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Moments of Inertia of Even-Even Rare Earth Nuclei*
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(Received November 16, 1959)

Moments of inertia of even-even nuclei are computed using the ¹ilsson model for deformed nuclei and the
moment formula derived from the superconductor theory of nuclei. Values for the energy gap and the
deformation are obtained from appropriate experimental data. Good agreement is found between the com-
puted and observed energies of the 6rst excited states of twenty-six rare earth nuclei. This success lends
strong support to the superconductor theory of the nucleus.

I. INTRODUCTION interacted strongly, an additional pairing energy D
would be required to excite such a paired nucleon to an
unpaired state above the Fermi sea. As a result, the
"cranking model" formula would be modified by the
addition of the pairing energy to the energy de-
nominators:

HE problem of calculating moments of inertia -of

spheroidal nuclei is one which has received
considerable attention' ' since the inception of the
collective model of the nucleus. In the early treat-
ments4' of collective motions, it was found convenient
to regard the nucleus as a droplet of incompressible
irrotational Quid. Inertial parameters were ascribed to
the action of surface waves on the nuclear droplet,
which involved the Qow of only a small fraction of the
nuclear Quid. The inadequacy of such a picture became
evident as experimental information established that
the actual moments are approximately five times larger
than it implies. '

The irrotational Quid model of nuclear moments was
superseded by the "cranking model"' in which the
nucleus was treated as an aggregate of nucleus moving
independently in a deformed average potential well,
and the e6ect of an externally driven rotation of the
well was taken into account via perturbation theory.
Excitation of nucleons near the top of the Fermi sea,
due to the rotational Coriolis perturbation, led to rigid
body values for the moments of inertia. These are two
or three times larger than the observed moments. '

A possible solution to this dilemma was overed
when Bohr and Mottelson' proposed that residual
two-body interactions could be responsible for moments
of inertia smaller than the rigid value. If nucleons in
conjugate states' of the average spheroidal potential
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These authors estimated that a pairing energy equal
to about one-third of the characteristic independent
particle level spacing would bring the moments calcu-
lated with Eq. (1) into approximate agreement with
observation. Detailed calculations using this formula'
have shown that it is capable of giving correct magni-
tudes and many of the general features of the structure
in the moments in the rare earth region, although only
when the pairing energies are assumed to be about twice
those observed experimentally.

This approach is based on the assumption that the
principal eR'ect of the residual two-body interactions is
to modify the single particle energies without significant
changes of the eigenfunctions. However, consistent
perturbation treatments" "of two-body interactions in

large systems of Fermi particles have shown that the
modification of the wave functions is such as to cancel
exactly the eGect of the energy shifts on the moment
of inertia. Thus, serious doubt is cast upon the validity
of merely augmenting the energy denominators by a
pairing term as in Eq. (1), provided that pairing
corrections to the nuclear moments can actually be
obtained by direct application of perturbation theory.
There is some basis for questioning whether such
perturbative expansions are applicable to nuclei.

Fo1lowing a suggestion of Bohr, Mottelson, and
Pines" that the systematics of the excitations in even-
even nuclei indicated the possible existence of an energy

gap in the nuclear level structure, Belyaev" has recently
applied the formalism of the theory of super-
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conductors" " to the problem of nuclear matter. He
has shown that if the two-body interactions are such
as to create a self-consistent field plus residual attractive
interactions, effective principally between nucleons in
conjugate states, an energy gap in the single particle
spectrum will develop. On the basis of this theory,
Belyaev has obtained the following result"" for the
rotational inertia of deformed even-even nuclei:

(2)

where ~; are the eigenvalues of the self-consistent field,
X is the "chemical potential" and is approximately
equal to the Fermi energy of the system, and E, are the
energies of elementary excitations of the "super-
conducting" nucleus given by

Z, =L(s,—X)s+ a')&.

6 is equal to the "superconducting" energy gap. The
sums in Eq. (2) are over all distinct levels of the average
potential. In the limit of vanishing energy gap, Eq. (2)
reduces to the usual "cranking model" formula for the
moment of inertia. This expression exhibits two
mechanisms for the reduction of nuclear moments below
the rigid value. First, the energy denominators are
effectively increased due to the presence of the gap.
In addition, the bracketed term in Eq (2) a.pproaches
zero as e; —+ es regardless of relative sign of (e;—X) and
(es—X), thus suppressing contributions from transitions
between closely neighboring independent particle
states.

In the following sections, we report calculations of
nuclear moments of inertia in the rare earth region
based on Eq. (2). The relevant parameters of the
superconductor theory are discussed in Sec. II, together
with the model chosen for the self-consistent field. In
Sec. III, the theoretical results are compared with
experiment, and some discussion of their sensitivity
to the assumptions required is provided.

