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It is possible to relate the dispersion formula for longitudinal oscillations in an inGnite, uniform, collision-
free plasma with no magnetic Geld to the complex potential of a line charge distribution on the real axis of the
phase velocity (u =or/h) plane. If the initial velocity distribution integrated over directions orthogonal to the
direction of propagation is fs(v) the plasma is stable if and only if

fp'(v)dv

8—Q

is negative at the minima of fs(v) on the real axis, with unimportant exceptions. In particular it is shown that
single-peaked distributions are stable, while those with very sharp (e.g., nondifferentiable) minima or with a
zero of fv between two peaks are not. The charge analogy yields information on the wavelengths for which
oscillations can grow and on rates of growth. Examples are given, including the case of two identical inter-
penetrating hot plasmas. A limited generalization to transverse oscillations is given.

I. THE PROBLEM AND ITS SIGNIFICANCE

E shall consider the stability of an infinite, uni-
form plasma neglecting collisions and with no

magnetic field by studying whether there can be growing
linearized oscillations in it. At first we shall deal with
longitudinal waves; our use of the terms "stable" and
"unstable" below must be regarded as qualihed by the
phrase "with respect to longitudinal oscillations. " Self-
excited transverse electromagnetic waves have also been
found' and in Sec. VII our results will be extended to
such waves, but under more restrictive assumptions.
Many authors' ' have studied the initial value problem
and dispersion relations for waves in such a plasma, but
none has given necessary and sufhcient conditions for
stability. It has been shown' that there is instability in
the presence of a beam of high-energy particles with
small spread in velocity, which is of interest in ex-
plaining the large electron scattering in plasmas. ~ It has
also been proposed that colliding clouds of plasma may

*Howard Hughes Fellow; work done in part on National
Science Foundation Summer Fellowship.' E. S. Weibel, Phys. Rev. Letters 2, 83 (1959).' D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).' N. G. Van Kampen, Physica 21, 949 (1955).
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r I. Langmuir, Phys. Rev. 26, 585 (1925).

accelerate particles to high energy in a process involving
the growth of plasma oscillations, 8 and that plasma
oscillations may provide a mechanism for resistivity at
high temperatures. o

II. REDUCTION TO THE ELECTROSTATICS PROBLEM

We shall at first regard the ions as fixed, but shall
indicate below how this restriction is easily removed.
They will be uniformly distributed with number density
mo. The initial electron density will be no, and the
velocity distribution ttpfv(v). We shall consider line-
arized oscillations with coordinate-velocity distribution

f(r,v, t) =No fv(v)+ fr(v) expLi(k r—cot) j, (1)

with real wave number k and complex frequency vo. We
shall say the plasma is unstable if there can exist waves
for which Im(oo)) 0.

Following Case' rather closely, we de6ne oil and v~ to
be the components of v along and perpendicular to k and

fv(»i) =
~

fo(» i,vs)dvr

Thus Case's ri(v„) = —(&o„'/hs) (8/B»i) fv(»i) where ro„s

E. N. Parker, Astrophys. J. 129, 217 (1959).' O. Buneman, Phys. Rev. 115, 503 (1959).
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Fio. 1. Initial velocity distributions fp(v) versus v.

=4nrstpe'/stt. . Henceforth we write fp(v) for fp(vrr), re-
membering that different vectors k may yield different
functions fp(v) so that our stability criterion should be
applied for each k. Denote Bf (p)v/fl =vfp'(v)

It has been suggested that instability exists if fp(v)
has two peaks at least one of which is quite sharp, but
not if there is only one peak or two broad ones. ' It has
been shown there is no instability if fp(v) is Maxwellian. "
We shall prove below that if fp(v) has only one peak, the
plasma is indeed stable, but that the situation is more
complicated for two peaks. Essentially, if fp is smooth
enough (e.g., twice differentiable) the above suggestion
is correct, but if, for example fp' exhibits step function
behavior, instabilities may appear which persist no
matter how broad the peaks or how shallow the dip be-
tween them. Referring to Fig. 1, we shall find that
plasmas with fp(v) like A are stable, like 8 and C
unstable, and like D or E stable or unstable according to
the depth and sharpness of the minima. %e shall obtain
a mathematically precise test for the stability of a
rather general fp(v).

We assume fp(v) has these properties:

(a) fp'(v) exists and is differentiable at all but a finite
number of points, where it has jump discon-
tinuities.

