Eq. (5), the
condition that J'P(Zi Z2)d'Zid'Z~ ——1 implies that

G(r)d'r =0. (6)

This means, for instance, that a tendency for two
particles to cluster at short distances must be com-
pensated by a decreased probability of ending the
two particles at large distances from each other.
Condition (6) may be formally met by writing

G(r) =Gs(r)+Gl, (r),

for r within 'U. Otherwise P(r) =0.
The joint probability of finding scatterer n at Z and

scatterer p at Zs is

(3)

(An average over possible spins is implied here, we
recall. ) The last form above is valid, of course, only if
all the Z's lie within 'U. We assume that the range of the
"multiple correlation functions" is not greater than
8(R,), so they factor into G's when only pairs of
particles are close together.

When one of the "particles" is scattered by a partic-
ular "scatterer, " the medium will in general be excited.
We suppose the spacing of available excited states in
such a collision to be AP'~ and that

~~'M«0, (A)

where eo is the initial energy of the scattered particles.
Assumption (A) will be called the "loose binding"
assumption. It will be interpreted as implying that eo

is large compared to the energy required to "knock" a
scatterer from the medium.

Here lr is the momentum vector8 and v is the orientation
of the spin (if the particles have a spin). The initial
momentum (within the medium) before scattering is
assumed to be ho. We shall also write m for the mass of
the particles and M for the mass of the scatterers.

The scattering is assumed to take place by a sequence
of encounters of a particle with single scatterers. For
the qualitative arguments of this section we shall
suppose ns(&3E and that the scattering amplitude for a
scattering through the angle 8 is f(cose).

Then for a single scattering encounter at Z with the
o,th scatterer, the scattered wave has the familiar form

P,.( )= (~' o -/&.)f(n. k,)P;.,(Z.). (12)

B. The Scattering Gross Section

The scattered particles are described by plane wave
functions

gveik -x

where Gs is the "short-range" ( R,) part and Gr, the
"long-range" part of G. If we set

Here
R —=x—Z.,
n =—(R/R). (13)

Gsd'r, 61.'U—= GJ.d'r,

then Eq. (6) implies that

Gr, ———G/'U.

It will often sufBce to write

Gr, = —GP (r). (9)

Also, f;„.(Z ) is the incident wave at the position of
scatterer o.. Except for an inconsequential phase factor
this is

g;„,= exp(i%0 Z )X (amplitude factor) (14).
In writing Eq. (12) in its asymptotic form, we have

assumed
k(g ))1.

Higher order probability functions may be defined in
an analogous manner. Ke mention only

P(Zi, "Z~)= Idol'
= (1/U~) (1+multiple correlation

functions). (10)

the interparticle spacing in the medium and large compared with
the wavelength of the scattered particles.

This forms our second fundamental assumption: namely
that the wave travels far enough before a subsequent
scattering that condition (8) is satisfied.

The phases of Eq. (12) have a simple interpretation.
The phase of the incident wave just at scattering is
given by exp(iko Z ). On travelling on to the point x,
the change in phase is given by exp(ik+ ). When x is

We shall ordinarily use units such that A= i.
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0-( )= ("'*/*)f-,
f =—expl —z(k—ks) Z ]f (15)

suKciently large that x))Z, Eq. (12) takes the form The scattering medium is now considered. small
enough that the scattered particle is unlikely to scatter
more than once. Then if te((M, Eq. (15) gives for the
total scattered wave

with k=ksx. The dependence on Z of the scattering
amplitude f is given by a simple phase factor.

The total cross section for scattering from "o,"is now

eilcoz

P.,= Q f.,(n)= I +exp( —iAk Z.)f],

~k=&o*—ko
(20)

o,=
g

da..l
fl'.

The average distance which the particle will travel
before a subsequent scattering is

).= (po,)-'. (16)

When kX)&1, we may consider that our assumption
(8) is satisfied.

The uncertainty in energy d e of the scattered particle,
if its speed is e, is

A/(X/e), (17)

when it has travelled a distance ) . An alternative form
for assumption (8) is then

Aesop)

where ep is the kinetic energy of the scattered particle.
We have assumed that the medium is "loosely

bound. "A much stronger condition would be

The scattering amplitude for excitation of the medium
to the state y is thus

J"~= (a., Z- e~(-i» Z-)fgs) (»)
When f is independent of spin (or when the spin
dependent part of f averages out in evaluating the
matrix element), then f factors out of the integrals in
Eq. (21).In this case the ratio of excitation probabilities
for different y is independent of f and thus the type
of particle causing the transition. This result, which is
not true in general, will be discussed in detail in Part II.

If the excitation energy of the medium can be
neglected (a condition which will be given quantitative
consideration in later sections), the differential scatter-
ing cross section is

o~(8)=Z l~, l'=(go, f&Ifl'+ 2 Ifl'

)&expL —iAk (Z —Zs)]}ge). (22)
~e))~W,

where AW is the excitation energy given to the medium
in the course of a scattering encounter. We shall not
assume (19) to be necessarily true, although it is
frequently satisfied (consider, for instance, the scatter-
ing of visible light by the molecules of a gas).

When the inequality (19) is satisfied, scattered
wavelets may interfere coherently with each other
even if they would eventually be associated with
diferent states of excitation of the medium. This is of
course a direct consequence of the indeterminacy
principle. In Part II we shall develop a detailed theory
for this case.

For our final transport equation of Sec. III it will be
helpful to assume that

and

c(8)= dsZ Z(Z) exp( —i~k Z),

C(8) = I G(r)e 'n"'d'r. —

Using Eq. (4), this may be written as

o'Dr= o'e(8)+o'in+o'ee&
where

~ (8)=&s
I f I 'Lc(8)]'

-'-=~If l',
-,.=lfl "G(8)

Here (8 is the scattering angle)

(23)

(24)

(25)

(26)
R,«X. (c)

(We recall that R, is the "range of correlation. ") This
means that the medium may be considered as locally
undisturbed (by previous scatterings) at the position
of a given scattering before that scattering has taken
place.

