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this experiment. Terms similar to those neglected in
Eq. (A1) have also been neglected here.

If we let w„('A)A=w(E~, Ev)dEv, corresponding to
an electron energy E1 before radiation and E2 after
radiation, then the probability that an electron of
initial energy Ep will have an energy E after radiating,
scattering, and again radiating will be

~Ep +Ep
v (Ep,E')dE' =dE' vc(EO, E&)

Jg, ~~,

Xo (E~,Ev)w'(Ev, E')dRdE, , (AS)

where o (E~,Ev) is the theoretical scattering cross section
for electrons of initial energy E1 and final energy E2
and m and m' are the probabilities for radiation before
and after scattering, respectively.

For an elastic cross section, o(E~,Ev) is a delta
function and the integrals of Fq. (AS) can be evaluated
approximately to yield Eq. (1) of the text if E4 in that
equation is replaced by Ep. Again, terms of the same
order as those neglected in E'q. (A1) were neglected in
Eq. (1), in addition to terms depending on (Eo—Es)
but which were considerably smaller than those that
were retained.

If o(Ev, Ev), as a theoretical inelastic cross section,
is considered to be a series of many delta functions
(elastic cross sections), Eq. (2) of the text results,
where the summation has been replaced by the integral
sign of that expression. In deducing Eq. (2), it was
assumed that the shape of o( E,sE)vas a function of Ev
with fixed E1 does not change with E1. This assumption
gives adequate accuracy for this work.
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An attack is made on the problem of determining the asymptotic behavior at high energies and momenta
of the Green's functions of quantum field theory, using new mathematical methods from the theory of real
variables. We define a class A„of functions of n real variables, whose asymptotic behavior may be specified
in a certain manner by means of certain "asymptotic coeKcients. "The Feynman integrands of perturbation
theory (with energies taken imaginary) belong to such classes. We then prove that if certain conditions on the
asymptotic coeScients are satisfied then an integral over k of the variables converges, and belongs to the
class A„z with new asymptotic coeScients simply related to the old ones. When applied to perturbation
theory this theorem validates the renormalization procedure of Dyson and Salam, proving that the renormal-
ized integrals actually do always converge, and provides a simple rule for calculating the asymptotic be-
havior of any Green's function to any order of perturbation theory.

I. INTRODUCTION

' 'N many respects, the central formal problem of the
~ ~ modern quantum theory of fields is the determina-
tion of the asymptotic behavior at high energies and
momenta of the Green's functions of the theory, the
vacuum expectation values of time-ordered products.
Complete knowledge of the asymptotic properties of
these functions would allow us to test the renormal-
izability of a given Lagrangian, to count the number of
subtractions that must be performed in dispersion
theory, etc. We shall attack this problem from a rather
new direction, which allows a solution in perturbation
theory, and which provides an analytic tool that may
prove useful in solving the problem in the exact theory.

One might hope to find a solution either kinematically,
using only assumptions of covariance, causality, etc., or
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dynamically, by using the field equations that actually
determine the Green's functions. The first method has
been successfully applied to the 2-field functions, the
particle propagators, and yields the result that the true
propagators are asymptotically "larger" than the bare
propagators. ' However, because the theory of several
complex variables is so difFicult and incomplete, this
approach seems unpromising for expectation values of
three or more fields. For this reason, and also because
we would eventually like to obtain renormalizability
conditions on the Lagrangian, we propose to attack the
problem on the dynamical level.

Now, what are the equations that, in principle, would
determine the Green's functions. In perturbation theory
we know that the Green's functions appear as multiple
integrals, the integrand being constructed according to
the Feynman rules. In a nonperturbative approach the
Green s functions are again given by multiple integrals,
but with integrands that themselves depend on the

' H. Lehmann, Nuovo cimento 11, 342 (1954).
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FiG. i. Diagram of the asymptotic behavior of the function
f(P', P") used as an example in Sec. II. The coefficient n is —3
for the entire plane, and —3 for every line in the plane except the
two dashed lines. The "self-energy" Z(p') is calculated by inte-
g~ati~g f(P',p") along the vertical dotted line. It is the intersec-
tions of this line with all other lines in the plane, and with the
plane itself, that determines the asymptotic behavior of Z(P') ac-
cording to (III-12).

II. A SIMPLE EXAMPLE

Our task will be to define precisely what we mean by
the asymptotic behavior of functions of several real
variables, and to show how the convergence and asymp-
totic properties of multiple integrals may be determined
directly from the asymptotic behavior of their inte-
grands. Before proceeding to the general case, we shall
discuss a simple example that will illustrate the prob-
lems to be faced and our approach in solving them.

Consider the integral Z(p'), defined by

Green's functions. In either case, it is clear that we need
a theorem that would give general rules for the asymp-
totic behavior of functions defined as multiple integrals.
Furthermore, for application to the nonperturbative
integral equations, we would like these rules to be given
solely in terms of the asymptotic behavior of the
integrand, and no other properties.

Such a theorem is presented in Sec. III, and proven
rigorously in Sec. IV. The theorem states that if the
asymptotic behavior of a function of e real variables
may be described in a certain manner by a set of
"asymptotic coefficients, " then the integral over any
subspace of these variables may be similarly described,
with new asymptotic coeKcients that may be deter-
mined as functions of the old ones.

The theorem proven turns out to be extremely useful
in perturbation theory. It gives a simple rule that allows
one to read off the asymptotic properties of any dia-
gram, by noting the "connectivity" properties of the
graph, providing that we can rotate energy contours in
the usual way. The asymptotic behavior so obtained is
just right to guarantee the basic assumption of the
Dyson-Salam renormalization method, that a multiple
integral converges if it is "superficially" convergent, and
if al/ sub-integrations converge. This theorem, therefore,
completes the proof of renormalizability in perturbation
theory, for it tells us that the subtractions made ac-
cording to the Salam prescription' ' which can be shown

equivalent to a renormalization of masses and coupling
constants, 4 actually do give finite remainders in all

orders. Of course, it remains an open question whether
the perturbation series converges, and whether the
asymptotic behavior determined in perturbation theory
bears any relation to the actual asymptotic behavior of
the complete Green's function.

The application of this theorem to the nonperturbative
case and to dispersion theory will be reserved for a
future publication.

~ F. J. Dyson, Phys. Rev. 75, 1736 (1949).
'A. Salam, Phys. Rev. 82, 217 (1951); Phys. Rev. 84, 426

(&95&).
4 P. T. Matthews and A. Salam, Phys. Rev. 94, 185 (1954).

f(P',P")=
(P"'+m') L(P" P')'+t—"] (2)

3
42(L) = —2

.—1

if L VWO, L V'WO

if L V=O, L.V'g0
if L VWO, L V'=0.