(b) fp(v) and fp'(v) are small at least of order 1/v4 at
infinity.

(c) Of course fp&~0.
(d) J' "fp(v)dv=t'fp(v)dv=1 (normalization).
(e) fp has a finite number of extrema.

Primarily we have excluded cases where fp has dis-
continuities, or where the energy density is infinite.
Conditions (b), (c), and (e) imply that fp tends to zero
monotonically for v' suKciently large.

Several authors have shown that waves of the form
(1) exist when po and rs, are related by

where ku=co. For real phase velocity I, the solutions of
greatest physical significance (at least in a plasma which
was initially in thermal equilibrium) are found by taking
the principal part of the integral. ' In the case of non-
real u, the integral is unambiguous as the integrand is
regular along the real axis. Since (3) is invariant under
complex conjugation, growing and damped solutions
occur in pairs. Damped solutions (the famous Landau
damping') may also be built out of a superposition of
waves of form (1) with real values of or, s but growing
waves can exist only with phase velocities u= pp/k which
satisfy (3).

It will soon appear that the discontinuity of the
imaginary part of the integral in (3) at the real axis can
be interpreted as the usual multivaluedness of the im-
aginary part (stream function) of a complex potential in
the neighborhood of charges; we shall need to know its
value only above the real axis where it is well defined as
we shall deal with u henceforth in the (open) upper
half-plane.

It is easily shown by a modification of the derivations
quoted in the foregoing" that the motion of the ions
may be taken into account by replacing fp(v) in (3) by
fp ( )v+ (tn,/ tm)sfp;(v) where fp. (v) and fp;(v) are the
initial electron and ion distribution functions averaged
as in (2). Thus the stability of a two-component plasma
may be treated in terms of an effective distribution
function fp(v) for a hypothetical one-component plasma.

Under the foregoing assumptions (a) and (b) we may
integrate (3) by parts to obtain

ln(v —u) fp" (v)dv—=W(u) =h'/pr„',

which defines W(u). We interpret any discontinuities in
fp'(v) as fr functions in fp" (v). W(u) = U(u)+iV(u) is
the complex potential of a line charge distribution along
the real axis of the u plane of strength s fp" (v). The 5

functions in fp" correspond to true line charges (loga-
rithmic singularities) and the remainder to a charged
sheet. Ke shall take advantage of the large body of
knowledge extant about the complex electrostatic po-
tential by discussing our stability problem from now on
in terms of the properties of the charge —,'fp" and its
complex potential" 8'. The symbol I will refer to points
in the upper half plane and v to points on the real axis.
The plasma is unstable if and only if we can find a point
I such that

U(u))0, V(u) =0, Im(u))0,

for then we can choose a real number h to fulfill (4). As
U is symmetric with respect to the real axis, so are the

co„' (
"fp'(v)dv

=1)
to V I

'P L B.Bernstein, Phys. Rev. 109, 10 (1958).

(3)

"The author has recently discovered that a different analogy,
which seems less fruitful, between W' and the electric/old of a line
charge distribution, due to'itL. Walker, was described by H. A.
Haus in the Proceedslgs of the Coefererrce orr Plasrrra Oscsllatsorss
(Speedway Research Laboratory, Linde Company, Indianapolis,
Indiana, June 8—10, 1959).
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lines of force (V= const) and equipotentials (U= const).
We list some important properties of the charge dis-
tribution and potential.

(i) By integrating fs" from minus infinity to v, we see
that the total charge to the left of v is sr fs'(v) and the
total charge of the distribution is zero.

(ii) For this distribution the total dipole moment
vanishes but the quadrupole moment is 1. Asymp-
totically, then, W(u) I/I'. Thus there is always a
V=O line of force which tends to infinity, asymp-
totically parallel to the imaginary axis. Any other V=0
lines in the open upper half-plane which tend to infinity
would have to be asymptotically parallel to the real
axis. It can be shown (with some effort) that there are
no such lines; but if there were, U would be decreasing
toward infinity on them and from the discussion in
Sec. III it will be clear that they would have no eGect on
our conclusions. From the asymptotic form we see that
there are two U=O lines in the upper half-plane which
tend to infinity at angles &45' with the imaginary axis.
For large

~
I~, U is negative between them and positive

between them arid the real axis.