II. THE NILSSON MODEL AND THE
SUPERCONDUCTOR THEORY

In order to apply Belyaev's forrnal development of
the superconductor theory of the nucleus to specific

nuclei, it is necessary to select a model for the self-

consistent field. We have assumed that the eigenvalues
and eigenfunctions of the Nilsson model" correspond
to the eigenvalues ~; and eigenfunctions of Belyaev's
self-consistent Geld, with some minor modifications to
be discussed below. The quadrupole deformations used
are those of the charge distributions as obtained from
Coulomb excitation and collective electric quadrupole
decay rates."

Neutrons and protons are treated separately. A
chemical potential ) is obtained for each by solving the
equation"

(4)

The sum here, as in Eq. (2), runs over all distinct
neutron (or proton) energies. In practice, the sums have
been taken only over states of the partially filled

oscillator shells of the Nilsson model. The small contri-
butions to the moment of inertia from completely
filled oscillator shells are neglected. Then S is the
number of neutrons (or protons) present in the un-

completed shells. The same value of the gap parameter
6 is assumed for both neutrons and protons. Equation
(4) gives values for X& (or Xz) very nearly equal to the

energy of the last independent particle level which

would have been filled if the pairing interaction were

zero.
There remains unspecified in Eqs. (2) and (4) only

the magnitude of the energy gap, b. In principle, this
is determined uniquely by the form of the self-consistent
field and the elementary nucleon-nucleon interaction.
We have chosen in this work to use empirical values of
this quantity derived from data on neutron separation
energies in the rare earth region" (see below).

With this choice, all of the parameters in Eqs. (2)
and (4) are determined, and the theoretical value for
the moment of inertia can be computed. Actually, there
are some ambiguities which arise from (a) the interpre-
tation of the data on the energy ga, p, (b) the experi-
mental uncertainties in the quadrupole deformation,
and (c) certain defects of the Nilsson model indicated

by the analysis of the spectra of odd-mass nuclei. "
The nature of these uncertainties is discussed in more
detail below.
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FIG. 1. Values for the energy gap 6 used in the present calcu-
lations are plotted as a function of neutron number. b, is given in
units of AcopP. The corresponding experimental quantities (O.SPN)
Of reference 21 are indicated by circled points.

as the difference between the nucleon separation
energies for an even-even and a neighboring odd-even
nucleus:

I'~= S(Z,N) S(Z, X——1)
=2XM(Z, X—1)—M(Z, X)—M(Z, X—2). (5)

An exact equality between the energy gap and one-half
the observed pairing energy does not hold. An esti-
mation of PN using the expression for the ground state
energy" of a "superconducting" nucleus and neglecting
deformation differences among nuclei indicates that
the pairing energy may differ from 2A by an amount of
the order of one-half the average level spacing in the
self-consistent field. Further, P~. contains a rearrange-
ment energy contribution due to differences in deforma-
tion between nucleus (Z, E 1) and nucl—eus (Z,X).
We have therefore disregarded the irregular structure
in the empirical pairing energies and have instead
constructed a smooth curve through the measured
points. Values of 5 have been taken from this curve,
and the same (neutron) data was used to determine
gaps for both neutrons and protons.

The experimental data of Johnson and Bhanot" is
shown in Fig. 1, together with the curve used to specify
6 in our calculations. The high values of P~ at X=90
and X=112 have not been given full weight in con-
structing the smoothed curve, because they are pre-
sumably associated. with the sudden decrease of the
nuclear quadrupole deformation which occurs charac-
teristically as one approaches closed shells, and it is
desirable to eliminate such spurious rearrangement
e6'ects. Moreover, the formula used in computing the
moments of inertia already represents an average over
several neighboring even-even nuclei, " and the gap
itself an average over gaps corresponding to various
single particle levels within these nuclei. These are
additional reasons for eliminating sharp structure of
this kind.

Although it does not seem possible to specify 6

uniquely from the data presently available, Fig.
suggests that the smooth curve is probably accurate'4
to about +0.01A~O' on the average. Ke have, therefore,
computed the percentage change in the rotational
energy which would result from such a variation in 6,
to provide a measure of the uncertainty arising from
this ambiguity. Column 8 of Table I shows this un-
certainty to be at most about 10%%uz.
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FIG. 2. The neutron level sequence in the rare-earth region is
shown as a function of the deformation, 8. A state is labeled by its
component of angular momentum along the symmetry axis,
parity, and asymptotic quantum numbers. Dashed lines indicate
levels which have been shifted from the original assignments of
reference 19 (see text).