This behavior is indicated in Fig. i. To be a little more

Except for the fact that p', p" are one-dimensional real
variables, instead of four-vectors, Z(p') is just the
lowest order "fermion" self-energy insertion, in a theory
with "fermions" of mass m, "bosons" of mass p, , and
interaction /tati; p' is the fermion momentum, and p"
and p"—p' the momenta of the virtual fermion and
boson lines.

Now, of course, the function f(p', p") is so simple that
one sees immediately that Z(p') converges, and can
compute,

p'[p"+( — )']
&(P') =

ti[p~4+2P~2(u2+m2)+ (~2 m2)2]
so that

Z(p') =O{p'-') as p'-+ m.

Usually we are not able to proceed so directly; we may
have to deal with complicated functions of many real
variables which may not even be entirely known. There-
fore, we wish to find some way of characterizing the
asymptotic behavior of f(p', p") so that, with no further
information, we may obtain the asymptotic behavior (4)
of its integral.

It is very convenient to introduce a vector notation,
writing

f(P) =
[(P V) 2+m2][(P. V')2+t42]

where

P= (p', p"), V= (0,1), V'= (—1, +1).
Suppose we consider the behavior of f(P) as P tends to
infinity along some fixed line. It is apparent that this
behavior depends strongly on the direction of the line.
If we let P=LII+C, where Land Care fixed vectors, and

q —+ ~, then
f(Lrt+ C) 0(rt iL=&}

where
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precise, if we confine C to a finite region W in the (p'p")
plane, then for any L there exist positive numbers

b(L,W) and M(L, W), such that

[f(Q+C) [ &~M(L,W)g i», (9)

for C in W and g&b(L, W).
Now it is unfortunately the case that simply stating

(8) and (9) would not allow us to tell anything about the
asymptotic behavior of Z (p'). It is necessary also to give
some information about the behavior of b(L,W). This
may be most easily accomplished, if we introduce tmo

positive variables, g~ and g2, which will be allowed to go
to infinity independently. Let us set j'(L,q,T/2+L, 7),+C) =0{1/pi ~+»} (18)

It is the special circumstance summarized in (11) that
establishes f(P) as a member of the class (later called
2„in the case of e variables) of functions with which we
shall deal, and that allows us to obtain (4). We shall say
in this particular case that n(Li) is the "asymptotic
coefficient" associated with the line {Li},and that
a({L„L2})=—3 is the coefficient associated with the
whole (p',p") plane {Li,L2}. (We use {Li,L2, } to
denote the subspace spanned by the vectors L,, L2, . ).

It is worth emphasizing how much stronger (11) is
than the statement (7). According to (7) alone we can
easily see that as p2 ~ ~,

P=L,+L +C1$1$2 s 2/2 i ()03
or more fully, that

where Li and L2 are fixed and independent, and C is
again confined to a finite region W in the (p',p") plane.

It is easy to see that then

f(L,g,it,+L,g,+C)=0{g,~i »gg
—}, (11)

or, in other words, there exist positive numbers

bi(Li, L2,W), b2(Li, LI,W), M(Li, L2,W) such that

. If(L,n,n,+L2n2+C) I ~M(L„L,C)~, iL»qn-', (12)

whenever C is in W, and

q, &b, (Li,L,,W) il, &b, (L„L„W). (13)

Proof: A simple calculation shows that if Li VWO,

[P V[ 4
~&ni 'n2 '

(p v)~+m2 [L, v[

for rpi&2L[L2 V[+[C V[]/[Li V[, (14)

g2&1;

while if Li V=O (and hence L~ VWO),

[P Vf 4
for q2&2[C V[/[L2 V[. (15)

(P V)'+m' IL2 V

Furthermore, if Li V'40,

(P.VI)2+„2 [L,.V'[~

for qi&2[[L2 V'[+ [C V'[]/[Li V[, (16)

g2&1;

while if Li V'=0 (and hence Ln. v'WO),

(P V')'+~'

for g2&2[C V'[/[L2 V'[. (17)

Multiplying (14) or (15) by (16) or (17), and referring
back to (8), shows that (11) is correct.

[f(Li~i~2+L2~,+C) [
& ~(L,~,+L2, W)~,-« "+"i, (19)

for C restricted to W and

n2& b(L,gi+L„W). (20)

IIL THE ASYMPTOTIC THEOREM: DEFINITIONS
AND STATEMENT

We shall now consider the general case of functions
f(p', p", ) of e real variables p', p", , which for
convenience we unite into a vector P in the n-dimen-
sional linear vector space R . We will define a class A
of such functions, whose asymptotic behavior for high p
may be specified in a certain manner, by means of cer-
tain "asymptotic coefficients. " (The integrands of
covariant perturbation theory, constructed according to
the Feynman rules, with the I real variables taken as all

Furthermore, it is obvious that for any Li, L2, the vector
Lizi+L2 will not be orthogonal to V or V' for sufficiently
large g~, so that for qj large enough,

n(Ligi+L, )=—3. (21)

What is not obvious, and indeed is not contained in (7),
is that we can find numbers bi(Li, L2,W), b~(L, ,L2,W),
and 3E(Li,L2,W), such that (12) holds, or alternatively,
by comparison with (19) that

M(Liyi+L2, W) ~& M(Li)Lg, W)gi iL»,

b(Liin+L2, W) ~& b2(Li)L2, W), (22)

n(Ligi+L, ) = —3.

for all qi& bi(Li, L2,W). The statement (7) alone would
of course allow us to determine the convergence of
Z(p'); however we need (11) for alternatively (22)) to
determine its asymptotic behavior.

The proof that the asymptotic behavior (4) of Z(p')
can be directly obtained from (8) and (11) alone, with-
out knowing any other properties of the function
f(p', p"), will be reserved until the next section. We
shall show there that (4) follows immediately in a
simple application of the general asymptotic theorem.
LSee (III-15).]
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components of all internal and external momenta, are
shown in Sec. U to belong to A„, providing that all
energy integration contours may be rotated up to the
imaginary axis. ) The exact definition of the classes A„
and. of the "asymptotic coe%cients" is chosen in just
such a way that we will be able to prove the asymptotic
theorem, which says that if a function belongs to A „,
any sufficiently convergent integral over k of its argu-
ments belongs to A „~, and which provides a rule for
calculating the convergence properties and asymptotic
coeKcients of the integral in terms of the asymptotic
coeKcients of the integrand.

Definition

The function f(P) is said to belong to the class A if
to every subspace Sf R„ there corresponds a pair of
coefTicients, a "power" u(S) and a "logarithmic power"
p(S), and for any choice of 222~&22 independent vectors
Ll L„and finite region W in R we have

f(L~~" ~+L~ ~+" +~ L.+C)
—0{sf a(L&)(lnrf1)S(L1)rf aif Ll, L2f)(inrf2)S(f Ll, Lsl)

X ' ' 'g 0'(j LI, Lg ~ ~ L2rb)) (ln lP(( LI L2 ' Lm))4'''nm (

if sf 1
. .rf tend independently to infinity with C confined

to W. [Here n({L1 L,}) and p({L, L„})are the
asymptotic coeKcients associated with the subspace
{Ll L„}spanned by the vectors Ll .L,.]More pre-
cisely, there exists a set of numbers b& - b )1 and
M) 0 (depending on L, L and W but not of course
on the 211 rf„), such that

coe%cients of f(P) for P ~ ~ along typical directions
in 5.

