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Electromagnetic Structure of the Nucleon*
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Dispersion relations are proved for the electromagnetic and mesonic nucleon vertex functions considered
as a function of the nucleon mass. The results are used to express the isotopic scalar and the isotopic vector
electromagnetic form factors of the nucleon in terms of pion electroproduction (or photoproduction) and
pion-nucleon scattering amplitudes in the J=-,', T=-', state.

I. INTRODUCTION

"N the past various attempts have been made to
~ - study the electromagnetic structure of the nucleon.
In particular Chew, Karplus, Gasiorowicz, and
Zachariasen' and Federbush, Goldberger, and Treiman'
attacked the problem using dispersion relation tech-
niques. The quantity to be investigated is the matrix
element (p'

l j„(0)l p) where (p'l and
l p) are one-nucleon

states of indicated four momentum and j„(0) is the
electromagnetic current: j„(x)= —(r)/Bx.)'A„(x), where

A„(x) is the photon field operator. In isotopic spin
space (p'l j„(0)l p} transforms in part like a vector and
in part like a scalar. I or practical reasons the above-
mentioned authors were unable to study the isotopic
scalar part of the nucleon structure and had to confine
their calculations to the isotopic vector part. Further-
more the validity of certain analyticity properties of
the theory had to be assumed.

In this paper a diferent approach which does not
su6er from the above difhculties is proposed. It is
based on the observation that the various invariant
functions describing the electromagnetic structure of
the nucleon depend on the three scalars in the problem:
p', p", and q'= (p-p')'. Any of the three may be chosen
as the variable to be continued to complex values with
the other two treated as axed real parameters. Chew
e( al.' and Federbush et at.' choose to continue q'
whereas we shall choose p'. As a consequence we are
able to study both the isotopic scalar and vector parts
of the nucleon structure. Furthermore the validity of
all the analyticity properties required in our approach
can be proved rigorously.

Depending on the asymptotic behavior of the
functions under study the dispersion relations do or do
not require "subtractions. " In general this asymptotic
behavior is not known. For a local field such sub-
tractions must be in the form of a polynomial in the
dispersion variable with coefBcients that depend on
the remaining parameters in the problem. Since it is
the latter dependence (i.e., dependence on q') that we
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are interested in we cannot afford, in general, to have
subtracted dispersion relations, If the function under
study is known for some fixed value of the dispersion
variable then we can afford to have a once-subtracted
dispersion relation for that function. Accordingly we
shall assume that nonsubtracted dispersion relations
are valid for one of the form factors and once-subtracted
relations are valid for the other.

In Sec. 2 the dispersion relations in p' are constructed
and proved. In Sec. 3 the absorptive part of the form
factors is calculated in the usual approximation, i.e.,
only lowest mass intermediate states are considered.
In this way the electromagnetic form factors are
expressed in terms of amplitudes for pion electro-
production (or photoproduction) in the J= rs, T= sr

state, and the pion-nucleon vertex function. The latter
is evaluated by the same techniques in Sec. 4 and ex-
pressed in terms of pion-nucleon scattering phase shifts
in the J=» T=-,' state. Although these J=-,', T=-',
amplitudes and phase shifts are in principle measurable
experimentally, they are at present either not known
or known but poorly. A'theoretical determination of
these quantities is being considered,

2. DERIVATION OF DISPERSION RELATIONS FOR
THE ELECTROMAGNETIC FORM FACTORS

The matrix element of the current operator taken
between one-nucleon states may be written as follows:

u. (P's') ua(Ps)
(p's'

Ij.(o) I ps) =, ,(I'.)-e

Here u (k,r}=ue*(k,r)(y4)e and ue(k, r} is the spinor
describing a nucleon of momentum k and spin r. It is
normalized according to

u (k,r)u (k,r') =+8,,„,
the upper sign to be used for positive energies (r= 1,2)
and the lower for negative (r=3,4). In the following
we shall usually omit spinor indices (such as a, P above)
whenever the meaning is clear. Our Dirac matrices are
such that y=isrP, y4=P, p„p„=b„„+io„,If a„and. b„
are two four vectors, then we define their scalar product
as a b= a„b„=a h —. asbo. Finally M is the nucleon mass.