C. A Simple Example

Before treating the general problem, we consider a
simple example illustrating the interference of scattered
wavelets. Although well known, this serves as an
introduction to related phenomena associated with the
transport problem.

The quantity o-;„represents the incoherent sum of the
individual cross sections. For the general case to be
treated in Sec. III, o-; must be treated by a transport
equation. The elastic scattering is given by o.,(8). In
the general theory this is described by the optical mode1s.
The quantity o~, will be referred to as the quasi-elastic
cross section when it is suitably generalized in Part II.

One may weQ object that o-~, as just defined is not
necessarily positive. This difhculty will be remedied
in Part II when a more complete discussion is given.

' T.K. Fowler (to be published), hss recently given a discussion
of the qggsi-elastic scattering from atomic nuclei.



QUANTUM MECHANICAL TRANSPORT THEORY 889

We observe, however, that when cr~, is sufBciently
large in magnitude to be of importance, it will usually.
be positive. First,

G(r) & —1, (27)

as is evident from Eq. (4). A large lGl then means
that G)0 (or that the scatterers tend to "cluster"
together).

C(8) may be simplified if we make use of Eqs. (7),
(8), and (9). Define

GC '(8)—: Ge(r)e 's"'d'r,
J

so Cp'(0) = 1.With Eqs. (7) and (9), we obtain

G(8)=GG(8)l 1-e(8)J (29)

Here we have assumed that c(8) ~0 much more
rapidly with increasing 8 than does Cp'(8). Indeed, we

expect c(8) to become small for

8) 1/kpRp, (30)

where Rp~g'U is the radius of the medium. Cp'(8)
will be expected to become small for

(31)8& 1/kpRe.

For the case that
l f l

' is independent of 8 we have
plotted in Fig. 1 the expected form of the cross sections
(24).

II. GENERAL THEORY

The detailed discussion of the transport of particles
through the scattering medium will be based on the
multiple scattering equations developed in reference 5.
There it was shown that the exact solution of the
Schrodinger equation for the scattering of a particle
by a scattering medium is given by

(32)

~o= Sqo. (33a)

Alternatively, kp and qo are related in terms of the
optical model potential v~ ..

k +25Ne=gps (33b)
~0 S. Fernhach, R. Serber, and T. B. Taylor, Phys. Rev. 75,

1352 (1949).

Ce(g)=e'"o'* g=pP e.gp

Here pe represents the incident wave, once it has
entered the scattering medium. The wave number ko is
related to the wave number gp of the particle before
it entered the medium by the refractive index n'p:

FIG. 1. A sche-
matic plot of the
"elastic, " "inelas- 0
tic," and "quasi-
elastic" scattering, as
given by Eqs. (24),
etc.

In writing Pe in the form (32) we have neglected reflec-
tion and refraction at the boundary of the medium—
these sects not being of importance for our argument.

The quantities t are "two-body" scattering operators
for the scattering of the given particle by the o,th
scatterer in the medium. They are taken as momentum-
conserving matrices:

t.= (k,Q. l t
l
k',Q.')8(k+Q.—k' —Q.'). (34)

Here Q is the momentum of the nth scatterer. The t
may also depend on the spin (if any) of particle or
scatterer. In the interest of simplicity (that is, to avoid
the complication of handling polarized beams), we
shall assume either that the t 's are spin independent or
that polarization effects average out due to azimuthal
symmetries in the distribution function of the scattered
particles. Thus spin labels need not be kept on our
wave functions and scattering operators. In spite of
this simplifying assumption, our methods are directly
applicable to situations involving polarization in the
scattering. (More detailed discussions of the t-operators
have been given previously. ' ""

The "energy denominators" d in Eqs. (32) are (rt is
a positive, in6nitesimal number, as usual in scattering
theory)

d= ep+iri e(k)+ (jV—p —Wg),—
e(k) =ks/2ns+ne(k),

ep= qps/2ns.

The optical model potential vq has been introduced in
connection with Eq. (33b). The zeros of d give just the
wave numbers k of the scattered wave. In particular,
for lV),=8'0,

e(kp) = ep,

which is equivalent to Eq. (33b). LFor relativistic
particles, we replace k'/2ns by c(k'+nssc'), etc., in
Eqs. (35).g

Finally, the symbol "I'p" in Eqs. (32) represents a
counting operator which forbids repetition of states
"y" of the medium during the course of successive
scatterings. This means, erst of all, that the initial
state "0"must never re-occur. It also implies that every
scattering must be inelastic, or lead to a change in the
state of the medium (since elastic scatterings have

"G. R. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952)."K. M. Watson, Phys. Rev. S9, 575 (1953);¹ C. Francis
and K. M. Watson, Phys. Rev. 91, 291 (1953).
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I=Po(1/—d) t pep. (36)

This is just the wave scattered from scatterer "P".
The wave +p may be expanded as

+p(*)= E gv
d'k' A(k'»').

(2')»
(37)

Ke also introduce a partial Fourier expansion of the
medium wave function g~:

dog/
exp(iQ' Z,)a„.(g') (38)

(a~ is a function of all Z's except Zp of course). Then

t d'k'd'Q' (I=Po —2 gal gv
(2s.)'
d'kd'Qe'" * exp(iQ Zp]

X 5 (k+Q —k' —Q')
eo+irI e(k)+ —(W' —W„)

X(k,QI tIk', Q')a& (Q')A(k'»')
I (»)

already been taken into account in ve). Aside from these
two rather simple e8ects, we may in general ignore P0
when Assumption C is valid.

