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Substituting (32) into (84), we obtain the dispersion Then, we try solutions of the form
law S*=cosppt P„Ps k„*, S&=sinppt P„Ppk„". (89)

&= (oio+rp a k ) (tpp+tpea ks+4iryM) (85)

When k= 0, this is the usual (BH)& resonance condition;
combining (82), (84), (85), we find that R(k) is given
by

R(k) = —t (pop+ cp, a'k') /(o~p+ pp, ask'+4sy M)). (36)

yShp =Q [(opp+ pp.a'k~s)P„"+piR(k„)P„*)+r",

yShp ——g LcpP„"+(ppp+ pp.a'k, s (810)

From (87) and (89) we obtain the following coupled
equations for the amplitude coefficients P„*and P~&:

+4x~M)R(k„)P,.fe„.Following Sec. III, we apply a uniform transverse rf
field (hP cosset, hP sin~t, 0) and calculate the amPlitude The ratio P /P P is then found to be
coefficients. With the additional rf driving field, the

Q 2g 2
equations of motion become Vp GO Mo 07eQ ky

PP R(k~) (pp pop p—p,ask—„s 47ryM—)BS*/Bt= —
pp. a'( c'iS/ csi')+copS"—yShp cosppt,

BS"/itt =&p,as(8'S*/Bx') —rppS~

+yShp sincot+ySHs*.
(37) The power absorbed per mode is now easily seen to be

I:1+R'(k )jg'(4) S(~—~.)I' =(2''Sh+')Q, (812)
r k„'LQ(k~)The boundary conditions are the same as those in Sec.

III and, consequently, the eigenmodes are the same.
We now define +„*and %~& by where pp„ is given by (85). We see that the absorption

Per mode in the Parallel use is only ssL1+R'(k~) j of
n sink~x+P cosk~x, V~*=R(k„)%~". (38) that in the perpendicular case.
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Relaxation constants T1 and T2 have been computed for experiments involving optical pumping and
optical detection in alkali metal vapor. The calculations have been performed for several possible spin
relaxation mechanisms; namely, magnetic dipole, electric quadrupole, spin exchange, and the optical
pumping process itself. For all of these mechanisms a reorientation experiment will approximately predict
a spin resonance line width (equivalent to the statement 2"q= Tp for spin-~p particles. ) However, a spin re-
orientation experiment of the type originally performed by Dehmelt, employing circularly polarized light,
gives approximate results because of the nonexponential character of the reorientation. A more suitable ex-
periment is one employing hyperfine population differences and unpolarized light.

INTRODUCTION

HE recent observation of long spin reorientation
times in alkali metal vapors in buQ'er gases, ' or

with burring wall coatings" has prompted consider-
able speculation as to the existence of correspondingly
narrow line widths and application to magnetic field
and frequency measurements. Implicit in this is the
assumption that conditions in the alkali vapor are
analogous to those of nuclear magnetic resonance of
spin- —, nuclei in a nonviscous Quid, for which one has

' H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
I H. G. Robinson, E. S. Ensberg, and H. G. Dehmelt, Bull. Am.

Phys. Soc. Ser. II, 8, 9 (1958).
P W. Franzen, Phys. Rev. 115, 850 (1959).

equal times (Ti= Ts). However, the alkali vapor
diGers from an ensemble of spin--,' particles in two
important respects; first, because of the strong hyperfine
coupling, and secondly, because of the special nature of
the observables measured by optical detection. Thus,
for example, the quantity measured by the optical
detection of hyper6ne population diGerences using
unpolarized light4 is not simply related to classical
dynamical variables such as magnetic dipole moment,
electric quadrupole moment, etc.

The observed values of reorientation times in alkali
vapor, in the limit of vanishing light intensity, are of the

4 W. E. Bell and A. L. Bloom, Phys. Rev. 109, 219 (1958); M.
Arditi and T. R. Carver, Phys. Rev. 109, 1012 (1958).
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order of 0.1 second. ' ' If T~=T~, then the resonance
line widths should be of the order of 3 cps, however
published values of line widths, for both Zeeman' and
hyperfine~' transitions, are about 10 times as great.
It seemed worthwhile, therefore, to investigate the
relaxation theoretically in enough detail to take the
facts of the above paragraph into account and to see
if one could account for the observation T2«T~ without
having to make ad hoe assumptions about sources of
inhomogeneous line broadening. ' As it turns out, the
theory does not predict large diGerences between Tj
and T2. More recently, Sender" has observed line
widths of a few cycles per second for Zeeman resonances
in very weak magnetic fields, where all the resonances
are superimposed and the signal-to-noise ratio is higher.
The conclusions of the present study, although not
strictly valid in very weak Gelds, are nevertheless
supported by Sender's results for Zeeman transitions.
For hyperGne resonances the situation is less clear.
The existence of large secular perturbations giving
rise to pressure shifts" suggests that there may also
exist statistical sects, contributing to line broadening,
of a sort not considered here.