It follows from invariance under the Lorentz group
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u(P' )(sI'„iy„eir—) = @(P's') io „,q.F (Wp)

q' ) W iy p—
+I q.— i&. IFp(w)

M—W 2W

+ i~„,q,F,(—w)

(
i&„ IF,(—w)

M+W

W+iy p
(5)

The form factors Fi(q') (charge structure) and
F&(q') (magnetic moment structure) that appear in
the literature' ' are related to our functions by

that the structure of 1 „must be

(6' p')'b7. A i'"+i~"q A p'"
j,&=0,1

+qvA p'"3(i&' p)'

where q„=p„—p„' and A,&'" are functions of the three
scalars in the problem which may be chosen as q2,
W"= —p'p and W'= —p'. Since p' will always represent
a physical nucleon we may set W'=35. Thus A,&~

=—A, 'P(q', M', W') Using Eq. (2) and

u(p's') (iy p'+M) =0; s'= 1,2,

we may write

u (p's')I'„
=u(p's') ffiy„Ft(w)+icr„„q„Fp(W)+q„Fp(W) j

X (W iy p)/2—W+/i7„F&( W)+ip—„.q,Fp( W)—
+q„F,( W)&(W+'—~ P)/2W), (3)

where the F;(+W)=F,(q', M,+W) are certain linear
combinations of the A,'" (by definition, M and W
are positive).

The number of invariant functions may be further
reduced by making use of the requirement that the
theory be gauge invariant, i.e., that the vertex function
satisfy the generalized Ward identity. ' In terms of our
functions F,(W) the generalized Ward identity reads

(M~w)Ft(aw)+q'Fp(aw)= (Maw)tv, (4)

where eir is the nucleon charge. We use Eq. (4) to
eliminate F&(&W) from Eq. (3) and obtain

u(p's')I'„= (pp'/M)ii ~d4x

xe"'e(—*o)(p's'll j„(0),&(x)jl o), (g)

where 8(xp) =—,
' (1+xp/

I
xp

I ) and ri(*)= (—y„r&/»„
+M)P(x) with f(x) the nucleon field operator. In
writing Eq. (8) we have left out an equal-time com-
mutator which can have an effect only on the
"subtraction" terms in the final dispersion relations.

Consequently

2

F;(aw)= p (pp'/M)&i "d4x
s'=1

x '" *it(—*o)(p' 'I
I j.(0), (*)j I 0)

Xv„'(+W)u(p's'), i = 2,3, (9)

where the v„'(+W) are appropriately constructed so as
to project the F,(&w) out of F„. The actual values
of v„'(+W) are of no importance (they are given in
Appendix A)—the need for them arises solely from the
irrelevant (for the purposes of proving dispersion
relations) fact that nucleons and photons have non-
zero spin.

To establish dispersion relations we go into a special
frame of reference —the rest frame of p'. In this frame
we have

p'= (O,M),

p=(V,p.),
q= (gh, pp

—M),

(10)

and we may consider pp as the dispersion variable. We
note that

pp= (W'+M'+q')/(2M),
h2 (p M)p+q2 —L(W2 M2)2

+2q'(W'+M')+ q'j/(4M')
& (12)

and ( is an arbitrary unit vector. In this frame we may
write

Equation (7) is a consequence of invariance of the theory
under space and time inversion which requires that

jk(q2 M2 W2) A kj(q2 W2 M2)

A p'~ (q' M' W') = —A P'(q' W' M')

Using the reduction formalism' to "take out" the
nucleon p from (p's'

I j„(0)I ps) we obtain

Fi (q') =e~+ q'F p'(q', M,M),
Fp(q') =Fp(q', M,M),

F;(&W)= dr dxp e'""'f;(&W; xp, r),
0 .=Ixl. (13)

where the prime denotes differentiation with respect
to g and where we have used

Fp(q', M,M) =0.
The actual expression for the f;(+W; xp, r) is given in
Appendix B. The only thing that concerns us here is

(7)
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F (p r)—= —dxo e'»*o[f (W; xo,r)
2W~

—f,(—W; xo,r)j, (15)

satisfy all the requirements necessary for the Hilbert
relation

(p t
" dpo'

ReFP(Po, r) = ——ImFP(Po', r), (16)
~-- p'-po

to hold. ' In writing Eq. (16) we have assumed that
no subtractions were necessary —we shall return to
this question later.

Introducing Eq. (16) into Eq. (13) and inverting
the order of dpo' and dr integrations we obtain the
desired dispersion relations:

dpo'
ReF,+(po) =— ImF p(po').

—ao po po
(17)

The interchange of order of integration is permissible
provided that h is never imaginary for po in the range
—oo &po(+ oo . Since we are only interested in proving
the dispersion relations for space-like (or light-like)

q we have q'&0, and therefore h=[(po —M)'+q'j&
indeed cannot be imaginary.