In the special example given in Sec. II, we saw that
n(R2)= —3, where R2 was the whole p', p" plane.
Furthermore, this was also the value of n(L) for almost
all vectors L in R2, the only exceptions being L (1,0)
(with n= —2) and L (1,1) (with n= —1), as shown in
Fig. 1. By talung L=sflL1+L2, where Ll and L2 are any
fixed vectors and q& is suSciently large, we could always
avoid these two special directions.

We now consider an integral of f(P), given as

fLi' "L~'(P)= dyi

X, dyf, f(P+Ll'yl+ +L&'y&). (7)

In the example of Sec. II, for instance, we had

~(P')=fL'(LP'), L'=(o,1), L=(1,0) (g)

We shall say that the integral (7) "exists" if every
subsequent integration converges in the iterated integral

dyi .
i dy.

~
f(P+Li'yi+ +L.'y~) ~. (9)

In this case, by a simple application of Fubini s theorem,
(7) cannot depend on the particular vectors L,' L„'
but only on the subspace IQR„ that they span. We
therefore write in this case

~ f(Llgig2 q +L2g2 . .g +.. .+L q +C)
~(~21 a(L1) (lnri )SiLlirf a( f L1, L2l)

X(inrf2)S(f L»2}i. . .rf aif Ll" Lml)(ln& )S(f Li Lml) (2)

provided that CeW, and that

f,(P)= fL, ".Li (P) for I= {L,' Ll,'}

d "P'f(P+P'). (10)

gg&bg, g2&b2, -., g &b . (3)

It may readily be observed that n(S), P(S) are the
values of n(L), P(L) for L a "typical" vector in the
subspace S. Suppose we let only rf go to infinity in (1),
keeping g& q j 6xed and satisfying

gi&bi), gm i&bm i.

It then follows from (1) that for S= {L1L2 L }
f(LL1'0l' ' 'rf i+mL2212' ' '21m=i

+ +L„,rf„ 1+L ]rl +C)
—0{rf

a( sl (lnrf )Si si }
so that we can take

rr(Llrf1 rf„ 1+L2112 21,+ +L„)=rr(S), ( )

and likewise for P. The conditions (4) just ensure that
thevectorL=Llrf1 . rfm 1+L2212 lfm 1+ +L does
not take on some special direction for which rr(L) )rr(S).
We shall refer to cr (S), P(S) therefore as the asymptotic

Furthermore fz(P) does not change if we add to P any
vector in I; in other words, f(P) depends only on the
projection of P along the subspace I. It is convenient to
choose some particular subspace E such that R„=I+E,
with I and E independent, and restrict P to E. In
applications to perturbation theory, a vector in I or E
will have as its components the momentum components
of the internal or external particle lines. LIn Sec. II,
I= {L'},E={L}.See (III-S).] We may now state the
general asymptotic theorem.

Theorem

If a function f(P) belongs to A„, with asymptotic
coefificients n(S), P(S) for S any non-null subspace of

R, and if f(P) is integrable over any finite region of

g„, then if Dr&0, where

Dr max Ln(S')+dimS'——],S'QI
5 See, e.g. , L. M. Graves, The Theory of FNnctions of Real

Vunables (McGraw-Hill Book Company, Inc. , New York, 1956l.
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Here 5'QI means that S' is a subspace of I, including
the possibility S'=I; dimS' is the dimensionality of S',
A (I)5'=5 means that the projection of 5' along I on E
is 5 (this last is discussed in detail in the Appendix).
The "max" in (11) and (12) means that we take the
maximum over all subspaces 5' satisfying 5'QI and
A(I)5'=5. , respectively. Actually, by using the Heine-
Borel theorem we will be able to show in the next
section that only a finite number of S' need be taken
into account, so that "max" is finite.

Let us now see how this theorem may be applied to
the example of Sec. II. There I was one-dimensional, so
that the only 5'QI is 5'=I. Thus

Dz=a(I)+dimI= —3+1=—2&0, (13)
so that

(a) Z(p') exists;
(b) Z(p')eA i, which means that we can write

Z(P')=O{P" i &(logP')e i &). (14)

Note that A(I)5'=E is satisfied for S'=R2=I+E, and
for S' any line in R2 except I. Thus by (12) and (II-S),

az(E) =max[ —3+2—1,
—1+1—1,
—2+1—1,
—3+1—1]

= —1)

(5'= R~)
(5'= {(1,1)))
(5'= {(1,0) ))
(S' other lines)

which agrees with (II-4).
It is interesting to compare statement (a) of the

asymptotic theorem with what we should expect if we
attempted to estimate the degree of divergence of
integrals by just "counting powers" of the arguments
p', p", . Naively, we should expect the degree of
divergence of the integral fz of f over any subspace I',
to be given by the asymptotic power a(I') of f(P) for
P —+ ~ along typical directions in I', plus one unit for
each integration performed. We shall call this quantity

then the following statements hold:

(a) fz(P) exists;
(b) fz(P)eA„&, with asymptotic coeKcient az(5)

given for any SQE by

az(S) = max [a(S')+dimS' —dimS]. (12)
h(I)5'.=5

It must be stressed that by all subintegrations we mean
all iterated integrals for all possible linear recombina-
tions of the integration variables. This is the mathe-
matical foundation of the perturbative renormalization
theory, to be discussed in Sec. V.

fz(P) = ' d"'P'f»(P+P').
~ P'eSy

(2)

By our induction hypothesis we can apply the asymptotic
theorem to both the S2 and S~ integrations, obtaining
the following results:

(a1) fs2 converges absolutely if Ds2(f) &0, where

Ds2(f) = max [a(5")+dimS"].
5"QSg

(3)

IV. THE ASYMPTOTIC THEOREM: PROOF AND
POSSIBLE EXTENSIONS

Our proof is by strong mathematical induction, and
divided into the following steps:

(A) We prove by purely geometrical reasoning that
if the theorem holds whenever dimI&~k (where k&1)
then it also holds for dimI=k+1, so that it is only
necessary to prove the theorem in the case dimI=1.

(B) We consider the case I={Lj (where I. is some
vector eR„) and show (trivially) that fz(I') converges
absolutely if DJ&0.

(C) We describe a method of covering the infinite
interval of integration of fz with a finite number of
subintervals J.

(D) We show that if Dz&0 that the sum of the
integrals over the intervals J belongs to A„~, with ny

given by part (b) of the asymptotic theorem.
(A): Assume the theorem holds whenever the sub-

space of integration has dimensionality ~& k. Let I be a
(k+1)-dimensional subspace of R„. We decompose I
into

I=Si+S2,

where Si and S2 are some (non-null) independent sub-
spaces of E, with dimensions k&, k& necessarily ~&k.