extrema where fs"=0, introduce qualifications into
some of our arguments, it will be assumed at 6rst that
they do not occur, but we shall give the extension of our
method for them later. The particularly simple case
where fs is zero or an absolute maximum and fs' ——0 will

be treated explicitly in Sec. III.
We have found that lines V=O meet the real axis at

places where fs' changes sign (extrema of fs) but should
consider one other possibility: If fs =—0, say, for v) A, a
V=O line runs along the real axis from A to . Is it
possible for other V=O lines to meet the real axis in this
region? If so, there would be a neutral point (dW/dg
=8U/civ=0) there, but differentiating the formula

f" fo'(P)&P
U(v) =

with respect to v and integrating by parts (for a point v

where fe——fs' ——fs"=0) we obtain

I"fs(P)dP

civ & (P—v)'

Ucp Uc0
which is of constant sign by (c) from A to infinity. Thus
no V= 0 lines can meet the real axis entirely outside the
region where fs/0.

&0 pe . - —- —-—.E GIprlr 0qo. ~ n

O
0+0 U)P

I
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/

REAL AXIS

FIG. 2. Net of t/ =0 lines in the complex I plane, for a case where
fo(v) has two symmetrical peaks.

(iii) Just above a point v on the real axis V is nearly
v fs (v) whenever the latter exists, since this is just half
the flux from the charge -,'fs'(v) to the left of v."When
fs' has a jump discontinuity at v, say from value n to
value P, a succession of flux lines radiates from the
discontinuity (a line charge) with V values ranging from
vox to s.P. Thus a V =0 line meets the real axis at v if and
only if fs changes sign there. This is just the condition
that fs have on extremum at v. If fs' ——0 at a point v but
fs"WO there, we see by looking at the variation of V
just above the real axis near e that a single V=O line
meets the real axis there; again fs has an extremum at v.

If fs" is also zero at v, or if fs' is zero in a whole neigh-
borhood of v, several V=O lines may meet the real axis
there. Points or intervals where fs' fs"-—0 and fs'——is of
opposite sign on either side will be called "horizontal
places of inflection" of fs. Since these, along with

n This can also be seen from L1/(v —I—se)j=P(1/(v —m)g
+s~S(v —I).

III. THE STABILITY THEOREM

In view of (5) above, the lines of flux on which V=O
are particularly important, as the plasma is stable if and
only if U(0 everywhere on them. Since there are no
charges in the open upper half-plane all such lines must
terminate on the real axis or tend to infinity; we have
shown that precisely one tends to +i~, but U&0 on it
near infinity L(ii) above]. Since U varies monotonically
along lines of force except at neutral points, we can
imagine each V=O line to be marked with an arrow in
the direction of the electric field, i.e., the direction of
decreasing U, illustrated in Figs. 2 and 3. Our problem
of checking the sign of U at each point on the net of
V=O lines can now be reduced to the following simple

O&plC psREGlp ~
0 O~i rz

r

U&0 U~O

f
/

f

l

REAL AX IS

FIG. 3. Net of t/'=0 lines in the complex I plane for a case where
fs(v) has 6ve maxima.
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procedure: By the foregoing assumption (e) and prop-
erty (iii), the lines V=O meet the real axis at a finite
number of points, vi, vs, ~ ~ v„where fs' changes sign.
Starting at a point v; we can follow a V=O line into the
upper half-plane, and by taking the line immediately to
our right away from any neutral point we encounter,
return to the real axis at some point v; (with the one
exception that we may end on the line tending to iao)
Since the arrows on lines at a neutral point are directed
alternately toward and away from it, U varies mono-
tonically during such a traversal and hence has its
extrema on the ends of the lines, being larger at the end
where the electric field points away from the axis. Since
the normal component of the electric field at the real
axis is v fs"(v) we see the points on those V=O lines
which are traversed during the above process where U
is the largest, are the minima of fs on the real axis. From
the asymptotic form for 8' the arrow on the line tending
to i ~ is toward the origin, so U(0 on it up to the first
neutral point. By a well-known theorem of potential
theory, the V=O lines cannot enclose any region of the
open upper half-plane; therefore we traverse the entire
net of V=O lines if we repeat the above process for all
i, 1(i(e. This proves the theorem: The plasma is
stable if and only if U(0 at each minimum of fs. (We
have temporarily assumed no places where fs'= fe"=0.)