At this point it may be worthwhile to point out the
difference in the derivation of dispersion relations in
W'= —p' and in q'. In the latter case it is convenient
to rewrite h as [(qo+M)'+ p'j& with qo as the dispersion
variable; and we wish to prove the dispersion relations
for p time like, i.e., p'-&0 (in fact p'= —M'). Hence
for some qo in the range —~ &qo(+oo h will be
imaginary and the order of integration cannot be
simply interchanged. Of course, this does not mean
that dispersion relations cannot be proved but rather
that the method successfully used above when the
dispersion variable was po fails when the dispersion
variable is qo. As yet no other method has been devised
to prove rigorously the dispersion relations in qo,

Equation (17) is a dispersion relation in p, (or Wo)

for the functions F,+(po). We shall now show

that ImFp(po) vanishes for po&M+p+(q'+p')/(2M)

~ The symbol (P denotes principal value.

the fact that the f;(+W; xo,r) vanish for xo&0 and
xo&r [composed as they are of 8(xo) and a commutator
which vanishes for space-like xj and have no singu-
larities as a function of TV, the latter property following
from the expressions given in Appendix 8 where the
W dependence of the f; is explicitly exhibited.

Consequently, for fixed r, the functions

1 f
F,+(p„r)=

~

dxo e'~o*o[f,(W; xo,r)
2 QQ

+f,( W;x„r—)j, (14)

1 f f d'k
= (po'/M) &- ' d'x e'&' P

2~ (2or)'

x(p's'li. (0) l~, &&(~,&l~(0) lo)e '"'

t
d'k'

(p's'I ~(0) I
e', u'&

(2or)'

x(N', u'l~„(0)
I

o&e-'~'-~' ', (18)

where we have introduced a complete set of states
labeled I (or m') with rest-energy M„and momentum
k= [k, + (k'+M ')&) and where

u (p's') I'„"

(=u(p's') io„„q„ImFo(w)+
I

q„—
M —W j

XImF, (w)
W iy p-

+ io„„q„ImFo( —W)
2W

( W+iy p
+I q„— iy„ IIm F(o—W)E" M+w ") 2$'

. (»)

For the same reasons that were outlined above we
may interchange the order of de and d'k integrations
and obtain

u(p's') I'„"

= (po'/M)&or Q 2po8(po)8(w' —M„')

X(p's' I2„(0) I
'N, p&(n, p I

8(0) I 0&+p 2qo8( —q,)
nl

x8(q'+M. ')(p"'l~(0)
I

', —
q&

x(~', —ql~„(0)l o) . (2o)

The state e must be a state of nucleon number one. It
cannot be the one-nucleon state because4

(one nucleonlq(0)
I
0)=0, (21)

~ See, e.g., Appendix to the paper by R. Oehme, Phys. Rev.
100, 1503 (1955).

where p is the pion mass, and this circumstance will
permit us to convert Eq. (17) into a dispersion relation
in W for the functions F;(&W).

It follows from invariance of the theory under space
and time inversions that the imaginary or absorptive
part of the various functions is obtained by replacing
i8(—xo) in Eq. (8) by -,".
u(p's') I'„"

= (Po'/M)' d'-x e'" *(P's'I LJ.(0),8(x)3l 0&
2
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but it can be a state of one nucleon and any number of
pions, X-Z pairs, and baryon-antibaryon pairs (photons
are excluded because we are only calculating to lowest
order in the electromagnetic coupling). The lightest
such state is the one-nucleon plus one-pion state for
which M„~M+p. On the other hand the state n'

must be a state of nucleon number zero. Furthermore,
the argument of the delta-function b(g'+M„') can
vanish only if M =0 since q'~0. The only state that
can satisfy these requirements is the vacuum state and
it will not contribute because of Eq. (21). Thus we
conclude that the summation over e' may be
ignored. and consequently ImF, (&w) vanishes for
Ws( (M+p)'.

For the magnetic moment form factor I'f
2 we assume

that no subtractions are necessary and obtain from
Eq. (17)

ReFs(M)

ImFs(w) ImFs( —W)
dW + (22)

W—M W+M

For the charge form factor Fs we make use of Eq. (7)
to write a once-subtracted dispersion relation so that

Im~~F, (W)

2

= P (Po'jM)4. Q I d'P"d'l (2x) s(2Po")
8'=l r

X (2lo)0(po")0(lo)&(p'"+M')8(P+p')

x~ ' (p"+l—p)&p"'l~„(0) I
(p",l),„&

x&(p",i&;.
I ~(0) I 0&.„'(w)N(p's'), (25)

where P, refers to the sum over the discrete quantum
numbers (spin, isospin) of the (p",l) system and where
we have chosen to take for the complete set of states
e the states with the "in" convention. In going from
Eq. (24) to Eq. (25) some mass-shell delta-functions
were added to extend the three-dimensional integra-
tions to four dimensions.

Because of the structure of the dispersion relations
one hopes that the contribution from the lowest mass
intermediate states dominates all other contributions.
Accordingly we shall approximate ImF, (W) by
Im~ F,(W) and drop the superscript iVx. in order not
to complicate the notation.

