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The inelastic electron-deuteron scattering cross section has been measured for incident electron energies
between 300 Mev and 650 Mev and for final electron energies primarily at the maxima of the inelastic
continua. The data were interpreted in terms of neutron form factors by employing the impulse approxi-
mation calculations of Goldberg. The results indicate that F»,? is nearly equal to the proton form factor
Fp? for 2.65<¢?<15.1 (fermi)~2 but may be 209, or 309, higher than F,? for the lowest of these ¢ values.
Uncertainties, primarily in the theory, make it impossible to determine whether the difference is real.
The results also indicate that —2.5<F1,/F2,<0.5 for 5.1<¢?2<12.8 {2,

I. INTRODUCTION

T is possible to learn about the electromagnetic
properties of the neutron by scattering high-energy
electrons from deuterium and by detecting those elec-
trons which have scattered after breaking up the
deuteron into free nucleons. In this experiment, atten-
tion was directed to the peak of inelastic continuua
measured as a function of final electron energy, for
incident energies between 300 and 650 Mev. In addition,
a few measurements were made of the cross section for
essentially all final electron energies corresponding to
deuteron breakup, in order to compare the shape of the
cross-section curve with the theory of Jankus! for low
values of the four-momentum transfer gq.

Yearian and Hofstadter> have previously measured
the cross section for deuteron breakup for incident
electron energies of 500 and 600 Mev. The cross
sections, integrated over final electron energies, were
interpreted in terms of the theories of Jankus! (with
modifications described in reference 2) and of Blanken-
becler.? The cross sections for final electron energies at
the maximum were interpreted in terms of the modified
Jankus theory.? In the analysis, the above authors
assumed F1,2=0 and determined F3,2. They found that
F»,? was about the same as F,% the proton form factor?
squared, and that an exponential density distribution
with a rms radius of 0.76+0.1 fermi led to a form
factor which agreed with their data.

In the present work the data are considerably im-
proved and the analysis was done with the aid of the
impulse approximation calculations of Goldberg.?
Initially, Fi, was assumed to equal zero in order to
find F2.2. Upper limits were also placed on F1,/F3, by
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making measurements at both large and small angles
with the incident energy adjusted to give the same
value of g¢.

II. THEORY

Goldberg® used the impulse approximation to calcu-
late the cross section, thus assuming it to be the sum
of the cross sections for two free nucleons with a
momentum distribution derived from a 3S deuteron
ground-state wave function. The nucleons were also
assumed to be unbound in the final state. Since then,
Goldberg has extended the calculation to include the D
state as well.® The values of d%/dQdE’, where E’ is the
final electron energy, for E’ taken at the maximum of
the inelastic continuua were within 69, of those pre-
dicted by the modified Jankus theory. Goldberg’s
expression for the cross section included the integrals

11=f eF 2 (p)de,
b

L= f F2(p)de,
b

and

I= f F2(p)de,
b

where p is the relative momentum of the nucleons in
the deuteron, e is the relativistic energy corresponding

to 9,
—q 1 4M2N\
)
22 g

¢o is the time-like part of g, q is the vector spatial part,
M is the nucleon mass,

Po= (;) [ “u)jolpryrdr,

u(r) is the radial S-state deuteron wave function with

$ A. Goldberg (private communication).
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normalization such that

47rf w(r)dr=1,
0

and jo is the zeroth order spherical Bessel function.
When the deuteron D state is included, the sole changes
are to replace the integrals above with

L= f CLF2(p)+ (1/7/B)F (D) Fu(p)
" +(9/32)F 2(p) Jde,
L= f LF.2+ (1/7/8)F F ot (9/32)F 2 de,

= f [F 24 (1/7/8) FuF ot (9/32)Fulde,
b

Fu(p)= (;)* f “w () jalprydr,

and where w is the radial D-state deuteron wave
function and the normalization is now such that

where

ir f ")+t () Jir=1.

