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T, P, C Symmetries in the ~' Decay
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An analysis is given of the decay of the 7i-' in which allowance is made for possible break. downs in T, P,
and C symmetries. It is shown that experiments, until now, have demonstrated only that the two-phot»
state is an eigenstate of TF, but not of T and P separately. A discussion of experiments which may verify
T and P symmetry for the two-photon state is given.

L INTRODUCTION circular polarization of each photon in the decay is
gtven by Im(nP*). Hence the recent experiment of
Garwin et al. which shows, within experimental error,
that Im(IIP*)=0, does not prove that the two-photon
state is an eigenstate of T and P separately, but
rather of TP. Hence, since it is an eigenstate of C, it
is also an eigenstate of CTP. The fact that the experi-
ment of Garwin et al. does not separate T and P
symmetries is somewhat similar to the fact that the
nonexistence of an electric dipole moment for the
neutron does not prove invariance under P, since T
invariance leads to the same results. 4 In the last
section of the paper, we discuss experiments which

may serve to characterize the two-photon state
completely.

A final remark may be in order about the spirit of
this work. It is certainly the belief of most physicists,
including the present authors, that in a production
process like y+E ~ m'+E or in a decay process like
m' —+ 2y, which both proceed through strong and
electromagnetic couplings, T and P symmetries are
preserved. However, we feel that it is very important
to have clearly in mind what has actually beer proved
by experiment and what one expects experiment to
prove.

N the course of surveying the published literature
- ~ on the decays of the neutral bosons, we were struck
by the fact that there exists no published discussion
of the x' decay which is sufficiently general to include
the possibility that the T, P, and C symmetries may
break down in the process. Since there is no experi-
mental evidence for the decay x ~ 37, we restrict our
attention mostly to the main decay mode x'~ 2p. As
is well known, the ~ is an eigenstate of C with eigen-
value C=1. Therefore, we are lead to discuss the
behavior of the 2y state under P and T. Yang, ' who
was erst to discuss the determination of the parity of
the m from measurements on the two-photon state,
supposed that the two photons were either in a scalar
or a pseudoscalar state, but not in a mixture. He
proposed an experiment, based on measuring the
correlation in angle between the planes of pairs pro-
duced in coincidence by the two photons, which would
distinguish between these possibilities. In fact, if we
call a and ~' the polarization vectors of the two photons
and K their relative momentum vector, then the two-
photon amplitude, (yp ~

S
~
~'), is given by Ir e s'.

+PEX e' &/E and the correlation formulas which
Yang gives distinguish between the cases a=o or
P=O. Here S is the S matrix for the decay.

In a more recent paper Bernstein and Johnson'
generalized the analysis to the situation where nPWO
but both n=n* and p=p*. As we shall see there is, in
general, no justification for this reality assumption.
On the contrary, a necessary and sufficient condition
that the two-photon state be an eigenstate of time
reversal is that Re(IIP*)=0. Hence we have been led to
give an analysis of the s' decay in which n and p are
arbitrary complex numbers. It will turn out that the

II. THE ANALYSIS

In order to fix the notation, we begin by a discussion
of the state of one photon. A photon may be char-
acterized with the help of three complex vectors; k, the
photon momentum, and s~(k), the circular polariza-
tion vectors. Ke have the usual orthonormality
relations

r,„(k).k=0,
e~(k) s~(k)=0, (&)

e~(k) .e~(k) = 1,
* National Science Foundation Post Doctoral Fellow.
t Present address: Service de Physique Theorique, Faculte des where the dot is understood in the sense of the Hermit-
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Ivv) =2 I "es&&"as I vv)
a,b

In our future work we shall usually regard k as fixed (where a, b, are +)
and shall not make explicit reference to it.

It is useful to consider the correspondence

(3)

where
I e~) are ket vectors in a Hilbert space. This

correspondence may be shown to be linear in the
sense that if the general pure state of polarization is
represented by which means

&vv I vv&= 1,

Q 2 2

= l~+')(+ip)+I ')( -ip).