(We could always choose Si or 52 to be one-dimensional,
but the proof is then less illuminating. ) Let feA„. The
integral fz can be written fz=(fs2)si, or in other
wol ds)

K)z
—=a(I')+dimI', (16) (b1) If Dsz(f) &0, then fs2eAn k2, with-

the superficial divergence of the integral of f over I'.
According to part (a) of the asymptotic theorem, how-
ever, the sufficient condition for existence of the integral
of f over I is not just that the integral converge super-
ficially, (i.e., Sz&0), but that all subintegrations also
converge superficially (i.e., X)s &0 for 5'QI), since
according to (11),

as, (5') = max [a(5")+dimS"—dimS']. (4)
A(52)5"=5'

(a2) If fs2eA~ k2, then fz as —given by (2) converges
absolutely if Ds&(fs&) &0, where

Dsi(fsg) = max [as, (5')+dimS'].
5'C Si

DI= max &8'.
5'QI

(17)
(b2) If fs2eAn —z2 and Dsi(fs2) &0, then fz as given
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by (2) belongs to A ), i, with fpA„, fLpA i, or in other words,

o(r(5)= max I ns, (5')+dimS' —dimS]. (6) fi(P) =O{)}i~« ')(in)},)s« "
( i) '=

X (ln„)t)L([ L, Lm})j (16)
The whole integral clearly converges if both Dsz(f) &0
and Dsi(fsp) &0, i.e., if Dr&0 where P=L))7) )I„+Lp)}p .)}„+ +L )7„+C, (17)

Dr=maxLDsz(f), Dsi(fsz) j.
Inserting (3), (4), and (5) into (7), we obtain

(7) where )}i )I tend independently to infinity with C
confined to 8'. We must also verify (III-12), showing
that

Di =max*[o, (5")+dimS"j,S" (8) nL(5) = max Ln(S')+dimS' —dim5$. (18)
A(L)5'=S

which completes the proof of part (a) of the theorem.
Turning to part (b), we see that if Dr&0 then com-
bining (b1), (b2), and (7) we have frpA„p i Com. -
bining (4) and (6), the asymptotic power of fr is

o(r(5) = max )dimS' —dimS
A.(5,)S'=5

+ max (p((S")+dimS" —dimS') ]
A(Sp)S"=S' (1o)

max Ln(5")+dimS" —dimS].
A(Si)5'= 5

h. (Sp)S"=S'

By statement (E) in the Appendix the double condition
A(Si)S'=S and A(Sp)5"=5' can be replaced by

5=A(S,ys, )5"=A(I)5",

so that (10) proves part (b) of the theorem.
(B): We wish to consider I= {L),and

f (P) =fL(P) = f(P+Ly)~y, (12)

where fpA . According to (III-1), we have

f(P+Ly) =O{y'"(iny)""') as y ~ ~, (13)

so clearly (12) converges absolutely if

n (L)+1&0.

Since the only non-null subspace of I is I itself, we have
according to (III-11),

Dr=o. (L)+1,

so that part (a) of the theorem is verified.
(C): Suppose we choose any sequence Li L of

vectors pR„(independent of each other and of L) and
a finite region 5' in g„;our task is then to prove that if

where "max*" runs over all S" satisfying 5"( 5& or
A (Sp)5"( Si. According to statement (D) in the
Appendix, this means that max* runs over all 5"
satisfying the condition 5"( Sr+So, so that (8) becomes

Dr ——max Ln(5")+dimS"],
5"CI

To this end we will first describe a decomposition of the
interval —po &y& p() in (12) into a finite set of intervals
J, each of which contribute a "term" to (18). Consider
the sequence of m+1 independent vectors,

L,+u,L, L,+u,L, , L„+u„L,L, L„+„,L,
where 0~& r ~& m and N~ .e„are a set of r real variables.
Since fpA, there must exist a set of numbers

bi(ui u„))1 (0~& I ~& r), 3rI(ui u,))0,

such that

~ f((L +iuL)))}i ' 'i}mi}o+ (Lp+upL))}p ~ ' ')}m)Io+ ' '

+ (Lr+urL)r}r' ' 'gm)(}p+4r+1 ''gm)}o

+L„+,g„+, .i}„+ . .+L„g +C)
~

&~(u . . .u )i} a(}Ll+ulL}) (ini}i)s({Ll+ulL}). . .
n(I Ll+ulL ~r+~rL} ]n~ IP(I L1+ulL, ~ ~ ~, Lr+urL})~ plr 'I~J

Xgon(I LI ~ ~ ~ LrLj) f]n 3P(f LI ~ ~ ~ LrLj)'Io

a(}Ll ~ ~ Lr+1L})(ln)} )()(}Ll'''Lr+1L}) . . ~

m(} 4 LmL)} (ln)} )S(}4 ..LmL}) (19)

when all)}(&b((ui u„) and CpW.
Now let us consider the closed interval (—bp, bp).

t When we refer to an interval as (a,b) we mean the set
of all u with (a~& u &~b); by "bp" we mean the bi function
with I=r=O.j Every point u on this line is in the
interior of a closed interval, Lu —bi '(u), u+bi '(u)7.
Therefore, by the Heine-Borel theorem' we can find a
finite set of points U, with

~
U,

~

&&bp, each U, contained
in an interval (U,—X,, U,+X,), such that the intervals
(U, —X;, Ui+X;) cover the entire closed interval

(—bp, bp), and such that 0&X,~&bi '(U;). Now consider
any particular i, and the closed interval L

—bp(U;),
bp(U;) j. Again we may use the Heine-Borel theorem,
and obtain a finite set of points U;, with

~
U,; ~

~& bp(U, ),
and a set of closed intervals (U;; X... U;,+X;,), whi—ch
cover the finite line P bp(U;), bp(U—;)j, and such that
X;;~& bp (U;,U, ,). Continuing in this fashion, we find tg
finite sets of points Ui~, U'~i2, -, Ui~ .i and numbers
X'&, A. '&i2, . , Xi&. . i, such that for any runs, the

See, e.g. , E. T. Whittaker and G. N. Watson, Modern Analy$1$
(Cambridge University Press, Cambridge, 1927), fourth edition,
p. 53.
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(Uil . .i„—4'1 i„Uil. 'r+.4li'„) cover the line

(—bp(il i, 1), bp(il . i„ 1)),

0&X'1" „&1/b„(il i„),

IU'1" '. I &bo(il i.-l),
where we introduce the notation

bl( 21' ' '2r) =b1( U'rl rUr»2y ' '
yUrlr2

' ' 'rr) ~

(20)

(21)

(22)