The factor &(p",l),„le(0)IO) appearing in Eq (25). is
related to the pion-nucleon vertex function. We may
write

ReFs'(M)

(P
t
" ImFs(w) ImFo( —W)

dW +, (23)
(W—M)' (W+M)'

where the prime denotes differentiation.
As stated in the Introduction, we do not know how

many subtractions are needed. Pending a study of the
asymptotic behavior of these functions our choice of
no subtractions for I'2 and one subtraction for F3 must
be viewed as a postulate.

&ol..(0) I
(p-",l»,.&

~~(P""'),(~)
ig(r,—r), (26&

LPo"!Mj' (»0)'

3. THE ABSORPTIVE PART OF THE ELECTRO-
MAGNETIC FORM FACTORS

The desired electromagnetic form factors Lsee

Eq. (6)J are given by Eqs. (22) and (23) in terms of
the absorptive parts ImF, (+W). It follows from Sec. 2,
particularly Eq. (20), that we have

ImF;(W)

= p (p,yM)-: p 2p,e(po)~(W —M„)

x&p'"li. (0&l~ p&&n, pirl(o) lo&.„'(w)~(pv), (24&

where the sum over n runs over all states of nucleon
number one, rest-mass M„and total four momentum p.
The lowest mass such state is the one-nucleon plus
one-pion state (since the one-nucleon state does not
contribute), for which M ~M+p. Its contribution
to Eq. (24) may be written as

where s" describes the spin (and isotopic spin) of the
nucleon p", X describes the isotopic spin of the pion
l,r, is the usual Pauli matrix operating in isotopic spin
space and e, (X) is a unit vector in isotopic spin space.
The constant g is related to the pion-nucleon coupling
constant7 and will be specified more precisely below.
From invariance of the theory under the I orentz group
one has

r= P ~'v p&'„(;, p-)g', (27)

Xysm(P"s"), (2g)

It (+W) =I(y', M,&W) is a certain linear

7 The pion-nucleon coupling constant is more conventionally
defined in terms of the matrix element &p ~

J(0)
~
p") of the pion

current. For a discussion showing that @re are dealing here with
the same constant see M. L. Goldberger, Y. Nambu, and R.
Oehme, Ann. Phys. 2, 226 t', 1957), Sec. IV.

where p„=p„"+l„and the 8" are functions of the
three scalars in the problem: P, p'", and p'. Thus
&"=f3"( P, —P'", —P') a—nd we shall only need in

(25) &"(y',M', W'). It will be convenient to write

rw i7 p- W+iy pI'~(p'"") = E(w)+ 1~ (—w)5'
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combination of the B".If we normalize E(W) according and making use of
to

E(M) =1, (29) (34)

W iy—p
E*(W)X(H„+»H„)(M iy

' —p")y,
2$'

then g is the Lepore-Watson coupling constant. 'In the we obtain after substitution of all these definitions
next section E(&W) will be evaluated in terms of;nto Fq
pion-nucleon scattering phase shif ts.

The other factor in Eq. (25), (p's'Ij„(0)I(p",l);„), ImF, (W)
is related to pion electroproduction (q')0) or photo-
production (q'=0). It is needed in Eq. (25) only for = igZ ~ d'P d'l (2~) '0(Po")0(lo)

s'=1 aJ
such values of the total energy and momentum transfer
that lie in the Physical range of these variables. (P + ) ( +& )b (P + P)+P
Consequently it may be taken over directly from
experiment. We may write

e„*(p'"lj„(0)I(p""',1 ),„)
M'

u(p's') (MgAo+MeBp+McCo
-2lopo po where

W+iy pE*( W) v„"(W—)e(p's'), (35)
2W

+M O,+M F.,+M.F,)N(p'"")., (&), (3o)

M = —-'iv (7'Y)

Me=iso(p'+p", l),

M c= —yo(y, l),
Mn= —vo[b, p'+ p") 2iM(v, v) j—,
M g iso(q——,l),
M v= —~o(q, V)

(31)

where, as a consequence of Lorentz and gauge
invariance

e„*H~s M&As+. . .+MvFs As 3A', etc., (36)
e *H v M&Av+. . .+MvFv Av A++2A etc (37)

Equations (36) and (37) show that we are concerned
only with those electroproduction amplitudes for which
the pion-nucleon system is in an eigenstate of total
isotopic spin T with the eigenvalue T=-2.