Goldberg has also shown that the peak cross section is
proportional, within about 39, to the sum of the
Rosenbluth? cross sections for electron scattering from
a free neutron and a free proton. He also showed that
the deuteron dependence in the peak cross section was
primarily multiplicative and independent of incident
electron energy and other such parameters.

Goldberg’s complete expression for the cross section
was used by the present author to calculate the peak
cross sections on an IBM 650 computer for three
different wave functions:

(a) The Hulthén® S-state wave function,

(b) The Rustgi® S-state wave function,

(c) Analytic approximations to the Gartenhaus® S-
and D-state wave functions. The S-state approximation
of case (c) was one constructed by Moravcsik,! while
the D-state approximation was constructed by the
present author and designed to simplify the calculation
of F,. The ratios of the peak heights with these three
wave functions were 1.00:1.02:0.98, respectively. The

7M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).

8 The Hulthén wave function was that used by Jankus. See
reference 1.
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10 S, Gartenhaus, Phys. Rev. 100, 900 (1955).

UM. J. Moravcsik (unpublished). However, see M. ]J.
Moravcsik, Nuclear Phys. 7, 113 (1958), for similar approxi-
mations.
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terms in Iy, I, I3 involving w produced negligible
contributions to the peak height in case (c).

A calculation was also made of the complete spectrum
at 500 Mev, 60°, for the Gartenhaus wave functions
and compared to that for the Hulthén wave function.
The result is shown in Fig. 1. Also shown is the result
of a calculation including all but the first term in each
of I, I, I3, using the Gartenhaus wave functions in
order to show the D-state contributions.

The uncertainty in the peak cross sections is thus
about 29, due to the uncertainty in the deuteron wave
function. In the present analysis, the Hulthén wave
function was used.

Other uncertainties in the theoretical peak cross
section result from the neglected final-state interaction,
neutron-proton interference terms, and meson-exchange
contributions. Durand!? has estimated that at S00 Mev,
75°, there may be a 5 or 109, contribution from the
first and 1 or 29, from the third. For no final-state
interaction, the interference terms are less than 19, as
calculated from a semirelativistic expression for the
cross section given by Durand, although these terms
will probably be larger with a final state interaction.

The conclusion is that if Durand’s calculations are
taken seriously the theoretical peak cross section (at
500 Mev, 75°) is in doubt by 5 or 109, and since the
peak section is proportional to the sum of the elastic
neutron and proton cross sections, it will be seen that
the error in the experimental neutron cross sections of
this work may be from 3 to 6 times as large.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

The apparatus was largely that used in previous
electron-scattering experiments.’® The peak-height data
were taken with a liquid target having a radiation
length only about 2 of that previously used,? so the
radiation corrections are smaller. Over-all energy
resolution figures for these data were about 239,
necessitating resolution corrections to the deuteron
data but rendering the elastic hydrogen normalizing
data reasonably insensitive to instrumental fluctuations.

Absolute cross sections were made possible by
measuring the elastic proton cross section at each
incident electron energy and scattering angle and
normalizing with the calculated proton cross section
using the exponential model of radius 0.8 f shown to be
valid by Chambers and Hofstadter and by Hofstadter,
Bumiller, and Yearian.* Instrumental errors were
minimized by measuring both the deuteron and proton
data during the same runs. The statistical accuracy of
the deuteron data was usually between 2 and 39,
although a low counting rate and large =~ backgrounds
at a couple of the points produced larger uncertainties.
The relative accuracy of the proton data was judged to

27, Durand, ITI, Phys. Rev. 115, 1020 (1959).
13 R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).
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be about 39, although the standard deviations calcu-
lated from the number of counts were between 1 and
29%,. The proton data were useful only for normalizing
purposes since no attempt was made to maintain
counting efficiencies independent of incident energy and
scattering angle.