For the case r=0 the intervals J+(2}) are defined to
consist of all y with

~y= lyl &bowl (26)

and the intervals Ji1 ~
' are defined to consist of all y

that may be written

We shall use (20), (21), (22) to split up the integration
in (12).Take any set of 2}, 2(

.)1. We will define a set
of intervals Jil i„+()}) (r&~222) to consist of all y that
may be written

y= U'12(i 2(m+ U'i(2)(2 r(m

+ ' ' Uil irrlr' ' 2(m+Z'l(ryl ' "2)my (24)
where

(25)

First, suppose yoJil i,+(r(). Combining (24) and
(17), we have

P+Ly= (Ll+ Ui(L)2}, 2}„+(L2+ Ui»2L)2}2

+ ' ' ' + (L„+Uil ~ i„L)2}

+SL)),+1 2}„+L„+,2)„+, 2)„+ +L 2)„+C,

or by a slight re-writing,

P+Lr=(L1+U'1L)nl" ~ -1(n./lsl) Isln.+ "1~-
+ +(L,+U'i" 'L)(2},/Isl)
X I sI (r+1 ' 'itm+L Is I 2)r+1' ' '2(m

+L„+,2(„+, .2}„+ . +L„il +C. (30)
I.et us define

(2(21 21)

=n({L1+U'1L,L2+U'1(2L, , Ll+Uil .'1}). (31)

Applying (19) with i,p=
I sl, we see that

I f(J'+Lr)
I

& ~(j, . .i ).q,a(i» (ini},)()(i»2}2a(i»»(lni(2)()(i»»

)&(2(r/I sl)a("' "")(ln(2(r/Izl))@""'")lsl
X(inlsl)P((» LrL})2( a((Ll .Lr+lL})fr+1

y (in)} )((([» Lr+iL}). . .
a(( Li ~ ~ LmL})(in~ )))(( Lg ~ ~ ~ LmL}) (32)

Uili)l ' ' ''gm+ U'4(2'2}2 ' '2}m

+ ' ' '+ Uil imam+ S&.l (27)

providing that
2(i& bi(il . i„) (l.g r), (33)

with

Isl &bp(il i ).
n./lsl&b. (i "i.),

Isl &bp(il "i.).
(34)

(35)
It is easy to see that every real y belongs to at least

one of these intervals. For if y is not in J+(2}), then

lyl ~&bo)(i 2) . However, the finite line (—bo2)1

+boi}1 2(„) is covered by the intervals (U,o}1

»m+X,pl . .2}m). TherefOre, We may
set

y= U'»1" ~-+y'
I
y'I &&~i" .n-~'1,

for somei1. This implies that if &y )2)2 2} bp(il) then
yoJil+(q) according to (24), (25). On the other hand, if

I
y'I &~2(2 r( bo(ii), we can again place it in a covering

interval, so that

y=U(12/1 ' ''gm+U'i»2'92 ~ ' 2(m+y"r Iy"
I

~&2}2' ' '2}m~ili2.

Thus if +y"&2}2 2(mbo(ili2), yoJ(j(2+(q). This process
can clearly be continued until the final alternative,
which is yoJil. i o(2}). It therefore follows that

IfL(P)l ~&K 2 2 drlf(P+Lr) I

However, since yoJil i„+(2}),conditions (34) and (35)
are automatic. [See (25), (21).jThus, if (33) is satisfied,
we have, making a change of variable in (29),

dy
I f(P+Ly) I

&~M(il. i,)2}a"'f»
Jil ~ ~ ir+ (2})

)( (lni(1)(((i». . .
2}

a(A ~ ~ .ir-» (Ini} )()(iy ~ ~ ~ ir-&)

a(I LI ~ ~ ~ Lr+lL})fin )P(I L1 ~ ~ - Lr+] L})
2I x+1 'I &+1/

a(( Ll LmL}) (ln2( )}(((Ll LmL})2}

~gr) i1 ~ ~ ~ i2

dlsl(n. /lsl)"' '"'(inn. /lsl)"" '"'
bp(i1' ' 'i~)

'L"L})(lnlsl)s'( '" " } (36)

It is now generally true that for any numbers 0&X& 1,
b&1, (2, n', and nOn-negatiVe integerS p, p', aS 2(~ oo

+ 2 drlf(P+Lr) I (29)""™"J' " ' o(i()

(D): Now we shall examine the asymptotic behavior
of each term in (29) with P given by (17).

=0 2) (1n2()s, (2'+1 &(2 (37)

2+}a'(in )(('7, (2'+1)(2.

(2}/s)"(ln(it/s) )ss" (lns) ('ds

r(a (ln2)) S+('+', a'+1 =(2
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We can always take the original P(S) to be non-
negative integers, for since the asymptotic coeKcients
only set an upper bound on the behaviour of f(P), we
are free to increase them as needed. LOf course, our
arbitrarily increasing the P(S) to be non-negative
integers causes the final formula for PL(S) to lose its
significance. ) Therefore we can find numbers c(ii i,)
&1, E(ii i,)&0 such that

dyl f(P+Ly) I
&M(ii "i.)iY(ii "i.)'.+(n)

X)I «(i»(ln)ti)p(i». . .{I «(il ~ ~ ~ ir —» (In~ )p(il ~ ~ ~ ir —»

«({Li LtL})+1(ln)} i)p({Ll LgL}). . .

)()I «({Li L«L})+i(in~ )p({Li L«L})

a(Zl .Zr) (}n~ AP(Z1 ~ ~ ir)+P(I Ll. ~ ~ LrL})+1
~gr 7

if ~(ii "i„)=~({L," L„L})+I

{I «(ii ir) (In)I )p(ii ~ ~ ~ it)

X' (38)
if ~(i, i„)&~({L,. L,L})+I

a (( L1 ~ ~ Lr L})+1(}n~ $ p( ( L1 ~ ~ ~ Lr L})nr 'I rf )

Here 1V is the finite positive number

X= " s ("'(lns)P'L)ds, (44)

where we recall that a(L)+1&0 by hypothesis.
Finally, we consider the case yeJ'i i„'(i}). Com-

bining (27) and (17), we have

P+Ly= (Li+ Ui,L)q, )}„+(L,+U'», L))},
+" +(L.+U„.. .;„L)&.+Lz+, (43)

where
I zl ~&ho(ii i ). Suppose we now define a new

finite region R', consisting of all vectors

C'=Ls+ C,

where CeR and
I
s

I
~& bo(ii ~ i ) Sin.ce feA „,we can find

numbers M'(ii i )&0, bi'(ii i )&I such that

I
f((Li+Ui)L))}i' ' ')} + ' ' '+(L +Uii ~ ~ s L))} +C ) I

&~ M'(ii i„))}i(*»(lnq, )P('» ~ ~

«(A ~ iN» (In)} )p(4 ~ ~ im) (46)

wherever C'eR' and )}i)b)'({I, )} ). Therefore,

whenever

(~(ii i,) &o(({L) L„L})+I, dylf(P+Ly)l &~2b (i i )M'(ii i )
Jii ~ ~ i (i})

i}i& b i(ii i„) (l8r), q, &c(ii i,) (3.9)
)(g «(n) (In)I )p(i&). . .)} «((y ~ ~ ~ i«) (jn~ )p(A ~ ~ im) (47)

provided that
I Note that the interval Jii i,+(i}) does not contribute
unless q„)b, (i, i„)bo(ii i„).j