It is convenient to take

(12)

(13)

IC+ls+IC I'=1,

then the corresponding ket is

(5) It is now straightforward to examine the eGects of
T,P, and TP on lvv). To this end we first record the
actions of these operations on the vectors

I
e~aL'):

I e&=c+I ~&+c-I e-&, (6)
Pl e+e+')=

I
e+~'»

Tl e+e+')=
I e+e+') (14)

Therefore we have:

ing Plvv&=(n —ip) Ie+~'&+(n+ip) Ie e '&,

T
I vv& = (n*—iP) I

e+e+'&+ (n*+iP*)
I
e-e-'&,

p) PTIvv&=TPIvv)
= (n*+iP*)

I e+e+'&+ (n*—iP*)
I
e-e-'&.

(15)
I e+&&~l = s(1+rs),

I e+)&e~l = l(rt+ir ),

I e&(el =s(1+( ~),

&=Tr(l e)&e I ~)

which lead to

where

The reader is reminded that T and TI' are antilinear
operations. Strictly speaking, the relations (15) are
true only up to a phase.

We may now list the necessary and su%.cient condi-
tions for

I vv) to be an eigenstate of T,P, and TP:is the so-called Stokes vector. '
We may now turn to a discussion of the state of two

photons in terms of their polarizations e+(+k),
e~(—k) and mornenta &k. Once again fixing the
momenta, the states of polarization form a four-
dimensional Hilbert space. A natural basis for this
space is the orthonormal set

of P, if and only if (n —iP)/(n+iP) = ( n+ iP) /( n iP), —
i.e., if and only if b=+ j.

of T, if and only if

(-*-'p*)/(-+e) =(-*+'p*)/(- 'p), -
i.e., if and only if c=O

of TP, if and only if

Q l Q Z = Q l Q

i.e., if and only if d=O.

I e+~'&,
I
e-e-'), I e+~'), I e-~'&,

where it is understood that we have symmetrized these
kets with respect to the two photons.

If the total angular momentum of the two-photon
state, lvv), is zero, then one can show on the grounds
of general invariance principles that the complex
number &ee'Ivv) is given by

Having chosen a=
In I'+ IP I'=-', we have defined

f = 2(ln I'—
I p I'),

c=4 Re(np*),

a= 4 Im(n, a*),(ee'lvv)=nr. e'+Pexe' K,

with the same coefficients C~.
We may construct the density matrix

I r)(el for the
polarization of the one-photon state. This will be a
2)(2 Hermitian matrix and hence may be expressed in
terms of the Pauli matrices z. Using the usual repre-
sentation of these matrices, we have the follow
relations:

where e and e' are any two polarizations and K is here
the relative momentum vector of the two photons.
VJe have specialized to the barycentric system.

Using Kq. (10) we may expand the two-photon state
in the orthonormal basis described above, to find

' See, for example, U. Fano, J. Opt. Soc. Am. 39, 859 (1949),
where the density matrix for photons is discussed. See also J. M.
lauch and R. Rohrlich, The Theory of I'hotons and E/ectrons
(Addison-Wesley Publishing Company, Inc. , Reading, 1955}for
a description of the Stokes vector.

and therefore
b'+ c'+d'= 1.

Any experiment to measure the two photons will be
represented by two Hermitian operators A and A'.
For later use, we note that 2 must be a 2/2 matrix
in the photon variables. This is because we have fixed
the photon momentum and the photon polarizations
span a two-dimensional space. Hence in terms of the
Pauli matrices ~ and a real arbitrary vector u, A may
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be written as
A=r(1+u ~), (17)

with 1=
I ul (1.Here r is a real number.