IV. CORRECTIONS TO THE DATA

The radiation corrections were calculated using the
following energy spectrum for electrons which radiated
before and after scattering from a nucleon:

(143 Eo\v
et (B
Lly+y'+1)\E/

1 1/E;\*
X (E4—E')”+”'_1[ y[—-i—-(——) ]a (Es)
2 2\Ey/
1 1/E'\?
w(2) bl o
2 2\E,
where E, is the initial electron energy and E is the
corresponding final energy for elastic scattering, Ej is
the initial energy corresponding to an elastic peak
at Ey— (Es—E'), E' is the final electron energy,
s= (2a/m)[In(hq/mc)—%] where m is the electron mass,
y=bx—+s where b=1/0.739T and T is one radiation
thickness of the target medium, « is the target thickness
in cm before scattering, y'=bx’+s where ' is the target
thickness after scattering. The origin of Eq. (1) is
given in the Appendix. It combines the probabilities
for radiation in the target medium before and after
scattering with the probability for radiating at the

time of scattering. The latter results from the Schwinger
correction!* and wide-angle bremsstrahlung formula.!s

v(Eo,Es,E')dE! =

14 J. Schwinger, Phys. Rev. 75, 899 (1949). See also, D. R.
Yennie and H. Suura, Phys. Rev. 105, 1378 (1957).
18 W. K. H. Panofsky and E. A. Allton, Phys. Rev. 110, 1155
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Equation (1) is precise in the limit of small energy
losses and is accurate to about 109, for energy losses
of half of the incident energy. The elastic proton peaks
were measured only for energies down to 0.95E, and
the remaining cross section was calculated by letting
E4;=E/ in Eq. (1) and integrating for E' between E,’
and 0.95E,’. The radiation corrections to the deuteron
peak-height data were calculated by a method equiva-
lent to evaluating the integral

d*s
)'l)(Eo,E4,E,)dE4,
dQ3AE, 4

Eo
'Uin(Eo,El)dE’=dE’f ( (2)

where E’ is equal to the energy at the cross-section
maximum and v;,(Fo,E’) is the observed cross section
(neglecting other than radiative corrections). Equation
(1) was also used to calculate the magnitude of the
radiative tail of the elastic deuteron peak at the
inelastic maximum ; this tail was found to be negligible.
The radiation corrections to the complete deuteron
spectra were calculated by using a numerical procedure
which yielded d%/dQdE, of Eq. (2) for any E, in the
spectrum. The correction applied to the peak-height
data was the ratio of the correction for the deuteron
peak to that of the proton peak. This ratio varied
between 1.035 at 350 Mev, 60°, and 0.980 at 300 Mev,
135°. Individually, the proton peak- and deuteron peak-
height corrections were between 15 and 20%,.

A negative meson background was observed and
was calculated by multiplying the measured #* counting
rate by the =—/#% cross-section ratio,'®'” and then was
subtracted from the data. Energy resolution corrections
varied between 1.39, at 500 Mev, 135°, and 5.99, at
(1958). These authors used integrals evaluated in L. I. Schiff,
Phys. Rev. 87, 750 (1952).

1% M. Sands, J. G. Teasdale, and R. L. Walker, Phys. Rev. 95,
592 (1954). See also K. M. Watson, J. C. Keck, A. V. Tollestrup,
and R. L. Walker, Phys. Rev. 101, 1159 (1956).

17 G, Neugebauer, W. D. Wales, and R. L. Walker, Phys. Rev.
Letters 2, 429 (1959).



Fic. 2. Experimental cross
section at 350 Mev, 60°, compared

to the modified Jankus theoretical
curve. The “Unfolded Experi-
mental” is the radiation-corrected
experimental curve. The Jankus

theoretical curve is normalized to
the latter at the maximum. These
two curves do not include the
elastic peak at the right on the
experimental curve.
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500 Mev, 60°, and were applied to the peak-height data.
Angular resolution corrections were unnecessary be-
cause calculations showed that they cancelled with
negligible error in the ratio of deuteron to proton cross
section. Counting rate corrections to account for the
fact that the counting apparatus could record no more
than one count per incident beam pulse were applied
and were always less than 69),. The larger corrections
occurred at smaller angles. The usual correction was
applied accounting for the fact that the spectrometer
dispersion is a function of the energy. The difference
between the atomic densities of the deuterium and the

hydrogen was taken into account in normalizing the
data. The proton contamination of the deuterium was
found to be between 0.4 and 0.5%, by mass spectro-
graphic analysis and because of this a 19, correction
was made to the peak-height data. A correction of up
to 59, was applied to the complete spectrum at 600
Mev, 55° to correct for the variation in effective solid
angle of the spectrometer at the large values of magnetic
field where a certain amount of saturation occurs.