In practice, the potential U at a point v on the real
axis is calculated from

t

" fo'(P)&P t." fo'(P)dP
U(v)=Re lim =P

~

. (6)
&~0, p Zg

If fs'r is positive on each side of a place where
fs' fe——"=0 (making it a minimum), at least one V=O
line must meet the real axis there, as just above the real
axis V changes sign. Furthermore by considering the
normal component of the electric field right above the
real axis, we see that there must be at least one such line
on which U increases toward the real axis. Hence we
must check the sign of U where such lines meet the axis.
If fs' fs"——0o——nly at an isolated point, we simply
evaluate U there by means of (6) or (7) but if this holds
in a whole interval, the situation becomes more com-
plicated. By studying what patterns of lines of force are
possible, one can show that, if BU/Bv has no zero in the
interval, we should check the end where U is largest, but
otherwise at the zero of BU/ijv. Similarly at an isolated
maximum point of fs there must be at least one V=O
line meeting the real axis on which U increases away
from the axis, and we need not check the sign of U
there. At a maximum, however, where fs' ——0 through-
out a whole interval, we must check the sign of U at any
neutral point (BU/Bv=0) therein. In the above dis-
cussion, reference was made to finding the zeros of
BU/Bv in an interval where fs' ——0, a cumbersome pro-
cedure for most functions fs(v). If fs is an absolute
maximum or is zero there, Eq. (7) shows U is negative
or positive throughout the interval, respectively.

From the preceding arguments it is clear that a single-
peaked distribution is stable: the one extremum is an
absolute maximum where either fs'=0 and (7) applies
or fs is discontinuous and the first form of the stability
theorem shows the plasma is stable.

The principal value sign is not needed if fs'(v) =0. If
fe is discontinuous at v a line charge is located there and
U —&~~ at v according to the sign of the jump
discontinuity in fs . If v is a nondifferentiable mieimum
LFig. 1(B)j the sign is "+"and the plasma is unstable,
but a non-differentiable maximum gives the opposite
sign and introduces no instability. (See Sec. VII,
however. )

When fs'(v)=0 we may integrate (6) by parts to
obtain

~" fo(P) fs(v)—
U(v) =, dP )when fs'(v) =Oj. (7)

(P—v)'

Thus if fs(v) is zero at one of its minima LFig. 1(C)j the
plasma is unstable. At places where fs'= fs"=0, several
V=O lines or none may meet the real axis. At a hori-
zontal place of inflection the sign of V just above the
real axis is the same on either side, so an even number of
V=O lines meet the axis there. Then if there are any
such lines, there is at least one on which U increases
away from the real axis. Following this line (in the sense
of the procedure outlined in the foregoing for traversing
lines) we shall arrive at another point on the real axis
where U is surely higher; and hence we need not check
the sign of U at the horizontal place of inflection.

IV. THE "MINIMUM CONDITION"

We have seen above that when fe'=0 throughout an
interval a V= 0 line meets the real axis at any extremum
of U in the interval (neutral point). Thus if U)0 at
such an extremum, the plasma is unstable. This conse-
quence of an extremum in U was first noticed by F. D.
Kahn" in a graphical analysis of the stability of per-
fectly cold counterstreaming protons embedded in a
cold electron gas. He then carried over the result to hot
counterstreaming electrons and ions" where it does not
apply as the condition V=O is violated at the extrema
of U. The method of Kahn, based on the minimum of
U, does not seem readily generalizable to other cases as
it is the depth and sharpness of the minima of fo, not
the existence of extrema of U which are significant for
instability.

V. RATES OF GROWTH. LIMITING WAVELENGTHS
FOR GROWING WAVES. EXPANSION QF THE

DISPERSION RELATION

We have seen that to each growing wave there
corresponds a point I in the upper half of the complex
phase velocity plane where (5) holds. From the previous

"F. D. Kahn, Revs. Modern Phys. 30, 1069 (1958).
14 F. D. Kahn, Astrophys. J. 129, 468 (1959).
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discussion of the V= 0 lines and the variation of U along
them it is clear that these points comprise portions of the
V=O lines which are connected to the real axis at those
of the points v; where U(v~)) 0. Assume that fs"WO at
each of these points, so that a single V= 0 meets the real
axis at each of them and the normal component of the
electric field is nonzero. Consider a point, say 8, where

fs is a minimum and U)0. The electric field points
away from the real axis at 8, and if we follow the V=O
line away from 8 we shall eventually come to a point u
where S'=0, or shall return to the real axis at some
point v, (using the right-hand turn rule at neutral
points). In the first case we see from (4) that unstable
solutions occur for values of k fulfilling 0&k&k
where

k, =o~„LU(v)]& (8)

and in the second for oivLU(v;)]&(k(oi„[U(v)]&. The
latter situation seems unlikely in most cases of physical
importance. Let u=ui+ius and oi=cvi+io~s. Then for
the rate of growth of a wave we find

ois=kus=covusLU(u)] . (9)

Thus co2 is zero at u and 8; in most cases it will have only
one maximum in between. This is surely the case when
u and 8 are close together, as when the distribution
divers but little from a stable one.