'4 Except where otherwise stated, energies are given in units
of Acop' and quadrupole deformations in terms of the parameter 6,
in conformity with the presentation of Nilsson. "For a nucleus of
mass number A Ao)p —41)&A & Mev.

"Energy levels are designated by the spin, parity, and the
asymptotic quantum numbers PE,I„Aj appropriate in the limit
of large deformation (see reference 22).

Modification of the N'ilsson Model

Certain modifications of the relative positions of the
model eigenvalues within a given major shell were made
in order to remove obvious inconsistencies between the
Nilsson model and the data on low-lying spectra of
odd-mass nuclei. " The h~~~2 proton eigenvalues were
decreased by 0.2Acoo, and the remainder of the X=5
proton eigenvalues were increased by 0.2kcoo' to make
the model consistent with the spin sequence of odd-
proton nuclei. Also, all X=6 neutron eigenvalues
except those of the i»~2 subshell were increased by
0.1Acoo'. This change makes the model consistent with
the fact that the leveP' -,'+[6511 is not observed in
rare earth spectra below 0.5 Mev. Finally, the eigen-
values of neutron level rs —|521j were increased by
0.045~0 to give agreement with the observed ground-
state spins of nuclei with 99 and 101 neutrons.

These changes acct numerous levels which are not
actually filled in the rare earth region. However, the
contributions of such levels to the computed moments
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n nuclei. The first column lists the nuclei for which moments of inertia have been calculated.
i 1 ti th ofth io t(2+) t tio at to .Th ri-Columns 2 and 3 give the deformation and energy gap used in calculating t e energy o e owes ro

~ ~ 4 nd 5 and the ercenta e error given in co umn . o umns an pmental and theoretical energies are hsted in colu ns 4 an, p g
measure of the uncertainties in the calculated rotational energ'es d ql r iesduetoinade uateknowledgeo t eparame ers an

h rcenta e chan e due to an increaseuted ener resultin from an increase in 8 by 0.01 is given in column, an t e percen age c ange ue
o y . o . h fi l l l' t th ercentage change in the computed rotational energy resultingof a by 0.01hcv00(~70 kev) is shown in colum@ 8. The na co umn ss s epercen ag
from the shift in the X=6 neutron levels as compared to calculations with these states unshifted.

Nucleus

eowdgo'~
62Smgo

Smg2'64

64Gdgo'
Gdg2166

Gd 168

66Dyg4'~
Dy 162

Dy 164

Erg 6'64

Er 166

Er 168

Krio217o

toYbioo
Yb1P2172
Ybio4174

Yb106176

72Hf104
f1o6

Hf108'8o

74108
11O
112

76OS110
76»112'"

~Coulomb

0.24
0.27
0.31
0.28
0.39
0.44
0.45
0.33
0.34
0.39
0.31

0.31

0.28

0.29

0.28
0.29
0.26
0.25
0.23
0.23
0.19
0.17

0.139
0,139
0.128
0.139
0.128
0.117
0.108
0.117
0.108
0.100
0.108
0.100
0.093
0.088
0.093
0.088
0.085
0.085
0.085
0.085
0.086
0.086
0.090
0.096
0.090
0.096

~exp

130
122
83

123
89
79
76
86
82
73
90
80
80
79
84
78
76
82
89
91
93

100
112
124
137
155

~theo'

139.5
123.0
99.7

120.0
85.6
68.3
66.1
92.1
84.4
70.0
88.3
85.9
83.7
77.7
86.1
80.1
77.1
74.7

' 83.8
78.5
90.3

101.9
110.9
118.3
130.9
166.8

Percent
error

+73
+0.&

+20.1—2.4—3.8—13.5—13.0
+71
+2.9—4.1—1.9
+7.4
+4.6—1.6
+2.5
+27
+1.4—8.9—5.8—13.7—2.9
+1.9—0.9—4.6

44
+7.6

—5.8—3.7—2.1—3.2—3.1—2.0—1.3—1.3—1.2—1.7—1.3—1.4—2.3—3.5—1.2—1.8—3.6—6.6—2.4—7.2—4.6—3.2—4.2
84—2.8—4.1

L '(BB)

11
10
8
9
6
5
5
7
7
6
8
7
7
7
7
8
8
8
8
8
8
8
9
9

11
11

Percent
change

from level
shift

—0.1—0.1—0.7—0.2
04—2.1—1.9—1.3—4.5—3.6—1.6—6.4—7.8—11.4—18.7—5.8—13.4—15.8—10.9—16.5—16.9—15.0—14.5—20.1—4.1—3.7

& These values were obtained from measurements on unseparated isotopes.
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FIG. 3. This 6gure is similar to Fig. 2, representing
the proton energy levels.

are associated with large energy denominators so that
their shift should involve only very minor changes in the
moment of inertia. The levels which are important
for the moments, on the other hand, are just those whose
empirical behavior demands the modifications listed
above.