The total uncertainty in the peak cross section
resulting from the uncertainty of the corrections is
probably no more than 29,
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F16. 3. Experimental cross section at 500 Mev, 45°, compared to the modified Jankus theoretical curve. The
“Unfolded Experimental” is the radiation-corrected experimental curve. The Jankus theoretical curve is normalized
to the latter at the maximum. These two curves do not include the elastic peak at the right on the experimental

curve.
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The radiative corrections produced larger errors in
the complete spectra than in the peak-height results
because of errors in the numerical method and errors
in Eq. (1) for large radiative energy losses. The cor-
rections are accurate to about 2 or 3%, for points near
the maxima and on the high-energy sides of the maxima.
For points at lower energies, the accuracy becomes
increasingly poor. Points with counting rates higher
than 209, of the maxima have errors less than about
109, but the errors may be as large as 509, in the
low-energy tails. No absolute cross sections were
deduced from such data. The complete curves are used
only to compare their spectral shapes with: those
predicted by the Jankus theory.

V. EXPERIMENTAL DATA AND ANALYSIS

Figures 2, 3, and 4 show three inelastic spectra, two
of which are at lower ¢ values than those reached by
Yearian and Hofstadter. The 350 Mev, 60°, curve was
measured with the new target, while the other two were
measured with the old target. These data have some-
what larger statistical errors than the peak-height data.
The curve at 600 Mev, 55° has about the same half-
width as all those measured by Yearian and Hofstadter.
The experimental curves were drawn by eye through
the data points, which had received all corrections
except the radiative correction. A rough subtraction of
the elastic data was then made and the radiative
corrections applied to the remainder, resulting in the
unfolded experimental curves. These curves are rather
inaccurate in the region of the elastic peak because of
the low resolution and the crudeness of the subtraction.
The theoretical curves were calculated on an IBM 707
computer by R. Herman from the modified Jankus
theory.2 The theoretical and unfolded experimental
curves are normalized together at the peak in order to
facilitate comparison of the spectrum shapes. It is seen

FINAL ELECTRON ENERGY (MEVY

that, for the low ¢ values, the agreement is reasonably
good. As ¢ increases, however, the experimental curves
become wider than the theoretical ones so that the
unfolded curve at 600 Mev, 55°, is about 5 Mev wider
than the theoretical. Some of the discrepancy in width
would be removed if comparison had been made with
the impulse approximation calculations.® Also, inclusion
of the final-state interaction would widen the curves
somewhat although the effect is expected to diminish
as ¢ increases.

The experimental full widths at half maximum are
seen to vary from about 28 Mev at 350 Mev, 60°, to
about 44 Mev at 600 Mev, 55°, while the unfolded
experimental widths vary from about 25 Mev to 39
Mev.

TasLE 1. Experimental values of the deuteron cross section at
the maxima of the inelastic continua. The uncertainties given
are statistical.

Energy Angle (d% /dQEE ) max X 10% Uncertainty
Mev) (degrees) (cm?/sr Mev) (%)
300 105 17.5 4.2
300 135 8.32 44
350 60 121 3.9
350 135 5.16 3.6
425 135 2.85 3.9
450 135 2.21 4.2
500 60 35.8 3.8
500 60 36.0 3.7
500 135 1.45 3.8
550 75 8.66 5.2
550 135 1.16 4.3
550 135 1.02 5.1
600 60 17.9 4.2
600 60 17.7 3.7
600 75 5.82 4.0
600 75 5.81 3.9
600 90 2.89 43
600 135 0.770 49
650 90 2.00 6.1
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FiG. 5. F2.? assuming F1,=0. The triangles refer to the small
angle points, and the circles refer to the 135° points. The dotted
line represents F,? and the solid line is a line drawn by eye through
the 135° points for interpolation purposes.