Let us now recall that we proposed to decompose the
scattering into elastic, inelastic, and quasi-elastic
contributions. Because of the properties of I'0, as just
described, the elastic part of 4 is just C&. We do not
intend to consider the elastic scatterings in more detail
herep since this has been done previously. "'" The
distribution between inelastic and quasi-elastic scatter-
ing will be based on two diferent schemes for evaluating
the "propagators" 1/d. The inelastic scattering will be
discussed 6rst, since this seems conceptually simpler.

Referring to Eqs. (32) it appears that our first
problem is to simplify the expression

In accordance with the discussion following assump-
tion C,

Lexp(iQ Zp), A(k')]=0, (42)

since we assume the medium "riear" Zp to be un-
disturbed by previous scatterings. Then, we set

d = do —(II~—W),

do = eo+irI e(k—)—(W—Wo),

-=—
I

1+—(II~—W)+". I,
d do & d,

where W is an "average excitation energy" which is
yet to be evaluated. Then, using the expansion (44)
ford ',

X
I

1+—(II~—W)+ (II~—W)'+
f 1 1

do d02

,
exp(iQ' Zp)(k, QI tIk', Q')ao(Q')

(2~)»

= (kI tIk')go(Zi Zp Z~), etc. (43)

Here Q' is interpreted as (1/i) V'zp in t, so t operates on
go. (We have suppressed the "symbol" Q' in t in
Eq. (43), but do not imply that Q' is omitted. ) Because
the scatterer binding energy has been assumed small, a
valid first approximation consists of setting Q =0 in t.
This treats the scatterer as if initially as rest. If Q' is
kept in t, then we must eventually average the scattering
cross section over the distribution of Q-values (as will
be seen later).

To complete the evaluation of I, we shall expand d—'
in a manner reminiscent of the expansions of Wick2
and Placzek':

This may be simpli6ed by writing

Z av (Q')A(k', v')=A(k')ao(Q'), (40) Here we have written

Xexp(iQo Zp) tA(k')go. (45)

Qo=—k' —k, (46)
where A(k') is now an operator acting on the co-
ordinates (Zi, ZN). Equation (40) just states that
y =0 was the initial state of the medium. It will turn out,
however, that A(k') behaves very much as if it were a
diagonal operator in a coordinate-space representation.

Now Eq. (39) becomes

which is the momentum transferred to the scatterer.
Now, because II~ contains a term (1/2') Vzp',

(II~ W)" exp(igo Zp)—.

= (II~ W)" 'exp(iQo Zp)— —

1=&0
(Qo' Qo &zp

X
I + —W+II&

I
(47a))(2M cVi

d3$gik x
r d'k'd'Q'

(2~)' ~ eo+irt —e(k)+ (Wo —II~)

Xexp( —i(k—k') Zp)(kI tIk', Q') (if the scatterer P is not bound by exchange forces).
IIio. does not in general commute with either t or A.

Xexp(iQ' Zp)A(k')ao(Q'). (41) To simplify our discussion we shall neglect LII&,t],
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W—= (Qoo/2M)+ W. .

Now Eq. (47a) becomes

(H~ W)" exp—(iQo Zp)

( Qo Vzp)
=exp(iQo Zp)I Her —W,+

(48b)

( Oo Vzp)x"
I

H~ —w, + I. (47l)
Mi

Using the expansion (38) for go, we have

even though such terms may be kept and involve no
essential difliculty for our presentation. "We obviously
may not, however, neglect )Hor, gp], since fp operating
on gp describes the excitation of the medium due to
previous scatterings. We have assumed that the
scattering mean free path is suKciently great that
energy is very nearly conserved between collisions. Thus,
we anticipate that

H~LAgo]=W-I Ago], (48a)

where 8', is an "average" energy of the medium and
is just Wo+ "the excitation associated with previous
scatterings. "On comparing Eqs. (45), (47a), and (48a),
we see that it is most reasonable to set

with
O=—Oo+Q'. (52)

The series
formally in
replaced by

Finally,

in Eq. (49) may evidently be summed
such a way that all propagators dp ' are
b
—1

~ d'k'd'Q'
t

d'kd'Q e'" * exp(iQ Zp)
I=Pp

eJ (2w)' ~ b

x &p&(k+o k' o') (k I
&Ik')4'p(k')ao(Q'), (53)

where

5)p ——1+(1/b) exp( iQ' —Zp)(H~ W.—)
Xexp(iQ' Zp)+ (1/b') (iQo Bp)+ . (54)

A. Evaluation Of Ip

Ke 6rst set K)p= 1 to obtain the zeroth approximation

t
d'k'd'Q'

t
d'P

Io=—Po exp(iP C+i9. rz)
(2or)o ~ b

The quantity (Sp—1) represents purely quantum
mechanical binding corrections to the scattering from
scatterer "P." We shall choose W, so as to make the
first correction term in Eq. (54) vanish to lowest order
in our final equations.

—exp(iQo Zp)fp(k')go

t
d'Q' expLi(Oo+Q') Zz)

(2z.)& do

X(kI Ilk')P, (k')~o(Q'). (SS)
Here

k= (p/M)P+y, P=k'+Q',

Q = (p/re*)P —
y, Ii =MLm*/(M+m*)], (56)

rp ——x—Zp, C= (MZp+tio*x)(M+m*) —'.1 fQo Q'i
xI 1+2

=i do" I M ) The "effective mass" m* is de6ned by

1/2m*= de(k)/d(k').1
+—exp( —iQ' Zp)(H~ W, ) exp(iQ' Zp)—

dp

de de dk k
'V

dk dk' dk m*
(58)

Here Bp is the gradient of the binding potential of "P"
divided by M. It is defined by

Sy Assumption 3, the significant contribution to
(50) the p-integral in Eq. (55) comes from values which makeLHN, Qo Vzp/M;]= iQo Bp. —

The "particle velocity" v is de6ned by (for convenience,

1 we assume that the imaginary part of nz* and e are
+ (iOo' Bp)+ Igp(k')oo(Q'). (49) small)

d02

For discussing the inelastic scattering it is very
convenient to partially re-sum the series (49) using

(Qo Q') "-—=—1+2
I

b do I m+i 0 doM ) do —Qo Q'/M

so

b= Leo+ (Q"/2M)+Wo —W,x]+ill —e(k) Q'/2M) (—51)

"The e6'ect of these commutators has been considered by
Fowler (reference 9).