From (8) we see that if U is bounded near v growing
waves will occur only for wavelengths X longer than
X;„=2s./k . If, however, fo' is discontinuous at v„

producing a logarithmic singularity in U there, (8) is no
restriction at all and we expect growing waves of
arbitrarily short wavelength. One might distrust this
result since the derivation of (3) is valid only for
suQiciently long wavelengths, when collective motion
dominates individual particle effects. 's If fo(v) is nearly
Maxwellian (3) is valid for lI,)Xn ——(ET/4s. use') &, but
if not we can probably use the cutoff distance XD'

obtained by evaluating A.~ for a Maxwellian plasma
with the same particle and energy densities as the one in
question. Since an instability usually persists at long
wavelengths (k —+ 0) our conclusions on instability will
not be aGected in most cases by the introduction of a
minimum wavelength.

Qualitatively, we can seg from (8) and (9) that the
sharper the minimum in fs(v) and the steeper its sides
the larger the maximum values of k and ~2 will be for
growing waves, as U(v) will be greater.

We know there are no instabilities for
~
u

~
suKciently

large since W 1/u' asymptotically. On the other hand,
U has at worst logarithmic singularities, which are all on
the real axis. Therefore the right-hand side of (9) is
bounded, and infinite rates of growth do not occur.

Since the V=O lines are lines of Aux the electric field
E= —(dW/du)* is tangential to them. Having found a
point 8 on the real axis where a V=O line meets it and
U) 0, we could in principle trace the instabilities into

"D.Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

the upper half-plane by integrating the equation

du (dWi *

ds 4du)

where s is arc length, or simply

du (dW) *

dp &du)
'

where p is a parameter. This would yield a parametric
form of the ~—k relation for nonreal co. If we know u and
8 are close together, this can be done approximately by
expanding W in a series about v, if fe is suKciently
smooth there. Using the derivatives of 8' defined by

d"W+ fd"W )
=hm(—

du", ~(du ) „+;,'

we get a Taylor series which gives S' in the upper half-
plane and an analytic continuation of it below the real
axis. .For points near 8, we write

k'/o& '= W(u) ='W(v)+ (u v) (dW+/du);-
U (v) + (ui+ su s—v)

&($(BU/8v);+i (BV/Bv)s]. (10)

Taking real and imaginary parts of (10) we find

t
BVq-&

(11)
&av)

where all quantities (except us) are to be evaluated at v.

For the maximum value of ~2 between 8 and I we get

2 (BV/av)
2 max=&y TT)

VS. [vU['
(12)

This is valid if U(v) is small but fails if (BV/Bv)„-
=fe"(v)=0. This formula cannot yield the Landau
damp:Ing' which is intimately connected with a super-
position solution of the initial value problem using only
waves with real phase velocity. It shows that at the
threshold of instability, when U(v)='0, the rates of
growth increase slowly (like U&) as U increases.

VI. EXAMPLES

A. Colliding Plasmas

Suppose two plasmas which were initially at the same
temperature and density collide. It is reasonable to
assume that each has had time beforehand to reach
thermal equilibrium but that collisions may be neg-
lected for a short time during interpenetration. We may
then study the growth of plasma oscillations in the
region of interpenetration by using the effective distri-
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bution function (see Sec. II)

fs(v) =-,'(m, /2srET)&(exp( —m, e'/2ET)
+e p)—,(v—v,) /2ETj}
+—', (m,/m;) (m;/27rET) &(exp (—m, v'/2ET)

+exp) —m, (v —vi)'/2ET j). (13)

The direction for k most likely to yield growing waves is
along vi. Integrating, then, over vi to find fs(v) and

differentiating with respect to ~, we obtain

fs'(v) = ——,
' (m,/2srET) &LS(e)+ S (v —vi) j,

where

S(v) = (em, /ET) exp( —m,v'/2ET)

+ (me/m;) &( em; /ET) exp( —m v/2ET).