The results of the peak-height measurements are
given in Table I. The uncertainties quoted are sta-
tistical. An additional uncertainty is introduced by the
109, possible error in the calculated proton cross sec-
tion* used to normalize the data. It is believed that all
other uncertainties associated with this experiment do
not total more than about 3%,.

The data were first analyzed assuming F;,=0 and
the results are shown in Fig. 5 and Table II. We see
that Fi,? is about equal to F,? for the large ¢ values
but appears to be 25 or 359, larger than F,? at the
low ¢ values. It is impossible at this time to tell whether
this difference is real for several reasons. An increase
of about 6 or 87, in the theoretical cross section at low
¢ values would remove the difference. The calculations
done to date by Durand? and by Jankus! indicated
that the corrections due to final state interaction would
decrease the cross section, and if this is actually the
case, the difference between F3,? and F,? would become
even greater. However, the calculations probably are
too rough to preclude an increase in the cross section
due to final state interaction.

B {V2+ (2q*/AM2A)[2(V+ K ,)? tan?(8,/2)+ K21} [2 tan?(0./2)+1]
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TasLE II. Experimental values of the neutron magnetic form
factor squared. The uncertainties are statistical.

Energy Angle ¢?X 10726 Uncertainty
(Mev) (degrees) (cm™2) F,? (%)
300 105 415 0.580 15
300 135 5.11 0.479 13
350 60 2.65 0.782 26
350 135 6.56 0.348 10
425 135 8.92 0.250 12
450 135 9.76 0.198 13
500 60 5.08 0.498 17
500 60 5.08 0.516 17
500 135 11.48 0.134 12
550 75 8.04 0.295 18
550 135 13.26 0.153 14
550 135 13.26 0.117 16
600 60 7.02 0.351 16
600 60 7.02 0.329 14
600 75 9.31 0.199 14
600 75 9.31 0.199 13
600 90 11.30 0.196 15
600 135 15.09 0.111 16
650 90 12.84 0.147 19

Another uncertainty results from the unknown
magnitude of Fi,. However, the limits placed on Fi,
by the elastic scattering experiments of McIntyre et al.'8
and by the neutron-electron interaction experiments!®
show that this error is only about 29, in Fs,2 at =3 {2,
4%, at =5 {2 and 9%, at =8 {2

Also, the uncertainty in the calculated value of the
proton cross section produces an equal uncertainty in
the measured values of F3.?. Thus there are several
possible sources of error in Fs.?, the primary one
corresponding to a theoretical uncertainty. The aggre-
gate error could be large enough to remove the difference
between Fi,2 and F 2.

As Fig. 5 indicates, data were taken at both small
angles (60°, 75°, and 90°) and at a large angle (135°).
From the values of Fj,* deduced from a small angle
point and a large angle point at the same value of ¢,
it is possible to determine Fy,/Fs, for that value of ¢.
Since Goldberg has shown that the peak cross section
is nearly proportional to the sum of the free neutron
and proton cross sections, this value of Fy,/Fs, can be
found simply by using the Rosenbluth formula and
the values of F2.? in Fig. 5. If Y=F1,/F3, and R is the
ratio of Fy,? for the small angle 8, to that for the large
angle 6z, then

)

(V24 (/4 [ 2(Y +K,.)? tan?(01/2) + K 2])[2 tan?(6,/2)+1]

where M is the nucleon mass and K, is the neutron
magnetic moment in nuclear magnetons. Fs,? for 61, was
interpolated wie the solid line connecting the 135°
points in Fig. 5. Figure 6 shows the values of ¥ resulting
from solving Eq. (3) for Y. The values of ¥ at the
theoretical minimum of R were chosen when the
experimental values of R led to an imaginary Y.