Now let us consider the two infinite intervals
)},& bi'(ii. i„) (1&l & m). (48)

dyl f(P+Ly)I =
»oni

All we need do to finish the proof is to inspect (38),
(42), and (47), together with the corresponding condi-

I f(P+Ly)ldy. (40) tions on q, (39), (43), and (48), and use (29). We see
that fLeA„ i, with

After making a change of variable,

dyl f(P+Ly) I

gl' ' 'gm
I f(~Lsd, "g„

+Li)I) )} + +L„)}+C) lds. (41)

& MiY){ «({LiL})+i(i')i)p({ LiL})

Therefore, applying (19) for r=0, &0= z we have

dylf(P+Ly)I

nL({L, L„})
=maxi n(ii i,), n({Li L,L})+I],

&L({Li . L.})
p(ii i.),

for n(ii i,)=nL({L) L,})
p({Li L,L}),

=max for n({Li L,L})+1=vi,({L, . L„})
P(i i„)+P({L L„L})+I,
for n({L, L„L})+1

=e(ii i,)=nL({Li L„}).

The formula for PL, while giving a correct upper bound
on the number of logarithms, is an overestimate, and
will not be further discussed. (It may be noted, though,
that }{)}Lis still a non-negative integer. ) The formula for
nL may be rewritten:

whenever
)Ii& bi (1&~l &~m).

«({Ll'' imL})+i(jn)} )p({ rl ' L«L}) (42) aL({Li . .L„})
=maxi n(L, +u)L, L,+u,L, , L,+u„L),

(43) n({L, . L„L})+Ij, (51)
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where the Nj- .N, take only the finite set of values
U~i, , Ui~ ~„. According to statement C in the
Appendix, this formula is equivalent to (18), which was
to be proven.

The most interesting possible extension of this theo-
rem would be to introduce some sort of "positivity"
conditions on f(P) which would enable us to set a lower
bound, as well as an upper bound, on the asymptotic
behavior of the integrals of f(P) Our. method of proof
is well suited to such a program, since we display ex-
plicitly in (29) the part of the domain of integration
giving each particular contribution to the asymptotic
behavior. (It is easy to verify in the example of Sec. II
that the covering intervals J can be arranged so that
they don't overlap. ) It might then be possible to show
that certain theories are rigorously nonrenormalizable
in the Heisenberg representation.

It would also be very useful to refine the theorem so
that we are not forced to overestimate the powers PL(5)
of lnp. In order to include the possibility of negative
P(S) it would be necessary to introduce powers of ln lnrj

into the definition (III-1).
Finally, it might be interesting to extend the theorem

to the case where the o, depend on the individual vectors
Li L„and not just the manifold (Li L,). This is
very easy to do in the case where the subspace of
integration J is one-dimensional, but has no obvious
physical application.

V. APPLICATION TO PERTURBATION THEORY

We shall now apply the general theorem proven above
to the determination of the convergence and asymptotic
properties of Green's functions in covariant perturba-
tion theory. Our treatment will follow closely that of the
simple example discussed in Sec. II and at the end of
Sec. III.

Let us consider any particular Feynman diagram g in
any local Geld theory. According to the usual rules there
is associated with each internal and external particle line

j of g a bare propagator 6, (P, ,o), where P, is the mo-
mentum four-vector carried by line j, and o- is a single
label representing all discrete variables such as spins,
polarizations, etc. The integrand F corresponding to
diagram g is given as a simple product

where y(a) is the product of all vertex factors, such as
Dirac matrices, coupling constants, etc., and plays no
important role here. (Since all discrete indices are
subsumed under 0-, the 2; and 7 are ordinary complex
functions, and can be multiplied without regard to their
order. ) In theories with derivative coupling, we must
include in the 5; any factors of p, arising from deriva-
tive coupling vertices to which line j may be attached.
The Green's function G corresponding to g is formed by

(3)

[For an example, see Eq. (11-5).] If a vector P is
orthogonal to all V;„for which j is an internal (external)
line, then we shall say that P lies in the external (in-
ternal) subspaces F.(J); its components then involve
only external (internal) momenta. The subspaces F and
I are disjoint, and

&+I= &4x.

The Green's function corresponding to graph g is now

given by the improper integral over the internal
momenta,

G(P,a. ,) = P F(P+P', a)dP',
0'int J ps Z

(5)

where PeE. We will first study the asymptotic behavior
of F, and then apply the general asymptotic theorem to
learn what we want to know about G.

Unfortunately, as it stands the function F(P,a.) does
not belong to the class 34~, because of the special
circumstance that the propagators 6;(p, ,a-) depend on
the scalar product

which can vanish for nonzero p;. In order to apply our
theorem, it is necessary to rotate the contour of inte-
gration for each energy integration in (5) in a well-
known manner from the real up to the imaginary axis. ' '
A general discussion of the difhculties encountered in
this step would be interesting, but beyond the scope of
this work; we shall simply assume henceforth that. all
energy contours have been so deformed. Likewise, if the
integral G is to be used as an insertion in a larger dia-
gram, we shall be interested in its behavior for imagi-
nary values of its energy arguments. We shall, therefore,
restrict ourselves throughout to consider all four-
vectors p, with imaginary fourth component p, a

——ip...
7 R. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952).

summing and integrating F over all internal a and p, ;
it is then a function of the external variables.

Now, we are supposing in (1) that all energy-mo-
mentum conservation 8 functions have already been
eliminated, leaving N independent momentum four-
vectors, where of course N(M. Let us unite all com-
ponents of these independent four-vectors into a single
vector P in the 4N-dimensional Euclidean space E4~, so
that each component p, „(p=0, 1, 2, 3) of each of the in-
ternal and external momenta can be written as a linear
combination of the components of P. To use vector
notation, we introduce for each j, p a vector V,„in R4z,
such that p;„ is given by the scalar product

(2)
and therefore
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~J(pi o) =O{[(pi')]' '}, (7)

for each fixed o., and for p; tending to infinity along any
direction. For example, if line j represents a spinless
internal particle, n;= —2, since

~ (pi, o) = 1/(p'+) i')

while if it represents an internal particle of spin —„
o,,= —1, because

spj&& +&v)
A (p o) =S.(p ) =

p&'+m '
~& [»{S.(p )S.'(p, )}]'=2/(p '+~ ') **

Using (3) and (7), we may now show that F(P,o)
belongs to the class A4)v (defined in Sec. III) with
asymptotic coefficients, for any subspace S( R4&, given
by

n(S) =Q;(e)n;, (g)

P(S)=0

the sum in (8) running over all j for which V, is not
orthogonal to the subspace S.