METHOD

The calculation is for alkali atoms of nuclear spin ~3

and strong hyperGne coupling, with the following
simplifying assumptions:

1. The thermal energy kT is very large compared to
the hyperGne constant so that, in the absence of optical
pumping, all ground-state sublevel populations are
assumed equal.

2. The applied magnetic Geld is weak enough so that
F, mp are approximately good quantum numbers but
strong enough so that there are no overlapping reso-
nance lines. This condition can be satisfied for all stable
alkali isotopes of spin 2 with Gelds of one gauss or less.

3. The relaxation is assumed to be of the "classical"
type, " in which the spin is perturbed by an isotropic,
Quctuating perturbation Geld whose Fourier com-
ponents have uniform intensity from co=0 to the
correlation frequency ~=co,. We assume co, much
greater than the hyperfine frequency, although the
treatment can be easily modiGed to suit other situations.

Bloch" has given a treatment of relaxation which is

'T. L. Skillman and P. L. Bender, J. Geophys. Research 63,
513 (1958).' M. Arditi, J. phys. radium 19, 873 (1958).

~ E. C. Beaty, P. L. Bender, and A. R. Chi, Phys. Rev. 112,
450 (1958). .

P. L. Bender, E. C. Beaty, and A, R. Chi, Phys. Rev. Letters
1, 311 (1958).

'Doppler broadening represents such a possible mechanism
for the hyperfine lines, though not for the Zeeman lines. However,
for buffer pressures of 1 cm Hg or above, its e6ect should be small.' P. L. Bender, Proceedings of the Ann Arbor Conference on
Optical Pumping, June, 1959 (University oi Michigan, Ann Arbor,
1959), page 111."N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948)."F.Bloch, Phys. Rev. 102, 104 (1956).

S=Tr (Qp). (3)

In a given experimental situation, Q is uncertain to
within an additive multiple of the unit operator,
equivalent to selection of the "base line" of the indicator
output. We shall choose Q so that

Tr (Qp,)=0;

S=Tr (Qx)=p c;x;,

the c's being constants. By properly weighting and
summing the individual equations in (2) we can write,

(d/Ch)(g c~X;)=pc X;. (6)

For certain fortunate choices of Q and H', and conse-
quently of the c s, we may have

c /c;=constant for all i;
in this case Eq. (6) reduces simply to

dS/Ch= S/T t, —

(7)

"W. E. Bell and A. L. Bloom, Phys. Rev. 107, 1559 (1957).

applicable to the present problem. However, the
relaxation parameters F«& which he employs are used
here only in the case g=g', in which case they merely
represent transition probabilities due to the relaxation
process. Furthermore we may take e"»~ =0, where
this term occurs in his equations. Because of this we can
adopt a simpler notation and merely write R, q

=e~H, s'( for the relaxation transition probabilities
between levels a and b. H ~' is the matrix element of
the relaxation part of the Hamiltonian connecting
states a and b, and e is a constant which we will choose
to be unity.

The line width of the resonance between states u
and b is given in terms of the inverse parameter (Ts),b

by Bloch's" equation (3.8) which, simp1ified, becomes

1/(T,).,=P. ((H,. ( + [H,. (
)-2H..H... (1)

where k includes all of the magnetic and hyperGne
sublevels of the ground 'Sg state of the atom.