0.

Near this value, we find, indeed (after a little algebra)

b= („—,)/2„+i,+oL(p —„)], (s9)

where po is the root of the equation b(po)=0. The
significance of m* is seen here —it suKces to give b

the simple (angle-independent) form (59).
The evaluation of Ip is now trivial. To appreciate the

result, we refer to Fig. 2, which shows the scattering.
The initial position of the scatterer is Zpo. It recoils to
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position Ze when the particle reaches x. We shall see
in detail how this diagram follows from the evaluation
of Io.

On evaluating the p-integral for perp)&i, we must set

ppr8~ ~p= rp/rp (60)

elsewhere in the integrand. This evidently implies
that we set [see Fig. 2 and the discussion following
Eq. (66) where ZsP is defined)

k=ltpRp/Rp, Re= x—Zep. (61)

FIG. 2. The kinematics of a single scattering are shown along
with the notation used in the text. The "particle" is scattered at
position Zp' by the Pth scatterer. When the particle has reached
the point X, the scatterer has recoiled to the position Zp. The
center of mass of the two particles is at C.

Now integrating over p gives

Ze'=—C—k'(re/pe)t /(M+~*)
r d'k'd'Q'

exp (iP C)[exp(ippre)/re)Ip Pp)
(2~)' nz ( red ti= Ze+ re —k'l —

1

M+nt* l pe] M+rn*
(66)

Rp orx —(2m)'teal kp—ltlk
1

fp(k)ap(Q ). (62)
zp j ( rp ) ti

Ze ——Z,o= re
Mourn* (») M+rn+

(66a)

The coordinate Zsp defined by Eq. (66) is just that in
Fig. 2. To see this, we introduce the "time" v- since the
collision occurred:

r= (re/pe)t (67)

The last term in (66a) is thus

r[k'/(M+nt*)) = C—ZpP,P= k'+Q',

We next evaluate the Q' integral in Eq. (62). To
evaluate this integral, we set Q'= (1/i)Vzeo [see Eq.
(66)) everywhere except in oscillating exponentials
and in ap(Q'). Because we have assumed small binding

energy in the medium the e6'ect of this dependence on
Vzeo is expected to be small. (It may eventually be
taken into account by averaging over the spectrum of
Q' values. ) Since

p p= pp+@'& (63)

where b(pe) =0 when Q'=0. We obtain (to erst order
in Q')

8p= —(Q' k') (pp) [ti/(M+m*)7. (64)

[Equation (64) involves a little algebra, but is straight-
forward. ]Thus

p d'k'd'Q'
Ip=Pp exp(ik' C)[exp(iperp)/rs)

(2m.)'

e
x —(2~)'t

1
&t I

t
I

k' 16(k')
&gs )

we obtain exp(iQ' C) as an exponential factor. From
the definition (51) of b it is evident that pp also depends
on Q' since pp satisfies b(pp) =0. We therefore write

which is just the velocity of the center of mass multiplied
by v. Also,

—re[ra*/(M+nt*)) = Z&—C,

as is evident from the diagram [of course, x—C= r&n/
(M+ no*)).

Therefore, in Eq. (65) the coordinate Ze appears in
gp as translated to its "displaced position" to which
scatterer "P" has recoiled. The recoil vector Zp —Ze' is
just that given by classical kinematics. Higher order
terms in bp [see Eq. (64)) give a dispersion in the
scatterer's position resulting from the spread of Q'
values in g~i4 (this is just one aspect of the indeter-
minacy principle, which of course must appear in our
problem). Also, the Q' dependence of t becomes a
dependence on (1/i)Vzso in Eq (65), a.s mentioned
above.

To further simplify Eq. (65), we write ye ——pet'p,
so the argument of the exponents becomes

$3$I gsppt'p

=Pp exp(ik' C)
(2')I re

where nmv

Q=k' —Z, (R,/z, ). (69)

Xexpi(Q' [C—k'(re/pe) (p/(M +rn*))) ap (Q') (65) k' C+per.p
k' C+——yp re

=4~e+Q (Ze —ZeP)+k' ZeP, (6S)

x —(2~)'t
1

&~lt lk'
I A(~')gp( "ze' ").

zp )
Thus Q is just the momentum imparted to scatterer

~4 In Sec. IV these corrections will be treated in more detail.
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P when its binding is negligible. Now

p d'k'
Ip ——Pp ' expl ik' Zp'] expLiQ (Zp —ZPP)]

(2pr)&

possibility that two scatterings may occur from the
same scatterer. )

If a scattering has occurred from p, the transforma-
tion of volume element from Zp to Zp' is, using Eq. (66a),

exp(ikpRpp) (R'p'l ( Rp—(2w)'t
I

—
I I

k—I t I1'
I

Rp (rp) E Rp )
xA(1 ')gp(" Zp.' ") (7o)

dan —Jd 3gPO

Jm*)s k, pI=I
I I+ rp —ap—

„

E ti) pp~
(76)

To obtain our final form for I0, we expand

A(1')=vc(1')+ Z A.(1')= Z A.(1') (7&)
&(~P)-& p=a(~)

Here we abbreviate

v.(&')=Ap(&') (71a)

n,„—= (z;—Z„P)/Iz,o—z„ol. (72)

By our Assumption B, A„(k')must be nonvanishing
only for k' k„np„.t' Consequently the k' integral in
Eq. (70) may be evaluated to give

eikPRP

Ip QPp-—
p~(~P) RP

expl iQ (Z,—Z,o)]

Here

x —(2a)'ti—
I

kp ltlk„np„—I

rp 4 Rp )

xA, (z )g,(" z; "). (73)

The quantity A„is interpreted as the wave scattered
from ZP to Zp'. The wave number of this wave is k„
and its direction is

Here "u" is the scatterer from which the previous
scattering has occurred (v=0 refers to the incident
wave, we recall).