Proof. Let us set P in (3) equal to

P=L,r), r)„+L,&), . r)„+ +L„&) +C, (10)

where Li . L„are independent vectors in R4)v (so
sn ~& 4'), C is a vector confined to a finite region W, and

tend independently to infinity. Then from (7)
we have for fixed cr,

6;(V, P,o) =O"{(&)(r)(~i &)„)"'}, (11)

where l is determined by the condition that

V,"Li——V;.Ls —— ——V; Li i ——0 but V; L(/0. (12)

Therefore, from (3),

F(P, )=O{gg'(„,„„, „„)-}, (13)

where the product Q,'" includes only those j satisfying
(12). Collecting powers of each &), we have

F(P,&r) =O{r)i~~»r)s"& & ~ .&I~ «&} (14)

(15)

and hence with positive-definite square

Pi'= P,is+P, ss+P, s'+P;4'&0. (6)

In this manner we circumvent, but do not solve, the
special problems associated with the hyperbolic metric
of space-time. [It will also be necessary in electro-
dynamics to introduce a small photon mass in order to
avoid infrared divergences in (5).]

With the above qualifications it is easy to see that the
propagators h, (p, ,&r) have a very simple asymptotic
behavior, given by

where the sum p, (") contains only those j for which (12)
is satisfied for some l&r, and hence just those j for
which

Li V;WO or Ls V, WO or . or L, V, &0,

or in other words, over all j for which V, is not orthog-
onal to the subspace {Li L„}spanned by Li L.We
therefore are entitled to write n{„~ as a function only of
the subspace {Li .L„},

n() =n({Li' ' 'L }) (16)

and obtain (8) from (15).
We may now apply our general theorem. The erst

part tells us that the integral (5) converges if it con-
verges superficially [i.e.„n(I)+dimI&0] and if all

subintegrations converge superficially [i.e., n(I')+dimI'
&0 for I'QI]. According to the renormalization pro-
cedure suggested by Dyson' and perfected by Salam, '
we must subtract from each F a series of counterterms,
which have the eGect of lowering all these superficial
divergences below zero. [For example, the last sub-
traction term, corresponding to the subspace I itself, is
a polynomial of order n(I)+dimI in the external mo-
menta. ] These subtractions have been proven equiva-
lent to a renormalization of coupling constants, masses,
and 6elds. ' Our theorem then verifies the conjecture
used without proof by Dyson and Salam, that such
subtractions actually do render all integrals convergent,
to any finite order in perturbation theory.

In order to apply the second part of our theorem to
learn about the asymptotic behavior of G, and also to
further understand its convergence properties, we shall
now introduce a new concept, that of a subgraph ()' of
the graph (&.

Degnitio)s. A set g' of internal and external lines j
form a subgraph of g provided that there is no vertex in

g to which is attached just one line of those in (&'.

Clearly, a subgraph (&' may be thought of as composed
of a number of paths which begin and end in external
lines or each other, but which never end abruptly within
(&. Some examples are presented in Fig. 2.

We shall associate with each subspace S'( R4s( a
subgraph g', consisting of all lines j such that V; is not
orthogonal to S'. It is easy to see that this actually does
define a subgraph obeying the above def&nition. [Proof:
Suppose we have a vertex joining lines j&, j2, , j„.
Then by momentum conservation we must have

+V;,+V;s+ . .+Vs„——0.

Thus if ji j, i are not in b', so that V)'i V&', i are
orthogonal to S', we must have V&.„orthogonal to S' also,
and hence j, is not in (&'.]This correspondence allows
a simple interpretation of the asymptotic powers n(S').

A detailed discussion of this point is given by N. N. Bogoliubov
ai&d D. W. Shirkov, Fortsch. Phys. 4, 438 (1956); they show that
with proper use of "regulators" all integrations are rendered con-
vergent. I wish to thank Professor M. Goldberger for bringing this
reference to my attention.
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(o)

k+P-q 0

The renormalization subtractions are designed to lower
&r(g') below zero for every purely internal subgraph
g' (including 8 itself without its external lines, if 8 is a
"proper" diagram. ) It is important that the number of
diGerentiations needed to perform the subtraction as-
sociated with a subgraph g' is not greater than X)r(g');
this ensures that the renormalization counterterms
introduced in the Lagrangian to account for these
subtractions are themselves renormalizable interactions.

Now we are in a position to apply part (b) of our
theorem. Equation (III-12) may be rewritten, for any
SQE,

o,r(S) =max nr(g')."s (20)

FIG. 2. An example of the use of subgraphs in determining an
asymptotic behavior. Here (a), (b), (c) show subgraphs (darkened
lines) of the graph pictured above, while (d) is shown as an ex-
ample of a set of lines that is not a subgraph. If we label coordinate
axes in a four dimensional space by k, q, p, p', the subgraphs (a),
(b), (c) correspond to subspaces S' given by: (a) the line (1100);
(b) the line (1000); (c) the plane spanned by (1000) and (0100).
These subgraphs have dimensionality —1, —5, and —6+4= —2,
respectively, as given by (19).Since (a), (b), (c) are obviously the
only subgraphs containing external lines labelled k, k+p —p' but
not p or p', the maximum L—1, corresponding to (a)j of these
subgraph dimensionalities is the asymptotic power of the integral
for k —+ ~; the integral goes as k ', times some power of logk. We
have purposely chosen the variable of integration q in an eccentric
manner. Virtual nucleons and pions are represented here by
straight and wavy lines, respectively.

According to (8), n(S') is just the sum of all momentum
powers o.; for all lines j in the subgraph g' corresponding
to S'.

Of the lines in a subgraph g', corresponding to a
subspace S', the external lines are those that are not
orthogonal to the projection A(I)S' of S' alo. ng I. The
number of independent internal momenta in g' is
therefore

(17)dimS' —dime (I)S'= dime (E)S'.

It follows then that the coefficient

nr(g') =—n(S')+dimS' —dime(I)S', (18)

is just the net number of momentum factors of the
subgraph g', counting n, for each line j and 4 for each
integration. In renormalizable field theories it may be
shown' that

(19)

where Ii(g'), 8 (8') are the numbers of spin —,
' and spin 0

(or photon) lines attached to g', including external lines
of g belonging to g'. (We are supposing from now on
that no bare propagators are associated with external
lines of g.) The quantity K)r(g') will be called the
dimensionality of the subgraph b'.

In the special case where S'( I, we have A(I)S'=0,
and g' is thus a subgraph including no external lines. In
this case X)r(g') is the superficial divergence n(S')
+dimS' associated with the integral of the subgraph.