Since ImF, (W) is a Lorentz invariant the right-hand
side of Eq. (35) may be evaluated in any frame of
reference. The most convenient frame turns out to be
the barycentric frame of the electroproduction process,
which is also the rest frame of p:p= (O, W). We define
in this frame

Here e* is the photon polarization four vector, q= p"
+l—p'= p —p' is the photon momentum four vector,
and

p'= (ui, Ei),
P"= (1,& ), (3g)

~=cose=»»/(I»l I»l)
and the relation of these quantities to the invariants is

(a,b)= ae~b q a—qb e . —

Charge independence implies that the isotopic spin
dependence of A p Fp is given by

&= (p' p"+~i~o)/(Il il I»l),

(32)
F.i (pio+M') &= —p p'/——W

Ao= o(ro, rp)A++o[ro, ro jA +roA, etc. = (W'+M'+q )/(2W), (39)
~2= (yo'+M') '= —p.p"/W

= (W'+M' —~&)/(2W).

The amplitudes A - .I' are functions of three scalars
(if one ignores the dependence on the masses of particles
that are on their mass-shells); in the barycentric frame
these may be taken as q', 8", and x. To perform the
integrations in Eq. (35) only the x dependence must
be known and this dependence may be made explicit
by a multipole expansion.

Let

%ith these definitions our A+ ', etc., are precisely
the same as the ones defined for the pion electro-
production process by I'ubini, Nambu, and Wataghin. '

Noting that Eqs. (26), (27), and (28) imply

&(p"s",11 )'. I e(O) I 0)

. ,*(1) (p'"")
Zg 1 pPg

(2lo)' [po"/M ji
W iy p- W+iy p

E*(W)+ E*(—W), (33)
2W 2$'

' J. Lepore and K. M. Watson, Phys. Rev. 76, 1157 (1949).
9 S. Fubini, Y. Nambu, and V. %'ataghin, Phys. Rev. 111,329

(1958).

~(p's')H e *N(p"s")= —4s'(W/M)X*(s')O'X(s"), (40)
where X(s) is a two-component Pauli spinor and"
I The fourth component of e* has been eliminated by using

0
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g=io e*f1—
e.y&ge e p2 ia.yly2. e*

&s+ Fg
I»l lysi

Zo"y2y2 e Ze y1p1 e* ~ p2y1 e
(41)

1i'
l pal I y. lP2

The 5';, i = 1, ,6, are certain linear combinations of
the A, ,F dined by the above equations. The
dehnitions are such that these F;, i= 1,2,3,4, correspond
to the amplitudes 5, de6ned by Chew, Goldberger,
Low, and Nambu" for the photoproduction process.
The multipole expansion of F;,i=1,2,3,4, is given by"

~,=P DM,++E,+)P„,'(x)
lM

y! (l+1)M)-+E[-jP( y'(x), (42)

g !ps! pEs —Mq & W—M
ImFsv s(W) =——

! ! It*(w)
w lyil

X!qsMi v, s(W)

+(W E,)(W+M)L, v, s(w)) (49)

It is seen that only the magnetic dipole and longitudinal
monopole enter as was to be expected since only these
rnultipoles could be emitted or absorbed by a nucleon
without changing its total angular momentum and
panty.

The remaining functions needed in Eqs. (22) and
(23) are

g !ps! (Es+M) &

ImFsv s(—W) = ——
! @*(—w)

w lp, l
EE,—M)

p, =P L(3+1)M(++lMi-)Pi'(x),
l~1

(43)
X c (w —M)EO+v s(W)

—(W—Eg)Ls+v s(W) j, (50)

S,=P $E(+ M(+jP)p—g"(x)
/=1

+[Ei +Mi ]Pi -g"(x),-(44)

r4 ——P $M)+ Eg+ M—g E—) jP)"-—(x), -
l 1

and the expansion for i=5,6 is given by

~,=-~,—.~,+i L(i+1)L P (*)
l=o

—lLg-Pg g'(x) ), (46)

rs= —xr4+ P DL( (/+1)Lg+]P-g—'(x).
l=l

The amplitudes 3f~~, E~+, L~~ refer to electro™
production due to magnetic, electric or longitudinal
multipoles in which the pion-nucleon system has orbital
angular momentum / and total angular momentum
l&-,'. Their isotopic spin dependence follows from
Eq. (32). They are independent of x but are functions
of 5 and q2. In particular for q2=0 the longitudinal
amplitudes L~+ vanish and the magnetic and electric
amplitudes go over into those of the photoproduction
process.

We are now ready to perform the integrations in
Eq. (37). The result is

g !ps! (E& Mq&-
lmF vs(W)= ——

! ! E*(w)
w ly, l

I E,+M)

Xl (W+.M)M, v, s(W)

—(W—Eg)Lg-v s(w)i, (48)

"G.F. Cheer, M. L. Goldberger, F. E. Lour, and Y. Nambu,
Phys. Rev. 106, 1345 (195'I).

g !ps! (E2+Mi & W+M
ImF v, s( W) I*(—w)

w ly, l
&E, M) q'—

Xkq'Eo+v s(W)

+ (W E,) (W M)I~v, s(w)7 (51

and here it is the electric and longitudinal dipoles that
enter. (These are the only multipoles that could be
emitted or absorbed by a nucleon without changing its
total angular momentum but with a change in parity. )

Introducing Eqs. (48), (49), (50), and (51) into
Eqs. (22) and (23) we obtain for the F;(q') Lsee Eq. (6)j
the following expressions:

ReFP s(q')

pE, —M& 1@*(W)
!