It is convenient to introduce v'I into Ip, so as to
avoid the complication of tracing the historical sequence
of scatterings when we transform from the Z's to the
Z"s. Thus, we define a "scattering amplitude" f:

Then
vii —= a (Rp/Rp) —Q/M.

Rp/rp= ar/tier r= ti/s g,

(78)

(79)

where r is the time which has elapsed since the collision
Lsee Eq. (67)].Finally, then

Rp y e ) Rp
fl kp—k@p I= —(2~)'t —

I kp ItlkAP. Iv'I (77a)
E Rp' ) vite Rp )

and

fl kp k.&—p. I—=—(2~)'t —
I

k —ltlk. &p. Iv'~. (77)
p ) Rp fp'

Rp ) rp ( Rp

This is further simplified by noting that the ratio
Rp/rp depends only on the scattering angle and energy.
The particle speed t is given by Eq. (58), whereas the
relative velocity of particle and. scatterer (after the
collision) is

0
gskpBp

A„(ZPP)= (2a) I ' d'k' expPik' ZPP]A, (k'), (74) Is=Pa P exp/iQ (Zp —Zpa)]J ~(HP) RP

ot op (75)

if no scattering has occurred IIrom scatterer "0.." If a
scattering has occurred, then Eq. (66) defines Z'.
This terminology requires some care in its application,
since for each possible sequence of scatterings we have
a digprertt set of variables Z. (Because the number of
scatterers has been assumed large, we can neglect the

which represents the amplitude of waves at Zp' which
have been scattered from Z„'.

To obtain the scattered intensity, we shall eventually
have to integrate over all coordi'. nates Z (n= I, 2, X).
The form of Eq. (73) suggests that the Z ' are more
convenient variables that the Z . Thus we extend the
delnition of Z„Pby defining

Rp
xfl kp—,k„tip, IA, (zpp)gp(zip XN'). (80)

&Rp )

The expression (80) is now in the form which we shall
use. Rp is the distance that the wave has travelled
since its last scattering. The velocity of the scattered.
wave is e, while e& is the incident velocity. Had no
previous scattering occurred, then only the term with
v= 0 survives in Eq. (80) and the differential scattering
cross section is

00= 8 Vg

( L(m*/t ) (p/»)]'=
I
(2a)'tit

I
'I I. (8I)

~ &+ (k /pp) (tr/~)Pp @p)'
The factor

I
(2a.)'pt

I

' will be recognized as the center-of-
"This is explici ly demons ra ed in connec ion wi h Eq. ( ) ss d'ff t' 1 s s t Th d fof reference (5). It has been implicitly demonstrated in the

process of obtaining the outgoing wa, ve in Eq. (70). be recognized as the usual codIicient for transforming
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from the center of mass to the laboratory coordinate
system.

A more convenient "cross section" for our applica-
tions is

~(ap,pt)= If(ken-P k.nP) I'

a(~P,P0) —= I f(kp".p ko) I'. (82)

In a formal sense these are still operators, since they
depend upon Q'= (1/i)V'zPO. It is evident, however,
that when we calculate scattered intensities (as will

be done in Sec. III), the significant consequence of
this is that our cross sections must be averaged over
the spectrum of Q' values. This result is intuitively
self-evident.

When SP is not set equal to unity in Eq. (53), the
propagator"

(1/R ) e p(ik R ) e pIiQ (Z —Z ))
is replaced by a generalized ProPagator Ep„(Rp).Then
Eq. (53) still takes the form (80), modified as

Ep (Rp)f(kp(Rp/Rp) k np)

B. The Coupled Scattering Equations

We return to the second of Eqs. (32) for the 4' (x).
In accordance with Eq. (71) we set

XA (ZP')go(Zi' .Z~') (83)

The evaluation of Ep„involves a computation of the
terms in SP. I Eqs. (53) and (54).) We shall return to
this in Sec. IV.

we shall develop a transport equation from these in
the next section.

C. The Quasi-Elastic Scattering

We have just obtained expressions for the scattered
wave when the scattering is inelastic. By "inelastic" we
have meant that the scatterer recoils approximately
as if it were not initially bound in the medium. This
defined the order of the sequence of terms in Eqs. (53)
and (54) for I.

When the scatterer does not recoil with an energy
large compared with this binding energy, the propagator
b ' is not appropriate for starting a series of approxima-
tions. In this case we still use Eq. (44) but evaluate it
differently:

dp ——pp'+irt e(k—), pp'= pp —(W'—W'p). (88)

Now we take W' as the average energy of the medium
before the scattering of interest has occurred. Thus dp

is the appropriate energy dersomieator for scattering
which is elastic (with respect to the. medium) and gives
a reasonable starting point for studying quasi-elastic
scattering.