The "max" here is over all subgraphs b' containing just
that set B„of external lines j for which p; is not
orthogonal to S. According to the interpretation of
nr(S) in Sec. III, and of Sr(g') above, we can express
(20) in the rule:

If a set S„ofexternal lines of a graph 8 have moment)

going to infinity (i.e., for line j in 8„, P,=e,q where

rt ~ ~, e; "almost aey" set offixed nonzero four vectors, -

thee theintegrated Green's function corresponding to g will
behave as O(rt~'&s "&(logrt)»ts "&},where nr(h„) is the maxi
mum of the dimensionality )given by (IP)j of all sub

graphs g' of g including the external liees B„and no
other external lines (A de.tailed example of the applica-
tion of this rule is presented in Fig. 2.)

Strictly speaking, we should prove that the re-
normalization subtractions needed to lower all a(I')
+dimI'(I'( I) below zero do not alter the value of (20).
The proof is tedious, and will be omitted. It is important
to note, however, that we should restrict the subgraphs
g' above to those that do not contain any parts entirely
disconnected from 8„, for sirice such parts are them-
selves purely internal subgraphs of g, the renormaliza-
tion procedure invariably lowers their dimensionality
below zero.

If we consider not an individual Feynman diagram,
but the whole sum of Feynman diagrams for a particular
set of external lines up to some suKciently large but
finite order, we find a remarkable simplification. TVhee

a set h„of external lines have momenta teedieg to infieity,
thee the total Green's function has as its asymptotic power
a quantity n(h„) which depends only oe the numbers of
lines ie h„, and is given by

n(8„)=4—
ssf(8„)—b(h„)—min$s f($')+b(B')$. (21)

g/

Here b(h), f(8) are the number of spin 0 (or photon) or
spin s lines in the set b. The minimum in (21) is taken
over all sets 8' of lines such that the virtual transition
h +-+ h' is not forbidden by selection rules. (If we are
concerned with connected or proper Green's functions,
we may also stipulate that 8' must contain at least one
or at least two lines. ) For example, if h„consists of a



HIGH —ENERGY BEHAVIOR IN QUANTUM FIELD THEORY

pair of incoming nucleon and antinucleon lines, the
"min" in (21) is reached for h' a pair of pions, so that
n(h„) is given by 4—3—2= —1. This is the maximum
asymptotic power of any connected diagram or sum of
diagrams for which a nucleon and an antinucleon ex-
ternal momenta tend to infinity, with the other external
momenta fixed. (The diagram of Fig. 2 shows the
realization of this maximum in this ease. )

In order to verify this rule we need only note that
every subgraph g' included in (20) has attached to it all
lines in 8„, together with a set 8' of "bridges, " con-
sisting of internal and external lines belonging to g but
not to g'. We can therefore write in (19)

(22)

and inserting (22) and (19) into (20) we obtain (21).
Any possible set 8' of bridges will occur if we go to high
enough order, so that the maximum is always attained.

Our result cannot easily be extended to the logarithmic
powers Pr (S);it is known that these depend strongly on
the structure and order of the graphs considered. Thus,
although our proof shows that any Green's function,
calculated to any 6nite order, belongs to a class A„with
asymptotic powers n(8„) given by (21), it is entirely
possible that the logarithmic powers in the in6nite sum
add up in such a manner that the total Green's function
does not have asymptotic power o.(b„), or perhaps does
not even belong to a class A „.However, in the present
state of field theory we may hope that results based on
perturbation theory may serve as a useful guide.

APPENDIX: PROJECTIONS OF SUBSPACES

In Sec. III we introduce the operation of projecting
one subspace along another. As our use of this operation
may perhaps be unfamiliar, we shall define it more pre-
cisely, and prove some simple statements used in the
proof and interpretation of our theorem.

I.et I be a subspace of a vector space R . It is always
possible to choose (not uniquely) another subspace
E( R„such I and E are disjoint (and therefore inde-
pendent) and such that R„=I+E.With such a choice
of E the operator A(I), the usual projection along I on
E, becomes well defined: For any vector L'eR we write
L'=L+L", LeE, L"eI, and set A(I)L'=L. U a set of
vectors L span a subspace 5'( R„ then A(I)S'=5, .

where S is the subs pace spanned by the corresponding L;.
The last equation, A(I)5'=S, is usually taken in this

paper as a condition on S', with I and S &red disjoint
subspaces of R„. As such a condition it is actually
independent of the choice of E, as shown below by
statement (A); we should, properly speaking, refer to
A(I) as the projection onto the space R„/I.

(A) If I and S are disjoint subspaces, and we define

A(I) by choosing E to be arty subspace such that I and
E are disjoint, R„=I+E,and SQE, then A(I)S'=5 if
and only if for every set of vectors Li L, spanning S
there exists a set of vectors Li' . L,'eI such that

5'= {L,+L,', , L„+L,'),5

Fquivalently, A(I)S'=S if and only if there exists sonte

set of vectors Li L„spanning 5 and Li'
satisfying (1).

(Proof: If 5' is given by (1), with L eI and L;eS and
thus L;cE, then by definition A(I)S'= {Li L„).On the
other hand, we can always write any subspace S' as in

(1) where L,'eI, L,eE, and if A(I)S'=5 we have
5={Li L„). Clearly we can take any new set of L;
spanning S and preserve (1), with a new set of L'.j

(8) If A(I)S'=5, with I, S disjoint, then

5'C.I+5,
dimS~& dimS'~& dimI+dimS.

(C) If L is a vector not in 5, then A({I.))S'=5 if and
only if either S'=S+{L)or there exist numbers Ni I„
with

S'= {Li+NiL, Ls+NsL, , L,+N,L),

where S={Ii ~ I r).
(These two alternatives represent the possibilities

dimS'= dimS+1 and dimS'= dimS, respectively. )
(D) If I and 5 are disjoint subspaces then 5'+5+I

if and only if there is some subspace 5"( 5 such that
A(I)S'=S".

LProof: The subspace 5" is just {Li' L,').g
(E) If S,Si, Ss are disjoint subsPaces, and A(Si)S'= S,

then A(Ss)5"=5' if and only if A(St+5&)5"=S.
t Proof: We can write S'={Li+Li', , L„+L,')

where 5= {Li.. L,), Li'. . L„'eSi. Then A(Ss)5"=5'
means that S"={Li+Li'+Li", , L,+L,'+L,"},
where Li" .L„"eSs.Also, A(Si+Ss)5"=5 means that
5"=Li+Li"', , L„+L„"'where Li"' L„"'eSi+Ss.
The most general L;"'eSi+Ss may be written L,"'=L
+L;", so these statements are equivalent. J
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bIote to be added iN proof For the sake of ma.t—hematical rigor,
the de6nition in Equation (III-1) of the class A requires a slight
modification. The coeKcients P should be taken as functions of
the individual vectors L&, 12, ~ and not only of the subspaces
{L&,le, . }.The proof in Sec. IV that if fed„then freA„sis then
correct, with no changes (except minor notational ones) required.


