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Excitation of Spin Waves in Ferromagnets: Eddy Current and
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The boundary condition for the transverse magnetization is derived when there is a surface anisotropy
Geld H, . Writing the transverse magnetization as n sinkz+P cosh', we have

n/P = —gk a+ (H./H. ak),

where IJ, is the exchange field. and a the lattice constant. A similar result is found when there is an antiferro-
magnetic surface layer. For H, /0 spin-wave modes can be excited by a uniform rf field in a ferromagnet.
The power absorbed in each mode in an insulator is calculated as a function of the surface anisotropy Geld.
The excitation of the exchange modes is calculated for a metal with eddy-current damping. The eddy
currents are found to have a large e8ect only on long wavelength spin waves. The line shape in a thick
metal plate is calculated for Ho normal to the plate.

I. INTRODUCTION

" 'T has been shown by Kittel' that under appropriate
- - boundary conditions spin waves may be excited in
a ferromagnetic insulator by a uniform rf field. Jarrett
and Waring' have observed multiple resonances in
NiMn03 which have been tentatively identified as
spin-wave resonances. Seavey and Tannenwald' and
Kooi and Moss4 have observed spin-wave excitations
in thin permalloy films. We consider here the theory of
these excitations in an insulator in more detail than
was done in reference 1, and we also investigate the
phenomenon in a metal where there is eddy-current
damping.

It is convenient in dealing with special interactions
on the surface atoms to work with the Hamiltonian in
the Heisenberg form, rather than in the Landau form,
as surface singularities are avoided. We assume nearest-
neighbor exchange forces, for convenience. Then

X= —21 P S,"S;—gtsii P S,'H;, (1)

where H, is the effective magnetic field at the ith spin
resulting from external fields, demagnetizing 6qlds, and
anisotropy fields. We know that 5' commutes with the
Hamiltonian if 8, is the same for all spins, and hence
no spin waves can be coupled to the uniform mode.
This holds only in the absence of dipolar interactions.
We know that interactions having a dipolar character
can couple the uniform mode to a degenerate spin-wave
mode and at high rf powers lead to the Bloembergen-
Wang-Suhl breakdown, ' In an inhomogeneous rf excit-
ing field one may also observe higher modes, for
example, the magnetostatic modes observed by White
and Solt. ' It is further possible to excite exchange modes

~ Work partially supported by the National Science Foundation.' C. Kittel, Phys. Rev. 110, 1295 (1958).' H. S. Jarrett and R. K. Waring, Phys. Rev. 111, 1223 {1958).' M. H. Seavey, Jr., and P. E. Tannenwald, Phys. Rev. Letters
1, 168 {1958).

4 C. F. Kooi and R. W. Moss, Bull. Am. Phys. Soc.4, 353 (1959).' H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
6 R. L. White and J. H. Solt, Phys. Rev. 104, 56 (1956).

by a uniform rf field in a thin 61m if the direction of
the surface magnetization is pinned by local anisotropy
interactions; this is the e6ect with which we are
concerned here. Such interactions may arise from the
lower symmetry of atoms at the surface or with differ-
ences in chemical composition, such as the formation of
antiferromagnetic oxide layers at the surface.

In Sec. II, we discuss the eGect of surface boundary
conditions on the transverse components of the magnet-
ization. We show that surface anisotropies are likely
to be adequate to pin the directions of the end spins.
In Sec. III, we consider the modes of a 61m of a ferro-
magnetic insulator as a function of the degree of
pinning. We derive an expression for the power absorbed
in each mode. In Sec. IV, we treat the problem of a
metal: here eddy-current damping of the rf fields
broadens the resonance lines and can also give rise to
spin-wave excitations. We calculate the surface im-

pedance for a metal specimen in which the direction of
the surface magnetization is completely pinned; we

treat the eddy-current problem only for a static
magnetic field normal to the plane of the specimen.
Existing experimental results are also discussed.

II. BOUNDARY CONDITIONS

We consider a slab of thickness I in a static magnetic
field normal to the surface and in a uniform rf magnetic
field parallel to the surface. In the discussion of bound-

ary conditions, because of the symmetry of the problem,
we may usually restrict ourselves to a one-dimensional
line of spins. We give a more general discussion than is
found in the original paper by Kittel, and we inci-
dentally correct an unimportant error in his analysis.

Ament and Rado' have suggested that at a boundary
the normal derivative of the transverse part of the
magnetization must vanish. However, their derivation
of the boundary condition does not correctly treat the
discontinuity at a surface when the Landau form of
the Hamiltonian is used. In fact, near the surface, an

7 W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).
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EXCITATION OF SP IN KAUES IN F ERROMAGNETS 659

additional term proportional to the gradient of the
magnetization must be included in their analysis. The
antinode boundary condition is only rigorously true
for the uniform (k=0) mode when there is no surface
anisotropy and is never true when there is surface
anisotropy. We know that relatively large anisotropies
can act on the surface spins since interactions which
cancel in the interior as a result of cubic symmetry
will not cancel at the surface as pointed out by Neel. '
An antiferromagnetic oxide layer on the surface of a
metallic film can also give rise to an anisotropy which
may tend to pin the end spins. Such an exchange surface
anisotropy was first observed by Meiklejohn and Bean'
in Co with a CoO surface layer.