In this case our first approximation is

t
e'" *exp(iQ Zp) d'k'd'Q'

IP=Pp d'kd'Q
pp'+irt p(k) — (2z)'

X&(k+Q—k' —Q') (k,Q I
t

I
k', Q')&P(k')ap(Q') (89)

exp(ikpRp)
=Pp fop„(Zp)gp (Zi ~ Z&).

v(~)=1 gp

@ (z)=Iso(~)+ p yP(~))g(Zip. . .Z~p). (84) Here kP is the root of dp(k)=0 and
P(~)-&

fp= —(2z)'nt*(k(RP/R—P) ItI knP), (90)
This expression and Eq. (83) for I [I is defined by
Eq. (36)) are now substituted into the second Eq. (32)
and x is set equal to Z p. The wave function gp "factors"
out to give the coupled equations

(Z ') =P LE o(R )f( P,PO)$ (Z ')

+ 2 E, (R,)f(~, P)A, (Z,o) ). (85)
p(WP)=&

Here we have introduced the notation

f(aPpp)=f(kp" p kA ) (86)

and ZPp= ZP whether a scattering has occurred or not
from "P."This results since in this case the medium has
absorbed the recoil momentum and thus the scatterer
behaves as if infinitely heavy. "

III. THE TRANSPORT EQUATION

To obtain a transport equation from Eq. (85), we
must square it to find the density of scattered particles.
At the same time we must average over positions of
the scatterers.

The density of scattered particles at x is
I
see Eq.

(8~)
(32))R P= Z p —ZPp.

)"Ie(x)I'd'z, " dpz~.When the scattering is spin-dependent, Eq. (85) is
easily modified by keeping initial and final spin labels
on the f and spin labels on po and the ice„etc.and
6nally summing over spin states.

The "algebraic" equations (85) provide a complete
solution to our problem. Because E is a large number,
their general solution is not feasible. For this reason,

Instead of I4 I
', we shall find it more convenient to use

'6We recognize that intermediate situations may arise, in
which two or more scatterers recoil together. In this case the
equivalent mass of the scatterer would be an integral multiple of
the mass M.
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instead

t+-(Z-)I'.

This is permissible since the number of scatterers is
considered to be large.

When we square Eq. (85), it is evident that "cross
terms" occur, representing interference of waves
scattered from different scatterers. These terms are
purely quantum-mechanical and do not occur in a
classical theory. They are nonvanishing, however, only
because of local "structure" in the scattering medium
and are thus expected to involve the correlation function
G t as in Eqs. (22)—(26)j. In anticipation of this we
define a "mixed density" e by the equation

P.,(Z.o), ,P, (Z,.o) II (.~, ',P,J3')d z„o

for most positions Z„'and Z„'—but by assumption C
is adequate for our applications.

Then we may write, where L(z„p,Z„',Z~~', Z P)
is some function of the variables indicated, and l(&A,

L(Z„',Z„',Z.P Z to) (go)'
P~P

N

X Q (vAzc, ~ al)d'ZP
v=1

=1P L(ZJ, ,Z/„,Z y Z p) ~go~'

N

X g (~No, c, o.t)d'Z. 0

=n(~~' PP') P(z o Z o)G(zpo —Zp o)

XP(Z,')P(Z '). (91)

(As usual, a sum over possible scatterer spins is implied
here. ) On multiplying Kq. (85) by its adjoint, we shall
obviously obtain a set of coupled equations for the
n(nn', P8').

The notation (o.,a'), etc., is used in Eq. (91) to suggest
that points Z ' and Z ' are neighboring positions, as
are also Zp and Zp. '. On the otherhand, Z ' and Zp

are not, being separated on the average by a distance
much larger than the correlation range Ro (Assumption
C). The justi6cation for these remarks will be given
below.

It will be convenient to supplement the definition of
6 by writing

G(Zp' —Zp') I p=p'= 1

P(z,', Z.') i
„=P(z '),

P(Z,o}P(Z, o)
Ij p p=P(Z=, o), etc.

We also de6ne, in analogy to Kq. (91)

.yp }—=Lq. (z, )q, (z,.o)j,
"(~)—= .(~~).

(92)

(91a}

At this point it will be useful to establish a convention
for replacing sums over particles by integrations over
particle positions, and vice versa. By our assumption
C )and the assumption that the correlation range
R~('g'Ug, we are free to write

Here the notation g„'means that an arbitrary number
of variables (but small compared to 1V) is omitted from
the integration. This equation is true, of course, only

t'igoi' rr d'Z'
v(Qp p')

=P(Z„O,Z„O)Xfactors independent of (Z„O,Z„O).

= Q 'O' L(Z„O,Z„',Z g' Z, p)~go~'
P~P

N

X P (~&t,t 'pi" ~t)d'Z' (93)

n(Z ') =
(
@ (Z ')

~

' g d'Z 0

~J v(~)
(94)

Lsee Eq. (84)j. In evaluating this and similar expres-
sions, we, must pay careful attention to the Zpos,

since these variables depend upon the past history of the
scattering and are thus not uniquely defined. This
means that all cross terms will apparently vanish when

we substitute the expansion (84). To see this, we

introduce the correlation function

1 1V—g(Z ', Z ')—= g d'Z, go*(Z,Z, Z )g
pc 2 j v=3

X (Zi, zp', Z' ZN),

where we suppose a scattering to have occurred from
particles "1"and "2".

Now, when the scattered particle has travelled
su&cientiy far, ) ZP —Z~ ( and (

Zmo —Zm ( become
arbitrarily large. This means that b(ZP, Zmt) =0, since
then the overlap of the wave functions will vanish.

The 6rst equality above is a direct consequence of the
equivalence of the S scatterers. The second equality
provides a definition for evaluating the sum over
particles when this is not accompanied by an integral.
For the logical development of the transport equation
found below, the second equality in Kq. (93) need
never have been introduced. For intuitive clarity it
seems very useful, however, to interchange sums over
particles and integrations over particle coordinates in
this manner.

The particle density at Z 0 is
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In view of this, Eq. (94) Land using Eq. (93)] is

N(Z.0)=rio(n)+ r, 2 &(nnl l ')B(~p0, ~p')
u(&v') v'

+P N(nn, II,p) (95)

below; but this factor of Z' makes up for the missing
integrals over Z 0 and Z„0to give just e(PP, ljp').