V,S

"~+» w lygl (E~+M) w —M

xl q'Mx- +(w—E )(w+M)Lg-

(E+M~ &E*(—W)
I-qsE„v,s+(W E)

(E,—M) WyM

X (W M)Ls+v, s~ (52

ReF,v, s(qs)

g ." dw lp&j pE, Mq 1@*(w)—
"~+» w ly I

(E~+M) w —M

X! (W+M)M, v, s (W E,)L, v, s

/E2+M q &E*(—W)
+I L(W—M)E,.v'

(Eg M) W+M—
—(W E,)Lo+v s) (53)—
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Here F s (qp)+F v (q') is the electromagnetic form
factor of the proton, F,8(q') —F;v(q') is the electro-
magnetic form factor of the neutron (i =1:charge form
factor, i =2: magnetic moment form factor); errv s= roe,

where e is the proton charge;
I pr I, I pp I, Fr, Fp, are

known functions of W and q'
I

see Eq. (39)$. The
multipole moments M, v, s L,, v, s go+v, 8 and L,,+v, s
are functions of 8' and q' which in principle can be
determined experimentally. There remains to be deter-
mined the mesonic form factor of the nucleon E(W)
and we address ourselves now to that problem.

4. MESONIC FORM FACTOR OF THE NUCLEON

In analogy to the electromagnetic case we shall refer
to E(W) as the mesonic form factor of the nucleon.
According to the definitions in Sec. 3 we have

(ol~(o) I
(p'"",i) )'-)

Wig P' —W+iy p
SgTp E(W)+ E( W) yp—

28'2W

N(P"s") e, ()~)
(54)

(Po"/M)' (2lo)'

where E(aW) =—E(p',M,+W), E(M) =1,P„=P„"+l„,
p'= —W' p'"= —M' P= —p' and g is the Lepore-
Watson coupling constant.

We now apply the reduction formalism4 to the meson
l and obtain

(o I &(0) I
(p'"",lit);.)

=s d4x e"*8(—x )(OILri(0),J,(x)] I
p"s")

4
Xen()I)/I 2lolt, (55)

where we have left out an equal-time commutator.
The meson current J,(x) is defined by

J.(*)= —
I I+i' t.( ), x
L, ax, )

where pp, (x) is the meson field. operator. Combining

Eqs. (54) and (55) we deduce after some straight-
forward manipulations that

E(&W)

sy p&W=—(Mpo")'Z (P" ") .~
3g e"-t p' —(W~M)'

XJ
~d4x e*' *8(—xp)(0 I Lrl (0),J,(x)g I

p' s '). (57)

The W dependence of the right-hand. side of Eq. (57)
is explicitly displayed by going into the rest frame of P":

p"= (O,M),
l= ((hi, lo), (58)

p= ((hg, M+lo),

—p, &lo&p, . (64)

Nevertheless dispersion relations can be proved because
the absorptive part of the various E functions vanishes
for lp satisfying condition (61). These absorptive parts
are proportional to

f
dxo e '*"'(OI Lrf(0),J,(x)j I

Ms")

d'k
2pr3(lo+M —kp)(OI rf(0)

I
rp, k)

- ~ (2~)

d'k'
X(ts,kI J,(x,o) IMs")—Q 2zf(lp+pp )

a' J (2z.)P

X(0 I J,(x,o) I
rs', k')(e', O'I rI(0) I

Ms"), (62)

where we have introduced a complete set of physical
states e or e'. The state e must be a state of nucleon
number one, hence a state of at least one nucleon and
one meson, i.e., kp~ M+@. Similarly pp' must be a state
of at least one meson, i.e., ko'~p. These inequalities
combined with the delta functions show that the
expression (62) vanishes for lp in the range (61).
Subsequent integration over d'x shows further that
the absorptive part of the various E functions also
vanishes for /0& —p, and therefore our final dispersion
relations may be written as"

ReE(&W)

(P
t

" ImE(W') ImE( —W')
+ dW', (63)

W'WW W&W

where we assume that no subtractions are necessary.
Approximating the absorptive part of E(W), in

the usual way, by the contribution from the lowest
mass intermediate state (i.e., the one-nucleon, one-pion
state) we find from Eq. (57) by replacing 8(—xp)
by (2i)-'

rr This method of proof is due to R. Oehme PNuovo cimento 4,
1316 (1956)g and has been used by K. Symanzik t Phys. Rev.
105, 743 (1957)$ to derive the same analyticity properties that
we prove in this Section. In Symanzik's treatment the inessential
complications due to nucleon spin were omitted.

with g an arbitrary unit vector and

h)= (lp' —p')&,

lp= (W' —M' —p')/(2M). (60)

We can then show that the functions E+(lp) =——,'I E(W)
+E( W)—) and E (lp)=—-'sI E(W)—E(—W)7/W sat-
isfy dispersion relations in l&.