We compute U from (6) at the extremum 8=-,'si of
fs(v) by the method of Kahn, 'e who gives

5 exp( P)tgt

Jackson gives a plot of k,„vs vi. We note that as the
relative velocity is increased beyond the threshold of
instability, the growing waves occur first at very long
wavelengths, as U(8) is small. This suggests that it may
be dificult to achieve Suneman's initial conditions
where the relative velocity greatly exceeds the thermal
velocity, so that the hydromagnetic approximation may
be used to get the wavelength I. of the most rapidly
amplified waves, but there are as yet no waves larger
than thermal Quctuations. '

VII. TRANSVERSE WAVES

Weibel' has given a dispersion relation for linearized
transverse plane waves in an infinite, uniform, plasma
assuming the ions are fixed. We shall adapt our previous
analysis to his formula in the case of no initial magnetic
field. Using Weibel's notation vss=s '+v„' and the
assumption fo(v) =F(vs, s,), we may write his equation
(4), the dispersion relation for waves propagating parallel
to the s axis as

= (2sr)& 1—sl exp( ——,'st') exp(-,'p')dp
J,

—= (2sr) &h(sl),

where h(stv2) is tabulated in Unsold. 's This gives

(14)

B. Counterstreaming Electrons and Ions

Our method can be used to calculate the value of
relative velocity between ions and electrons at which
instability appears in a hot plasma Lusing twice the
second and third terms of (13)7.The results agree with
those obtained by Jackson" and by Buneman' using
diferent analyses: the plasma is unstable if the electron
translational kinetic energy in the center of mass frame
exceeds 0.87ET, i.e., if the relative velocity e& exceeds
1.35 times the electron thermal speed (ET/m, )&.

"A. Unsold, Physih der SternatrnosPharert (Julius Springer,
Berlin, 1938), p. 163.' J. D. Jackson, "Plasma Oscillations, " Report No. GM-TR-
0165-00535, Physical Research Laboratory, Space Technology
Laboratories, December, 195g (unpublished).

U(8) = —(m,/ET) Lh(-', rt)+ It(-', rt (m;/m, )&)j, (15)

where st=@i(m,/ET)'. The only zero of (15) is at
st= 2.64 where the second (ion) term is negligible. This
supports the view that the electrons come to equilibrium
rapidly (say in a few electron plasma periods) followed
more slowly by the ions. ' "For ei(2.64(ET/m, )& the
plasma is stable and collisions are the principal ther-
malizing process. The transition to the unstable case
vi)2.64(ET/m, )' where plasma oscillations are im-
portant is smooth, however, for the quantity U(8) in
(12) increases smoothly with increasing ei, implying
very small rates of growth at the threshold of instability.

&no aF-
k'c' —ed' = ed 'sr vs'des ds, —,(16)

~ts ~ . ct'Us kv —ed ct'v

where we have changed numerical factors and the sign
of co to agree with our units, normalization, and sign
convention. Denoting srj's" vo'F(ss, v, )des by it (v,) and
using the normalization condition J Fdv= 1 on the first
term, we find

t
r" q'(s)ds)

h'/td s=
~

1+
~

(us —c') where u=ed/k
v —u

—= (1+U+i V)/(u' —c')

R(u)+—iS(u) = T(u), (17)

which defines W= U+iV and R+iS= T. The plasma is
unstable with respect to these transverse waves if there
are points in the upper half-plane where E.&0, S=O.
(The integral is along the real axis. ) Clearly W' is
analytic in the upper half-plane and for physically
reasonable functions F(vp, e ) goes to zero as u —+ oo.
Thus T is analytic in the upper half-plane and T 1/u'
as

~

u ~~~. Since T is analytic in the upper half-plane,
most of our discussion of the network of V=O lines and
the variation of U along them carries over to R and S.
The charge distribution now has two point dipole
sources, at N=~c. The plasma is unstable if R&0 at
any point where an S=O line meets the real axis, but
again we need check only those where the "electric 6eld"
E= —(dT/du)* points into the upper half-plane. The
S=O lines tending to infinity are of no importance, as
before. The points where S=O lines meet the real axis
are those where V=O Li.e. q'(e) changes signj and
possibly the points e= +c. If either of the point dipoles
at &c points toward the upper half-plane, an S=O line
with R —++ on near the dipole will emanate upwards
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from it, implying instability. For other orientations no
$=0 lines with E directed into the upper half-plane
emanate from the dipoles. The phase of the numerator
in (17) determines the dipole orientations. Since u+c) 0
at u=c and u —c&0 at u= —c, the dipoles both point
directly away from the origin if W(&c) is real. Since the
derivation of (16) involved a nonrelativistic form of the
Boltzmann equation, we should assume most particle
velocities are much less than c; then pp'(v) and W(v) are
both small for