I:P(Zp')P(Zp')&(Z', Z-')3 '

=eo(n)+P n (nn, pp, ).

Equation (95) appears to tell us that after suflicient
time there is no interference of waves scattered from
diGerent scatterers. This, of course, is not in general
true —indeed, the error in our conclusions rests in our
approximate treatment of the Placzek-Wick" series
in Eq. (55). We shall see, however, that the interference
terms are small under the conditions of our problem-
and that the evaluation of Sec. II-C is appropriate for
obtaining these.

VVe shall then obtain the Grst order interference by a
more careful reevaluation of Eq. (95).It is evident that
waves scattered from two diGerent scatterers will

interfere only if the system is left in the same final state
after either scattering —which is likely to happen only
for very low states of excitation. This suggests that for
the interference terms we shouM. use the evaluation
(89). Since then Zp'= Zp (all P) interference of scattered
waves can occur.

The medium will very likely be left in a low-lying
state if Q, the momentum transferred to the scatterer,
is not much larger than the width of the spectrum of
Q' values in a0(Q'). For scattering of sufficiently small
angles this condition can always be met.

On re-evaluating Eq. (95), which involves forming
the square of Eq. (84), we now obtain

N(Z. ').=e.(n)+ P n(nn py')G(Z '—Z ')
=e,(n)+P ri(n, p). (96)

Here we use the convention (92) and the evaluation
(83) for the terms with @=p' in the double sum. For
pWp', Eq. (89) is used for the evaluation of the scattered.
amplitude. Thus Z„'=Z„and. Z„'=Z„ in G above.
The density N(n, p) is delned by Eq. (96).

One may well ask why it is just the correlated term
(1/'U')G(Z„—Z„0) is kept in Eq. (96) rather than
(see Eq. (4)) the full probability E(Z„0,Z„').The
reason for this is that the I'o operator instructs us to
discard elastic scatterings. From Eqs. (24) and (25)
we see that the term P(Z„0)P(Z„')in P(Z„0,Z„')leads
to elastic scattering and has already been included in
the optical model potential. 5

The transport equation is now very simply obtained.
We multiply Eq. (85) by its complex conjugate and
use the definitions (91) and (91a). [For the interference
terms, we use Eq. (96)$. Finally, the relations (93)
permit us to replace the integrations over Z„'and Z„'
by a factor of '0' in the last term on the right in Eq. (9T)

~pp (nP, Pl )=~(nP, PI—) «r P=P'

happ (eP,P~)= lf0(n—P,P~) l' «r P&P' (98)

This is in accordance with our discussion accompanying
Eq. (96). Physically, this means that our cross section
is that appropriate for an laboured scatterer for the
incoherent terms and is that appropriate to an infiriitely
heavy scatterer for the interference terms.

To further simplify Eq. (97), we observe that

exp(ikpR. p)
Zp„(R~p)— X (nonoscillatory terms. )

R~p
Thus, we set

Ep. (~-p)Ep" (~- p )= I&p.(~-p) I' exkihp(~p ~- p)j
=IEp, (~-p) I' expL —ik-p (y-—yp)3, (99)

where

k.p=—kpn. p,

ya=L' Za p

yp—= Zp -Zp'.

Now Eq. (97) becomes

G(Zp'- Zp'). ( n'»')

=exp( —ik p y )[G(Zp0—Zp 0) exp(ik p yp)j

XDEp.(~.p) I "pp ( P,Po) .(»')

+ 2 I&p. (~-p) I'~pp (nPP~)

(100)

(101)

XG(Z 0 Z,0)rb(PP pp')$

=—G(Z '—Z ')e( ',PP')

=G(Zp' —Zp') Ãpo(~-p) ~po'(&- p )

Xopp (nP, P0)&o(PP')

+ P G(Z„'—Z„')E,(R )E,t(E ~ )

Xhapp (nP,Pp) (PP', lJp') $.

Here we have made the approximation of setting

f(kp.n..p. , h„np„)= f(kpn p, k„np„)
~P'u' =~PIp

etc , in .all quantities except oscillating exponentials.
This is generally justified, as will be seen, since distances
such as (Zp —Zp) are of importance only if less than
Ro. Also, we have introduced )see Eqs. (82) and (90)j
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This equation may be "solved" with the Ansatz

exp( —ik.p y )n(n, P)

as the density of particles at n having energy between
e and e+8e. The sum in Eq. (106) is carried out over
only those scatterers "p" which scatter particles into

p G(Z. p Z p)n( I pp/) (102) the correct energy range.
Pl Again,

[compare Eq. (96)). Using Eq. (102), Eq. (101) may
be written as

n(«,p)= EP.(R.P) I'.( P,P0)..(p)
+Z. I Ep. (R.p) I'«(~p, pp)n(P, p) (1o3)

We have here introduced the abbreviations )the
convention of Eq. (93) is used to set G(ZP' —ZP') =1j.
ol(~P,P0) = Z G(Zp' —Zp') exp(ik-p yp)

X[«(P,P')/n. (P)j pp ( P,P0)

p
1+— d'yP G(yP) exp(ik P ye)

g4
(104)

X .(p,p')/ .(p) -( P,P,0)
J

o.(~p,pl )=~(op,pi ) 1+(pP') "d'y G/y)

i'edQ2n(n; e, k) = pn(n, P) (107)

Here the QP is carried out so that (ZP' —Z ') lies within
bQ„ofthe direction of k.

On summing both sides of Eq. (103) over p, subject
to the above condition, we 6nally 6nd

represents the density of particles at n having energy
e and momentum parallel to k (within the solid angle
de). The sum over "8" runs over those scatterings
which satisfy these conditions.

When the scattered particles are sufficiently light
that their energy loss on scattering may be neglected,
a very simple transport theory is obtained. We then
define

n(Z ',k)—=n (Z ')5(Q —Q„,)+p n(o. ,p) (1/hQ2)

(108)

=no(Z s)b(Qs —Qzs)+p R P'dR en(r2P)

&—=
I f1'/I fo I'.