The proof is quite analogous to that given in Sec. 2
with one di6'erence. The h of Sec. 2 was shown never
to be imaginary for all values of interest of the remain-
ing parameters. Here, however, h~ will be imaginary
when
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ImE(W)

t
d4l'd4p"'

=—(Mp.")1 p
8g ~ & (2or)'

X6"'(p p"—' l')&—(p""+M')3(l '+fr')ff(p )

ip p W—

Xe(lo') 2po"'2lo' p u(p"s")r,ys
ir' —(W—M)'

X«In(0) I
(p"' l')'.&((p"',l')'.

I ~.(0) I
p""'»

where P„denotes the sum over the discrete quantum
numbers (spin, isotopic spin) of the pion-nucleon
system (p'",l').

The first matrix element in Eq. (64) is just the
pion-nucleon vertex under study. The second matrix
element is related to pion-nucleon scattering. Using
invariance under I orentz transformations one finds"

e,*()t)(p"s"
I J,(0) I

(p"'s"',P)t'),„)
M'

u(p"s")
2lo'po"po"'

( l'+l
X

I
A iy — 8 Irs(p"'s"'), (65)

2 i

where A and 8 are functions of the scalars in the
scattering problem as well as of the isotopic spin
indices X,) '. The latter dependence is limited by charge
independence to be"

f Aq PA*q

&ai
' ' ' Ea-:i

l A'q
+(3,„,——s,r. ..)l I

., ( '), (66)'''
Ea&)

where the superscripts —'„—,' refer to the total isotopic
spin T of the meson-nucleon system.

With these definitions we obtain from Eq. (64)

-'s.E(W) t
d4/'d4p'"

ImE(W) = 5&4'(p —p"' —l')
p' —(W—M)' " (2ir)s

X~(p' "+M')~(l"+&')fi(po'")0(lo')

x=cos0 where 8 is the scattering angle. The x depend-
ence may be made explicit by a I egendre polynomial
expansion. '4 In this way we find

ImE(+W) =I e'~&+~' sinn(wW))*E(+W), (68)
where n(+W) is the I' wav-e J= rs, T=-', meson-nucleon
scattering phase shift and P(+W)=u( —W) is the
5-wave J=-,', T=-,' meson-nucleon phase shift. "Below
threshold for meson production (W(M+2y) these
phase shifts are real. We shall take them to be real
also above the threshold which is consistent with the
approximation of keeping only the lowest mass inter-
mediate state when evaluating ImE(+ W).

Thus we 6nd that we must solve the coupled linear
integral equations

(P p" e
'

&w'&sina(W' )E(W')
ReE(+W) =-

W'+ W

e ~& ~'&sinn( —W' )E(—W')
dW', (70)

W s

E(W) = lim E(W+ie),
g-+0+

E(—lV) = lim E(—W—se).
&~0+

(71)

The method for solving equations of the form (70)
is originally due to Muskhelishvili. "We deduce from
Eq. (70) that E(s) is a function analytic in the cut
z plane, the cuts going from +(M+p) to +co and
from —(M+p) to —co and the jump in E(s) across
these cuts is given by Eq. (68). Consider now the
function expLQ(s) $ where

1 t
" (a(W') ct(—W') )

Q(.) =-
I + ldW', (72)

"si „&W'—s W'+s )
Q(W) = lim Q(W+ie),

e-"&—~'&sinn( —W' )E(—W')—
dw', (69)8"&8'

or, equivalently,

1 f'" e ~&~'sinn(W' )E(W')
E(s)=-

W' —s

XTr (W+iy p)(M sy p'")—.
Q(—W) = lim Q(—W—ie).

e —so+

(73)

l'+l
fi'* l(M —~ p") . (67)

2

The integrations in Eq. (67) are most conveniently
performed in the barycentric frame for the scattering
process, which is also the rest frame of p. In this frame
A and 8 can be considered as functions of 8 ' and