If the two photons are described by the density
matrix

FIG. 1. In this figure
the photon coordinate
systems are shown. We
make use of the system
OXFZ in writing
Eq. (26).

then the outcome of the experiment is given by s,

s= Trl R(A8A')], (19)

where (3 means the direct product of two matrices.
YVe may record a few properties of the direct product
here, which will help the reader check our computations:

(A8B) (C8D) =AC8BD,
TrL(A 8B)]=Tr(A) Tr(B),

(A 8B))=A)88).

b —cO
I';,= —c —bO .

0 02.
(21)

It is clear from the definitions that if aP=O, only a
measurement of b can distinguish the pure scalar from
the pure pseudoscalar case. In order to characterize
such measurements more sharply, we may now prove
a theorem which is a generalization of a theorem proved
in reference 2, where n and P were taken real. The
theorem states: if A and 3' are any two apparati
which are symmetrical under rotations around the
relative photon momentum, i.e., which do not contain
an azimuthal angular dependence, then experiments
done with A and 3' can only measure the lifetime and
d=4 Im(nP*). The proof is immediate in our formalism;
for by the assumption of azimuthal symmetry we
must have

A = r(1+N2r2), (22)

We shall now write R in terms of the real numbers
b, c, and d defined in Eq. (16).Since R is a 4X4 matrix,
it can always be expressed in terms of the direct products
of Pauli matrices in the following way:

R=4((181)+( I (&81)+(18~)]+I''(r.8r )) (19)

We have made use of the identity of the two photons,
and of our symmetrical treatment of them, in writing
the second term on the right-hand side of Eq. (19).
For the same reason we must have I';,=F,, The
length of the vector ( corresponds to the degree of
polarization of each photon and the third component
of this vector is the quantity determined in the experi-
ment of Garwin et al.' To find the coefficients in Eq. (19)
we simply use Eq. (11) for the explicit computation of
I»)(»I and then compare terms. The reader will be
spared the details of the arithmetic; the Anal answer is

R= 4((181)+dL(r281)+(18»)]+I'' (r*8r )) (2o)

with Lin the notation of Eq. (16)]

i.e., A must be of the general form of Eq. (17) and
must also commute with rotations about the 3 direction.

In fact, a rotation of angle q around K in the two-
dimensional Hilbert space, with basis

I e+), I
s ) is

represented by the diagonal matrix

Q(p) = cos(y) —ir2 sin(p). (23)

This is a "rotation" through 2y.
Now using Eq. (22) we have,

s =TrLR(A 8A ')]= rr'I 1+d(u, +@2')+N,u2'], (25)

and all dependence on b and c has vanished. By a
similar argument it is easy to see that the same result
obtains if only one of the apparati is azimuthally
symmetric and the other one arbitrary. Therefore it
requires a coincidence experiment with an azimuthal
correlation to measure b and c.

Ke must knish this section with a trite but necessary
question of notation. Our explicit use of the conven-
tional representation of the Pauli matrices in an
equation like Eq. (7) implies that we have chosen a
right-handed coordinate frame for each of the two
photons, with the s axes along their momenta. Since
the photons have opposite momenta these frames do
not coincide (see Fig. 1). Customarily physicists choose
a single set of axes to describe the two photons to-
gether; for example the set OX' of Fig. 2. Therefore
let us call, arbitrarily, y the proton whose momentum
is along the positive OZ direction (the other photon
will be denoted by y'). We shall make the convention
that all matrices on the left of the j3 symbol in E.
refer to this photon (photons are now distinguished by
our description of them). We may rewrite R of Eq. (20)
in this new coordinate frame simply by changing the
sign of the coeKcient of the matrices v3 and v 2 on the
right of the symbol. This new matrix we call E.' and
we have

R'=-'(L(181)—(»8»)]+dL(»81)—(18»)]
+&L(r28r2)+ (r28»)]

+cL(r18» (r28r&)]j (26)

It is important to notice that this rotation induces
a transformation on u or ( such that (~ (' where

(' ~=1~(~)( ~~'(~)
f 2'=i 2,

i 2' ——
1 i cos(2q) —l 2 sin(2q),

i 2' f'i sin——(2q)+f2 cos(2y).
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III. MEASUREMENT OF b AND c