The sensitivity of this experiment to Fi,/Fs, is low
and any limits to be set on Fy,/F., are rather large.

18 T A. McIntyre and R. Hofstadter, Phys. Rev. 98, 158 (1956);
J. A. McIntyre, Phys. Rev. 103, 1464 (1956); J. A. Mclntyre
and S. Dhar, Phys. Rev. 106, 1074 (1957); and J. A. McIntyre
and G. R. Burleson, Phys. Rev. 112, 1155 (1958).

19 For a summary of the theoretical aspects and experimental
results, see L. I. Foldy, Revs. Modern Phys. 30, 471 (1958).
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However, the values of ¢ at which it is possible to make
measurements are larger than those of the more sensi-
tive elastic scattering experiments of McIntyre et al.'®
The points of Fig. 6 would not be shifted significantly
by a change in the theoretical cross section which was
of the order of 59, or less and which was independent
of energy and angle or was primarily a function of ¢
alone. Also, the validity of the assumption that the
contributions from Fi, and F,, to the deuteron peak
height have the Rosenbluth angular dependence with
negligible error was checked by substituting the meas-
ured values of Fi,/F3, back into the complete expres-
sion given by Goldberg for the peak cross section and
the original data was reproduced.

VI. CONCLUSIONS

The conclusions to be drawn from the peak-height
data are the following:

(a) There is an apparent small difference between
F»,? and F,? although the difference could be removed
if various errors, primarily theoretical, were near their
presumed limits.

If the difference is real, the implication is that the
apparent nucleon size is not a manifestation of the
breakdown of quantum electrodynamics at these
distances.

(b) The measured values of F1,/Fs, indicate that for
¢*<12.8 12, F1,/F, lies between limits of 40.5 and
—2.5.
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APPENDIX

The Bethe-Heitler formula® for the bremsstrahlung
cross section leads to the probability that a high-energy
electron will lose a fractional energy N due to emission
of a photon while passing through a low-Z medium of
thickness dx cm:

W, (N)ANZONL (1 —N+3N2)dNdx,

where b is a constant depending only on the medium.
For a small but finite thickness #, this expression must
be modified to give

w,(NdN=[\=1/T (bat+1)](bx) (1—A+3N)dN. (A1)

Terms of order (bx\) and (bx\)? have been neglected
in this expression, which is deduced by an argument
similar to one given by Heitler.2

The probability that an electron will lose a fractional
energy A due to photon emission at the time of scattering
is calculated, for the case of small \, from the Schwinger
correction™ to be (in a form analogous to (41))

ws(\)ANZ (14 25) /T (s+1)sN*"1d\. (A2)

This expression must be applied twice, for photon
emission corresponding to electron energies both before
and after scattering. For large \, an expression for the
probability of wide angle bremsstrahlung must be
used,'® i.e.,

ws(N)AA= A1 (1—=N4-3N2)d\. (A3)

Equations (A2) and (A3) can be incorporated into one
as follows:

ws(NaN=[(1+%5)/T(s+ DI (I-N+3N)dN. (A4)

For small A, this reduces to Eq. (A2) and is equal to
Eq. (A3) within a few percent for large \.

The net probability for a fractional energy loss \ due
to radiation both in the target medium and at the
time of scattering is then

A A=A\ A\
wm()\)d)\=d)\f wx(7\1)ws( )
0 1 - xl 1_ x1
=[(1+£5)/T (bx+s+1) oot
X (bx+s5) (1—=N+3N2)dA,

where, for simplicity, we have let the coefficient of A2
in the parentheses of Eq. (A1) be equal to that in
Eq. (A4), with negligible error for the conditions of

2 W, Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed., p. 249. The contri-
bution from the atomic electrons has approximately the same
functional form so this is included in the constant b. See H. A.
Bethe and J. Ashkin, Experimental Nuclear Physics, edited by
E. Segré (John Wiley & Sons, Inc., New York, 1953), Vol. I,
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p. 263.
21 W, Heitler, reference 20, p. 378.
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this experiment. Terms similar to those neglected in
Eq. (A1) have also been neglected here.