For the calculation of reorientation effects we use
Eq. (2.44) of Bloch, but with all off-diagonal elements
of the density matrix equal to zero, since resonance
eGects are not involved in reorientation experiments.
We deGne the following terms: p; is the time-dependent
population of state i, p;0 is the steady-state or equi-
librium population, and I;=p;—p;0. Then Bloch's
general equation (2.44) can be simpliied for our
purposes to the following system of equations:

dX;/Ch= —2 Qs ~Hs ~'(X,—Xs). (2)

Now, the quantity observed in an optical detection
experiment as proportional to the intensity of trans-
mitted light is a linear combination of the p; s and can
be expressed by a "monitoring operator"" Q and
corresponding observed signal S such that



666 ARNOLD L. BLOOM

with T~ a unique relaxation time for this particular
experiment. However if (7) does not hold, there is no
unique time constant and the relaxation is not only
nonexponential but depends in detail on the initial
population distribution.

The calculations outlined above have been carried
out with four observables for each of three thermal
relaxation mechanisms as well as relaxation by the
incident light itself. The observables are the following:

(a) The line width parameter T2 of the Zeeman reso-

nance F=2, 2N1 =2-+F=2, 2Nr=1. (b) The T2 of the
field-independent hyperhne resonance E=2, mp
=0—+F=1, 20' ——0. (c) The relaxation time Tt for
reorientation 'and optical detection by circularly
polarized light' propagated parallel to the magnetic
field and with equal intensity in both hyperhne com-

ponents. This is precisely the experiment performed by
Franzen, ' in which the light is shut oR for varying
periods of time and the depolarization due to thermal
relaxation is observed. The signal is given by

~m —2X2,2+X2,1 X2,—1 2X2,—2 X1,1+X1,—1. (9)

Here the subscripts refer to F, mp, respectively, and

S =0 if all populations are equal. (d) The Tt for a
reorientation experiment similar to (c) except that the
incident light is unpolarized and is filtered so that it
can excite atoms out of the I =1 state but not out of
the Ii =2 state. The signal is given by

gH 3 (X2,2+X2,1+X2,0+X2,—1+X2 2)
—5(X, ,+X,,o+X, , 1). (10)

The relaxation mechanisms are the following:

(i) Magnetic dipole relaxation. This is most likely

the principle contribution to the thermal relaxation

process. Besides usual direct collision eRects, it includes

the perturbation of the hyperfine coupling that occurs

during a collision. The matrix elements FI,I,' are simply

the matrix elements for angular momentum operators,
which are well known in the literature. '4 Numerical

constants are chosen so that hypothetical alkali atoms

of spin ~~ in the same environment would have unit

relaxation times (Tt= T2).
(ii) Electric quadrupole. The possible importance

of this mechanism is not known. Nuclear spins in noble

gases are known to have extremely long relaxation

times even if the nuclei possess a quadrupole moment";
however, the situation may be diRerent in alkali atoms

with their valence electron, even if most of the collisions

are with noble gas atoms. The quadrupole matrix

elements are also well known, " Numerical constants

used here are arbitrary, since one cannot perform these

experiments with a bare nucleus.

'4 E. Feenberg and G. E. Pake, Eotes on the Quantum Theory

of Angular Monsentum (Addison-Wesley Publishing Company,
Cambridge, 1953) and (Stanford University Press, Stanford,
1959)."E.Brun, J. Oeser, H. H. Staub, and C. G. Telschow, Phys.
Rev. 95, 904 {1954).

(iii) Electron spin exchange, normalized so that
Tj——1 for spin-~~ particles. We have in mind here the
mechanism described in detail by Kittke and Dicke,"
in which the exchange energy during a collision is so
large and so dependent on collision parameters that
there is no correlation between initial and final states
(except conservation of total angular momentum). The
matrix elements are the same as in (i) except that
diagonal elements and elements connecting states of the
same m value are zero. The treatment used here
requires that the equilibrium populations be equal,
which implies the presence of a large "sink" of un-
polarized spins. This is not a usual condition in alkali
vapor experiments and we have not investigated the
effect of exchange within an already polarized system. "

(iv) The incident light itself as a relaxation agent.
We assume here an alkali sample with buRer gas, so
that there is complete disorientation in the excited
state' and no correlation between absorption and
emission even if the atom returns to the same ground-
state sublevel from which it came. Thus in applying
Eq. (1), the interference term 2H„'Hoo 1s zero and
psH2 is merely the rate of photon absorption in
state i. Equation (2) must be replaced by the "pumping
equation, " '3

~m'=X2, 1+2X2,o+3X2, 1+4X2, 2

+3X1,1+2Xi,o+Xi, 1. (12)

For hyperfine filtered light it is

SH =Xi 1+Xi 0+Xi l. (13)

TABLE I. Relaxation times for various experiments and relaxa-
tion mechanisms. Those cases where there is no unique relaxation
time are denoted by letters and the corresponding signal equations
are given in Table II. "Line width" in the table refers to the type
of measurement; the quantity given in T2.