"G.F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

'4Our functions A,B are precisely the same as defined in
reference 13 and the details of the polynomial expansion may be
taken over directly from that paper."The identity P(+W')=a( —W) is a special case of the more
general identity which relates phase shifts belonging to the sameJ and T, but different orbital angular momentum l, eigenvalues.
In the notation of reference 13 this identity is 8~+(&W)
=~(& )-(~~')-"N. I. Muskhelishvili, Singllar Integral Eqlations {P.
Noordhoff N. V., Groningen, 1953}. See also reference 2 and
Appendix to paper by S. Okubo, R. E. Marshak, and E. C. G.
Sndarshan, Phys. Rev. 113,944 (1959).
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2

= Q ir' ~dQ„exp(ig xh)8(xp)
s-i

X(Ms't [j(0),rl(x, —x&)) ~0)

Xe„v„'(aW)u(Ms'), (8-1)&(z)= exp[Q(s) —Q(M)] (74)

It is readily verified that exp[Q(s)] has the same f,(+W;z, ,r)
analytic properties as E(s). Of course this solution is
not unique and in particular, because of the homo-
geneous nature of Eq. (70), it may be multiplied by a
constant. We make use of this freedom to insure that
the normalization E(M) = 1 is satis6ed and so take for
our solution

In deriving Eq. (74) it is assumed that the behavior
of the phase shifts u(&W) is such that the integral

Q(s) exists. The solution, Eq. (74), could still be
multiplied by a polynomial P(s) such that P(M)=1.
Under certain reasonable assumptions' it can be
shown that such a polynomial should not appear.

CONCLUSIONS

We have expressed the electromagnetic form factors
of the nucleon in terms of pion electroproduction
(or photoproduction) and pion-nucleon scattering
amplitudes in the J=-,', T=-,'state. These amplitudes
are functions of the total energy TV in the barycentric
frame and of (in the electroproduction case) q', the
square of the momentum transfer from the electrons.
They are needed for physical values of lV and q' and
therefore can, in principle, be determined experi-
mentally. At present these amplitudes are not known

very well and therefore we refrain from giving any
numerical results for the form factors. A theoretical
approach, based on the Mandelstam" representation,
to determine these amplitudes is being considered.

ACKNOWLEDGMENT

It is a pleasure to acknowledge many useful discus-
sions with Professor G. F. Chew and Dr. S.Mandelstam.

APPENDIX A

The quantities v„'(&W) that appear in Eq. (9) are
defined by

F;(+W)=Tr((2M) '(M iy p')I—'„v„'(aW)), (A-1)

from which we obtain by a straightforward calculation

p 2(~W) (s~.p~W) (SMlg2)
—1[(M~W)2+q2]—1

X (3(MK W) [q'iy„(MWW—)q„)
+[2q' —(M& W)']io „„q,), (A-2)

v„s(~W) = (iy pW W) (SMh') —'[(Ma W) '+q') '

X (SM'h'q —'q + (MW W) [2(M&W)' —q')
X[iy„(MWW—)q 'q„)

+3 (M' —W')io „,q.), (A-3)

where It' is defined by Eq. (12).

APPENDIX 8

The functions f;(&W; xs,r) appearing in Eq. (13)
are defined by

'i S. Mandelstam, Phys. Rev. 115, 1741 (1959).

where for convenience we write j„(0)= j(0)w„with e„a
four vector in the direction of j„(0) and where the
v„'(+W) are evaluated in the rest frame of p'. We
recall that g is an arbitrary unit three vector. The
fact that f; does not depend on ( may be made explicit
by integrating over the angles of (. In this way we get

2

f,(~W; xs,r)= Q ir' dO„

X8(xo)(Ms'( [j(0),i1(x, —xo)) (0)

Xlt;(a W; x)u(Ms'), (8-2)
where

X;(+W;x)=(4s) ' ~dQt exp(ig xh)ts i '(+W). (8-3)

Quite explicitly we have

SMlts(W; x)

= —2(ep+stiy n)js(rh) —iy x
(W—M)'+q'

Sp

ji(rh) q'+ W' WM 2M'— —
—(W+M)iy. n

rh M

ji(rh) (W—M)'+q'
Xnx + (-', iy nr'

rh 2M
j (rh)—iy xn x), (8-4)
(rh)'

SMXs(W; x)
(W—M)'+q'

=2(ms+ sip n)jo(rh)+iy. x Sp

—(W M)iy n—ji(rh) q'+ W' WM+4M'—
rh 3I

ji(rh) (W—M)'+q'
Xnx + (tsiy nr'

rh 2M

where the ji(rk) are spherical Bessel functions of order
i. Corresponding expressions are valid for 'A;( —W; x)
with W replaced by —W. Since (rh) 'j&(rh) is an even
function of rh finite at rh=0, the above expressions
show explicitly that the functions f;(&W; xs,r) have
all the properties claimed for them in Sec. 2.