In the last section we gave necessary conditions for
measuring the b and c terms. To see how this measure-
ment is to be carried out, we consider coincidence
experiments with two apparati A and A' which have
been designed to analyze plane polarizations. In our
formalism the description of 2, for example, is very
simple. 3 is characterized by a "Stokes vector" u with
components

u(u cos(2$,),u sin(2&, ),0). (28)

The number ~u~ &1 gives the eKciency of the
apparatus as a plane polarization analyzer and p, is an
azimuth characterizing the "setting" of the apparatus.
For example, in Compton scattering p, may be chosen
as the azimuth of the scattering plane, for pair produc-
tion as the azimuth of the normal to the plane of the
pair, or for deuteron photodisintegration, as the
azimuth of the plane of the Anal nucleons. The angle
@, is defined only up to x.

We may also define &7 to be the azimuth of the
electric vector of the photon whose Stokes vector is

(=(l cos(2&~),l sin(2/7), 0). (29)

Clearly p~ is also only defined up to m. We must have

The rate of any experiment done with A is

o= Tr[i2(1+( ~)r(1+u ~))=r(1+( u)
(30)

= r/1+i I, cos(2&)),

where @=&7
—@,. For unpolarized photons, l =0 and

a=r. We may remark. , parenthetically, that in many
computations given in the literature' for totally plane
polarized photons, i.e., )=1, the reader will find the
cross section given in the form

0 =~of1+g cos'(P)). (31)

To go from this form to Eq. (30) is simply a rnatter
of making the substitutions,

r=oo(1+q/2),

~=a/(2+v)
In terms of the ideas and notations already presented,

a coincidence measurement on the two y's from the m'

decay using two apparati characterized by r, u(n, 2$,)

' U. Fano, Revs. Modern Phys. 29, 74 (1957).
See, for example, N. Kroll and W. %ada, Phys. Rev. 98,

2355 (j955}.

When b= —1, R' reduces to

R'=-,'L(11) —(~g ~)), (27)

an expression which has already been given by Fano
with applications to positronium annihilation in mind.

In the next section we give a discussion of measure-
ments of b and c.

and r', u'(u', 2p ') is given by

Tr[R'(A SA')) = rr'(1+bu u'+cu&&u' K)
= rr'(1+uu'$b cos(2co)

+c sin(2a&))}, (30)
where

In any actual experiment one would probably choose
the two measuring instruments, A and A', as nearly
identical a,s possible. In this case Eq. (32) reduces to;

s=r'(1+m'$b cos(2a&)+c sin(2a&))}.

If only relative counts are made, such a coincidence
experiment is characterized by a single pure number
u' (with 0&u'& 1) which is fixed by the experimental
geometry. We may give a few examples which are
relevant for the ~' decay and which have been taken
from the literature.

Yang, in his original work, takes an idealized case
of two infinitesimal counters counting pairs in co-
incidence and 6nds I'= —,'6. In a recent paper, Karlson
has studied a less idealized situation in which all pairs
produced by both photons are observed, for instance
in a bubble chamber. Here I,' is considerably reduced;
he finds n'=0.0091. On the other hand, Kroll and
%ada" have noted that the angular correlation between
pairs produced by internal conversion of the virtual
photons from the m' decay can also serve to measure
the parameters of the virtual two-photon state. The
important photons in this process are nearly real and
our formulas can be taken over from the real photon
case. Kroll and Wada give a branching ratio for
2(e++e )/2y of 3.47X10 ' and find u'=0. 18, i.e. , the
distribution of angle between the two planes of the
pairs is s= 1+0.18Lb cos(2cu)+c sin(2')).

An experiment to measure this correlation is in
process. ' It is clear from Eq. (33) that any experiment
designed to measure b can also be used to measure c,
and a complete determination of the two-photon state
requires the measurement of the three numbers b, c,
and d. In Eq. (16) we have stated the relation
=b'+c'+d'=1. This relation should also be tested

empirically since in the case that the ~' is not a pure
state we would have 0&p&1.