Experiment
. Magnetic Electric Spin

dipole quadrupole exchange Light

Zeeman line
width

0 —+ 0 line
width

Spin
reorientation

Hyperfine
reorientation

2/5

1/3

(a)

16/11

(b)

1/2

1/2

(c) (d)'

8/5b

Circularly polarized hght.
b Hyperfine filtered light.

'2 J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956).
'~ L. %. Anderson, F. M. Pipkin and J. C. Baird, Phys. Rev.

116, 87 (2959).

dp;/Ch= p;F;+s P—; p;P, ,

where F;=ps Ho . The monitoring operators must be
chosen so that Tr (Qp)=0 when the system is com-
pletely "pumped" instead of for equal populations. For
circularly polarized light, pumping the population into
the Il =2, mp=2 level, the signal is
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TABLE II. Signal equations for the cases specified in Table I.
From the definitions, it is possible to replace x by p wherever it
appears in Eqs. (a) through (d), but not in Eq. (e). S d=S/rtt

S = ——,'S~+4(x&, r —xg, i).
Sm — f6~m g (X1, 1 +],-1)
8m= 2Sm+2 (X2, 1 X2, —I)+1(xl, 1 Xl, —I).

~m +2, ]++],—1 3 (+2, —1+X1,1) 8X2, —"~

8' = —12(X2, 2+X2. 2) —6(X, ]+X; 1)—4X2, 0

+&4(x], 1+x],—],)+&2x], 0.

(a)

(b)

(c)

(d)

(e)

"W. Franzen and A. G. Emslie, Phys. Rev. 108, 1453 (1957).

RESULTS

Table I lists those combinations of experiments and
interactions for which measurable relaxation times Ti
or T~ exist, and Table II gives the equations corre-

sponding to Eq. (6) for the other cases.
The lack of a unique relaxation time under any

conditions for the Dehmelt spin reorientation experi-

ment is of interest because this is the experiment that
has been performed extensively to estimate line widths.

The worst situation is that of the incident light as a
relaxation agent, Eq. (d). This has been solved on a
computer by Franzen and Emslie's for certain initial

conditions, and the nonexponential character can be
seen in their published curves. For the other cases

involving spin reorientation, it may be possible to infer

approximate values of T~ under certain conditions.
These situations, Eqs. (a), (b), and (c), differ from a
purely exponential decay only in the presence of terms

representing population diGerences which may be small

in a thoroughly "pumped" sample. Thus, in an experi-

ment such as that of Franzen, if only the initial slope

of the decay is used, the result may well be a usable

relaxation constant. The values of T~ derived in this

way are 2/5, 16/7, and 2/5 for magnetic, quadrupole,
and spin exchange relaxation, respectively.

CONCLUSIONS

The naive assumption T&= T2 is shown to be justified
in a rough sort of way. However, the Dehmelt' type
of reorientation experiment is not as well suited to
measurement of T& as a hyperfine reorientation experi-
ment. This type of experiment has not, to our
knowledge, been performed. It divers from the Dehmelt
experiment only in the substitution of hyperfine-filtered
light for circularly polarized light. Such light is easily
available for rubidium' and cesium, ~ and with some
difficulty for sodium' ", and potassium. The hyperfine
reorientation should be a relatively foolproof experi-
ment, from the standpoint of experimental difficulties,
and will give a unique relaxation time for all cases
except spin exchange. Spin-exchange parameters can,
however, often be inferred from other experiments,
such as exchange with another species of alkali atom
not directly involved in the optical pumping process.

With regard to spin reorientation, if oily the iriitial
slope of the decay is used, then meaningful results are
obtainable in Franzen's experiment, and presumably
also in Dehmelt s original experiment where T~ is an
extrapolated value taken in the limit of zero light
intensity. What is questionable, however, is the value
of the initial slope at a giver light intensity. In a given
experimental setup this will probably bear the simple
inverse relationship postulated by Dehmelt, but its
exact value must depend in some detail on the manner
in which the spin reversal was produced.
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