To test the sensitivity of the moments to such level

shifts, we have computed for each nucleus the per-
centage change in the computed rotational energy
which results when the shift of the X=6 neutron levels
is omitted. These percentages are listed in column 9
of Table I. They should not be interpreted as probable
errors associated with lack of empirical information on
the levels in question. The analysis of reference 22
establishes the qualitative fact that these levels lie
somewhat higher than Nilsson's original model predicts.
The shift used in the present calculations (O. ihcooo 700
kev) is as small in magnitude as is consistent with the
available data on low-lying spectra. "The levels may,
in fact, lie somewhat higher than assumed here. Thus,
the sign of any actual error associated with an improper
placement of X=6 neutron levels will probably be
opposite to that listed in Table I.

The proton modifications involve levels whose
positions are better defined by experiment than those
of the neutron states. Moreover, the protons contribute
only about one-third of the total moment of inertia.
Thus, the changes associated with their shifts should
be at most of the same order as those in Table I. The
neutron and proton eigenvalues used in the calculations
are plotted against the quadrupole deformation in
Figs. 2 and 3.

Changes in the wave functions associated with the
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Pro. 4. The experi-
mental and theoretical
energies of the 6rst
rotational excitations of
the nuclei considered in
this paper are plotted
versus neutron number.
Empirical energies are
denoted by circles and
calculated values as
squares.

eigenvalue modifications have been neglected. This
neglect should cause only a small error in the computed
moments because the level ordering within a shell is not
modified by the shifts. Thus, the general character of
the wave functions (and, in particular, the asymptotic
behavior for large deforrnations) is unchanged.

To allow convenient calculation for a complete
range of deformations, the eigenvalues and eigen-
function coefFicients of Xilsson were interpolated
parabolically for positive deformation s. The same
parabolas were also used to extrapolate to deformations
beyond the range of reference 19. This procedure seems
justihed by the generally parabolic character of the
eigenvalues and the smooth variation of the eigen-
function coeScients in the region of large deformations.

III. RESULTS AND CONCLUSIONS

Throughout this work, it has been assumed that
Zq. (2) can be applied to individual nuclei and that the
averaging process involved in its derivation does not
smear out the variation of the calculated moments from
nucleus to nucleus. "%ith this assumption in mind,
the results of the computations are given in Table I.
Listed are the nuclei, the deformations and the energy
gap parameters a,ssumed in the calculation, and the
theoretical and observed" " energies for the first
rotational state (Es+=3h'/P). Also indicated are the
percentage differences between theory and experiment.
The experimental and theoretical energies of Table I
are plotted in Fig. 4.

The agreement is remarkably good, with an average
error of only about 6/o and a maximum error of 20%

26 This assumption is supported by the generally slow. change of
moments calculated for a sequence of neutron (or proton) numbers,
keeping 6 and 8 6xed, and the fact that the distribution over
which Eq. (2) averages is not very wide.

27 J. %. Mihelich, B.Harmatz, and T. H. Handley, Phys. Rev.
108, 989 (1957).

in the theory. These errors are quite consistent with
the uncertainties arising from the limited accuracy of
the experimental parameters and from the substitution
for the actual nuclear level structure of a model sub-
stantiated only partially by experimental data.

The last three columns of Table I provide rough
measures of the three major uncertainties. They give
the approximate percentage change which results in the
calculated energy E(2+) from (a) a change in the
quadrupole deformation by 0.01, (b) a change in the
energy gap parameter by 0.01hcoes ( 70 kev), and (c)
the omission of the shift of %=6 neutron levels as
discussed previously.

It is clear from columns 7 and 8 of Table I that
suitable small variations in the gap ~ and deformation

could bring the calculated moments into exact
agreement with experiment. However, such a procedure
would shed no further light on the ability of the super-
conductor theory to reproduce experimental data.

At the present time, the inadequate knowledge of
the relevant parameters precludes a more stringent
test of the superconductor theory by calculations of
rotational moments. However, the present high degree
of consistency between predicted and experimental
moments of inertia, which so far remains undemon-
strated for other proposed descriptions, can be con-
sidered to oGer strong support for the basic elements of
the superconductor theory.
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