&&exp[i(k P
—kP„) y))

n(x, k) =no(x)&(Q~ —Q~o)+p R'dR dQI,
(105) 4 4

)The cross section o~ is essentially that appearing in
Eq. (22)j.The occurrence of T i in Eqs. (104) expresses
the fact that the kinematics is diferent for the quasi-
elastic than for the inelastic collisions. Also, the energy
of the particles scattered quasi-elastically is not equal
to that of inelastically scattered particles. Thus, even
though Eq. (103) is formally correct, one may have
to label separately the quas-elastic scatterings. " In
most cases, however, we do not anticipate this complica-
tion, since the quasi-elastic scattering is expected to be
important for small angle scatterings —and here the
kinematics are the same for the two "types" of
scattering.

Equation (103) is our anal transport equation.
Recalling that

&( I Eg (R) I'o;(k,k')n(x', k'). (109)

For simplicity we have replaced Z 2 by x, etc., and
have set

R=—x'[x= —R(k/k). (110)

Equation (109) thus gives us the number of particles
in a unit volume at x travelling within unit solid angle
of the direction k. The incident density no(x) contains
only particles travelling in the direction ks. Were we
to take

IE(R) I
2 (1/R2)e —(1/x)B

Eq. (109) could have been written down intuitively
(using Eq. (22)).

As a inal comment covering Eqs. (103), we recall
that o, (np, pp) in a strict sense depends upon the
momentum Q' of particle P before it was struck. We
must suppose then that the o, actually used in Eq. (103)
represents an average over Q'-values. It is also true
that IEP„I2 is an average over the medium wave
function. The manner in which these averages are
evaluated will depend on the particular problem at
hand.

I El 2=[1/(R.p)23 exp[ —(1/x)R p7,

the structure of this equation is rather obvious. It
represents an inhomogeneous equation for the n (ix,p),
since no(P) is considered as knoton (it is just the initial
beam intensity).

Depending upon the information which one desires,
there are a variety of special forms for (103). For
example, we may define

(106)
IV. FURTHER DISCUSSlON OF THE

~"(; )= Z (,P)
TRANSPORT EQUATION

p|,'&n Sg) First, we should like to describe in more detail the
rr We shall give a more detailed treatment of nas, el„„., evaluat~ion of the "propagator" EP, of Eq. (83). This

scattering in Part II. is deined implicitly on comparing Eqs. (53) and (83).
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In lowest order

Zp, = (e"p"p/Rp) exp[iQ (Zp —Zp')$, (111)

as evaluated in Sec. II. The corrections to Eq. (111)
arise from two sources. First, the exact root of b(p) =0
is not given by Eq. (64). Second, the correction terms
to X)p (Eq. 54) do not in general vanish.

The corrections may be treated in a straightforward
and systematic way. The expansion (54) is explicit
and the terms of the series may be evaluated as expecta-
tion values over the state g„s.Also, the root b(pp) =0
may be expanded as

ps= pp+bp+5ps+

1 ( p y
'(k' Q')' 1 pm*

+-
2 (M+m*) pp' 2 M(M+m*) pp

Q~s

(112)

exp(iRpbps) (1+iRpbps). (113)

After a little reduction, we are led to

lEp l' (1/Rp')e ~«i (Ol1+i[Rpbpsgly). (114)

Here we have set

i(kp —kp*) —=—1/X, . (115)

If the distribution of Q' is spherically symmetric, then
the commutator in Eq. (114)goes to zero as Rp becomes
large. Thus to this order

l
E

l

' is not modified.
It is important to observe that lEl' is in general

much simpler than E itself. This follows, since

E (1/R) exp[ik(y)RJ

for excitation of a state "y" of the medium. When we
form lZls, the oscillating phase factor drops out.
We can see in detail how this occurs for the correction
(113).Hence we have to evaluate such quantities as

(os(Q"), expL —ipo(Q")Rj exp[ipo(Q')RJoo(Q'))

Now, Q"~Q'+4k, where LN is the uncertainty in the

etc. Here bp is given by Eq. (64). To the next order,
Eq. (65) gets a factor

momentum of the scattered particle. But hk its/R, so
there is not an eGect which increases with R.

Returning to Eq. (54) for Sp, we recall that W, is
to be chosen to make the expectation value of the
erst correction term vanish. Also, the leading term in
the Placzek-Wick expansion does not occur for us.
This term was

I 1+(l)l
(m*) [(1/2M) (Q")Qq

4M 6p

(116)

Here I'p is the binding potential of particle "P" in
the medium.

The evaluation of the correction terms to lEl'
seems straightforward in principle (in that they are
reduced to expectation values with respect to the
ground state 7=0). They also become rapidly small as
ep becomes large compared to the binding interaction
of the scatterers. Actual evaluation of lEls is rather
tedious; however, some further discussion of this will
be given in Part II where some simplifying approxima-
tions are demonstrated.

When the particles scattered are indistinguishable
from those in the scattering medium, our formalism
requires little modi6cation. ' The scattering matrices t
must of course be properly symmetrized. If the scatter-
ing medium is a degenerate Fermi gas, then one must
exclude states for the recoil particle which violate the
Pauli principle.

"A detailed study of this case has been made by G. Takeda
and K. M. Watson, Phys. Rev. 97, 1336 (1955).

which is just (v/tin) in Eq. (81). This factor does not
appear in our cross section e[Eq. (82)), however.
The next Placzek-Wick term does occur. It arises from
the iQp Sp term in Eq. (54). One is led to

1 (—Rpq
'

1 (M+m*~'
, expl

Rp' (X, ). 964 M i

f m*) (psl V'zpI'p'I ys)
xl + ~ ~ . (117)