If we let w,s(N\)d\=w(E,Es)dE,, corresponding to
an electron energy E; before radiation and E, after
radiation, then the probability that an electron of
initial energy E, will have an energy E’ after radiating,
scattering, and again radiating will be

Eyp Ey
v(Eo,E')dE'=dE’f f w (Eo,FEr)

Xo (Ey,E))w' (Eo,E')dEdE,, (AS)

where o (E1,E,) is the theoretical scattering cross section
for electrons of initial energy E; and final energy E.
and w and w’ are the probabilities for radiation before
and after scattering, respectively.

SOBOTTKA

For an elastic cross section, o(Ey,Es) is a delta
function and the integrals of Eq. (AS) can be evaluated
approximately to yield Eq. (1) of the text if E4 in that
equation is replaced by E¢'. Again, terms of the same
order as those neglected in Eq. (A1) were neglected in
Eq. (1), in addition to terms depending on (E;— Ej)
but which were considerably smaller than those that
were retained.

If o(Ey,E,), as a theoretical inelastic cross section,
is considered to be a series of many delta functions
(elastic cross sections), Eq. (2) of the text results,
where the summation has been replaced by the integral
sign of that expression. In deducing Eq. (2), it was
assumed that the shape of o¢(E1,E,) as a function of E;
with fixed E; does not change with E;. This assumption
gives adequate accuracy for this work.
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An attack is made on the problem of determining the asymptotic behavior at high energies and momenta
of the Green’s functions of quantum field theory, using new mathematical methods from the theory of real
variables. We define a class 4, of functions of # real variables, whose asymptotic behavior may be specified
in a certain manner by means of certain ‘‘asymptotic coefficients.” The Feynman integrands of perturbation
theory (with energies taken imaginary) belong to such classes. We then prove that if certain conditions on the
asymptotic coefficients are satisfied then an integral over % of the variables converges, and belongs to the
class 4, with new asymptotic coefficients simply related to the old ones. When applied to perturbation
theory this theorem validates the renormalization procedure of Dyson and Salam, proving that the renormal-
ized integrals actually do always converge, and provides a simple rule for calculating the asymptotic be-
havior of any Green’s function to any order of perturbation theory.

I. INTRODUCTION

N many respects, the central formal problem of the
modern quantum theory of fields is the determina-
tion of the asymptotic behavior at high energies and
momenta of the Green’s functions of the theory, the
vacuum expectation values of time-ordered products.
Complete knowledge of the asymptotic properties of
these functions would allow us to test the renormal-
izability of a given Lagrangian, to count the number of
subtractions that must be performed in dispersion
theory, etc. We shall attack this problem from a rather
new direction, which allows a solution in perturbation
theory, and which provides an analytic tool that may
prove useful in solving the problem in the exact theory.
One might hope to find a solution either kinematically,
using only assumptions of covariance, causality, etc., or

* Supported in part by the United States Atomic Energy
Commission.

T Present address: Lawrence Radiation Laboratory, University
of California, Berkeley, California.

dynamically, by using the field equations that actually
determine the Green’s functions. The first method has
been successfully applied to the 2-field functions, the
particle propagators, and yields the result that the true
propagators are asymptotically “larger” than the bare
propagators.! However, because the theory of several
complex variables is so difficult and incomplete, this
approach seems unpromising for expectation values of
three or more fields. For this reason, and also because
we would eventually like to obtain renormalizability
conditions on the Lagrangian, we propose to attack the
problem on the dynamical level.

Now, what are the equations that, in principle, would
determine the Green’s functions. In perturbation theory
we know that the Green’s functions appear as multiple
integrals, the integrand being constructed according to
the Feynman rules. In a nonperturbative approach the
Green’s functions are again given by multiple integrals,
but with integrands that themselves depend on the

1 H. Lehmann, Nuovo cimento 11, 342 (1954).