Finally, we would like to remind the reader of a few
facts about charge conjugation. If S~mo) should not be
an eigenstate of C, the component corresponding to the
eigenvalue c= —1 could not, anyway, appear in the
decay mode m' —+ e++e (since an angular momentum
0, e++e state has c=+1). Hence, if we take the
point of view that the branching ratios among the
different possible decay modes of the ~' (for the same
value of c) may be related to each other by quantum
electrodynamics, the fastest decay into a c= —1 state
is, in principle, x —+ 3y. Indeed, it is easily shown that

E. Karlson, Arkiv Fysik, 13, No. 1 (1958}.' J. Steinberger (private communication. )
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any graph in which the m' decays into a single photon,
real or virtual, vanishes on the grounds of current
conservation, quite apart from other symmetry prin-
ciples. At present, the experimental limit on the 3y
decay mode is not strong evidence for or against such
a c= —1 component.
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A very simple, exactly soluble compound-particle model, proposed by Wigner and Weisskopf in 1930, is

briefly re-examined from the standpoint of renormalization. It consists of postulating, in the center-of-mass
system, the wave equations

Lz(S/St)+ (1/2m) V gp(x, t) =P(x)X (t),
Pi(d/dt) —tz]x (t) =J'd'a F(x)P(x,t)

for two particles of separation x and reduced mass m, interacting through the formation and decay of an
intermediate particle with a real form factor F. The analytic behavior of the S matrix is discussed in the
local case F(x) =, Cb(x).

I. INTRODUCTION

'HE purpose of this note is to point out a very
simple example, involving neither second quanti-

zation nor relativity, of a theory with energy renor-
malization and virtual particles. This model, which is
soluble exactly, was proposed by Wigner and Weisskopf'
in 1930, and studied again, independently and from a
diferent point of view, by Moshinsky in 19S1.It will

be briefly re-examined in this paper from the standpoint
of renormalization. It then turns out to be closely
related to the so-called one-particle sector of the Lee
model. '

We consider the following two systems, which can
decay into each other: (a) a motionless particle, located
at the origin, and whose wave function' )t(t) depends
only on time; (b) a moving particle of mass m, whose

wave function zp(x, t) depends also on the position x.
Thus the state vector can be represented in Fock space

by two components:

The scalar product is

The postulated equations of motion are

fi(i)/c)t)+(1/2m)V'7$(x, t) =F(x)x(t), (1.3)

l i(dldt) —t 7X(t) = d'»(x)zp(x, t).

They have the following features: (a) the only inter-
action consists of each particle acting as a source for
the other; (b) F is a given real form factor and tt a given
real energy, so that time-reversal invariance holds;
(c) the Hamiltonian H, defined by

i(d/dt)
l
t)=H

l t)

is Hermitian under the scalar product (1.2), so that
probability is conserved.

The lack of translational invariance is not an essential
restriction. The model equivalently deals with the
formation and decay of a compound particle (considered
as elementary) in the center-of-mass system, m being
the reduced mass. The case of main interest is the local
limit

F(x) —& Cb(x)

(zpz, xz
l fz,Xz) = d'g pz*pg+ Xz*X2.

for a real coupling constant C. For simplicity we assume
(1.2) F to be spherically symmetric about the origin.

* Most of this work was carried out at Brandeis University~
Waltham, Massachusetts, and supported by the Once of Naval
Research.

' E. P. Wigner and V. Weisskopf, Z. Physik 63, 62 (1930).
2 M. Moshinsky, Phys. Rev. 81, 347 (1951);84, 525 (1951).' t . Sandri has derived the present model as the lowest sector of

a Lee Model with nonrelativistic mesons (private communication).' The Schrodinger picture is used throughout.

2. STATIONARY SCATTERING STATES
AND THE S MATRIX

We define Fourier transforms by

F(x) = (2zr) z, t d'p G(p)e'&'" (2 1)