~
v

(
=' c. Then the condition for no unstable

roots near u= &c is that lim, pV(c+ie) = p'(c) &0 and
similarly pp'( —c))0. From the definition of y we see
that if these conditions did not hold, the number
density would have to be an increasing function of

~
v,

~

for
~
v, )

='c, a case which should be excluded in a non-
relativistic treatment. From the resemblance of the role
of y' to that of fp' in the previous discussion, we see
that, so long as the extrema of pp are all for

~
v

~
&c, E is

into the upper half-plane at the nzaxinsa of q. In particu-
lar, at nondifferentiable maxima U —+ —~ so R ~ +
and the plasma is unstable.

For the distribution function

1 p2 p2-
fp(v) =— exp-

up'up(2pr) & . 2up' 2uss

of Weibel' we find (2pr) &pp'(v) = (—vup'/ups) exp( —v'/2uss).
There is one zero of pp' at v= 0, where c'2'= (up/up)' —1.
Thus the plasma is unstable if uo&u3, recovering the
result of Fried" who used Nyquist's criterion. We can-
not conclude that for uo&u3 the plasma is stable, as we
have taken only waves propagating along the 2' axis.
Using (13) and (14) we can readily find that colliding
plasmas are stable with respect to transverse oscillations
propagating in the direction of relative motion, no
matter how large the relative velocity. "Remembering,
however, that uo&u3 in Weibel's case corresponds to
greater particle kinetic energy parallel to the wave front
than perpendicular to it, we might suspect that trans-
verse waves moving perpendicular to the relative
velocity vector of counterstreaming particles would
grow.

Since (17) is not invariant under a Galilean trans-
formation u —+ u+Au, v ~ v+hu, as was (3), such a

'SB. D. Fried, Report No. TN-59-0000-00235, Physical Re-
search Laboratory, Space Technology Laboratories, February,
1959 (uupubhshed)."It can be shown that the trick for including ion motion which
was given in Sec. II is valid here too.

transformation can change the properties of waves
found from it. If there are few particles near ( v

~

=c and
no irregularities in pp(v) there, the dipole singularities
dominate and there will be no growing waves with u='c.
For example, in the one case computed above, Re(u)
was zero for all growing waves. If we are sure that
~u~&&c, performing a Galilean transformation on (17)
will change c'2' by terms only of order uhu/c', a small
discrepancy which is the price of combining the non-
relativistic Boltzmann equation with electrodynamics.

VIII. CONCLUSION

The problems discussed in this paper have centered on
the determination of whether a function W(u) which is
analytic in the upper half-plane and whose imaginary
part is known along the real axis is real and positive
anywhere in the upper half-plane. While Nyquist's
criterion may be used when the function is regular along
the real axis and tends to zero at infinity, our new
method works for a wider variety of functions and also
oGers intuitive understanding of the problem by
phrasing it in terms of charges and fields. The labor can
be much less than in the Nyquist method, especially
when the Nyquist diagram divides the 8" plane into
many parts, as we need only to 6nd the sign of the real
part of S' at a few points. This saving of labor is
particularly great when Re(W) is not easily computed
all along the real axis of the u plane.

We have found that discontinuities in fp'(v) and zeros
in fp(v) may produce instability, which suggests a re-
evaluation of the theory' that trapping of particles
moving near the phase velocity of the wave is the cause
of instability. In particular, for a case like Fig. 1(C),
there are no particles moving at the phase velocity of a
slowly growing wave. In fact, for a symmetric velocity
distribution fp with two peaks and. an extended region
where fp

——0 between them, there are no particles
anywhere near the wave phase velocity for a whole
family of growing waves. (A V=O line meets the real
axis at the origin as there is a neutral point there. )

While the strange velocity distributions described
here may not occur in nature, they are still meaningful,
and any physical interpretation or understanding of
plasma stability should encompass these types of
plasma.
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