We now derive the boundary conditions when an
anisotropy field H,. acts on the end spins by a semi-
classical treatment of the equations of motion. In
Appendix A we derive precisely the same condition by
the quantum-mechanical method of Bloch."We show
also how an antiferromagnetic surface layer may pin
the directions of the end spins of a ferromagnetic chain.

The equation of motion for a surface spin Si is

BSi/Bt=(2J/A)S, XSp+ySiX(Hp+H, )) (2)

where J is the exchange integral, Hp is the s-directed
static field, H, is the surface anisotropy field, and
y=ge/2mc. We take H, in the z direction, normal to
the surface. If we expand Sp as

Sp= Sr+a(BS,/az)+-'a'(O'S, /Bz')+ (3)

where a is the lattice constant, and let S+=S*+iS",
Eq. (2) becomes

e(BSi+/B—t) =a),fa(BSi+/Bz)+-'a'(O'S, +/az') j-(.+-.)S, (4)

where co.=2JS/A, "p=yHp, and a&, =yH, . For an
interior spin, the linear term in the lattice constant and
the term in co, vanish by symmetry, giving in the
interior

i(8S+/at) =~—,a'(8'5+/Bz') apS+. —
We now look for a solution of (5) of the form

S+=e—'"'(n sinks+P cosks), (6)

where n and P are constants whose magnitudes are
determined by the strength of the exciting field. Substi-
tution of (6) into (5) gives the usual ferromagnetic
dispersion law:

(a=a)p+(u, a'ks,

where oro is the Zeeman frequency corrected for de-
magnetization effects. The ratio n/P is determined by

L. Noel, Compt. rend. 237, 1468 (1953); J. phys. radium 15,
225 (1954).

'W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413
(1956).A similar e6ect has also been observed in Fe with an FeO
surface layer. W. H. Meiklejohn and C. P. Bean, J. Appl. Phys.
29, 454 (1958).I F. Bloch, , Z. Physik 61, 206 (t930).

substitution of (6) into (4), using (7) and setting
s=0 for the surface spin. We find

n/t'= ——,'ka+(cu, /or, ak).

For the spin waves of interest at microwave frequencies
ke 10 ', so we may neglect the first term on the right.
If ~, 0.4&„we find a/t' 10, which implies that the
end spins are effectively pinned in direction. The
solution (6) is then dominated by the term in n sinks
which has a node at the surface. When co, tends to zero,
there is very little pinning because ka is usually quite
small, but 0 is identically zero, i.e., antinode at surface,
only when k =0. That is, the modes of the pure exchange
problem are not simply of the form cosks.

We can estimate the magnitude of the surface
anisotropy by assuming that an anisotropic exchange
interaction acts on the surface spins

X,=CPS S*.
i&j

This form is used for the anisotropy rather than just a
pseudodipolar interaction because, as Neel has shown,
for certain orientations of the surface in a cubic lattice
L(100) and (111)planes in a bcc and (111)plane in sc)
the pseudodipolar anisotropy still vanishes at the
surface in the classical limit. This disappearance of the
pseudodipolar anisotropy energy at a surface arises
only because of a cancellation of the anisotropy energy
with part of the exchange energy. However, the
symmetry of a surface is really uniaxial and hence we
expect a uniaxial type anisotropy, such as the aniso-
tropic exchange, which will not vanish at the surface
for any orientations of a cubic crystal. The magnitude
of the constant C can be estimated. Suppose we assume
all the bulk anisotropy in nickel, for example, arises
from pseudodipolar interactions. We fit C to the
extrapolated experimental values" of the anisotropy
constant E~ at O'K using the theoretical expression
obtained by Van Uleck" and given in the present form
by KeR'er and Oguchi, "

Ki(0) = —3XSC'/64J,

for a face-centered cubic lattice; here E is the number
of spins per unit volume. For C=hcu/zS, where z is the
number of nearest neighbors to a surface spin, we obtain
co/~, 0.1. At finite temperatures, the surface ani-
sotropy is expected to fall off slower with increasing
temperature than the volume anisotropy because of
the lower symmetry at the surface. We should empha-
size that there is no firm evidence that the pseudo-
dipolar anisotropy accounts for the observed bulk
anisotropy of nickel. Our argument above is simply to
show what would happens if this were so.

"R. Bozorth, Ferromagletesm (D. Van Nostrand Company,
Inc. , Princeton, 1951).

~ J. H. Van Vleck, Phys. Rev. 52, 1178 {1937).
'3 F. Eever and T. Oguchi, Phys. Rev. 117, 718 (1960).
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dSN/dt= —(2J'/A)SNX(SN+i+SN i)
(11)

+ySNX(Hp —H~))

dSN+&/dt = —(2J'/1't) SN+c XSN

+ (2J/tk) SN+sX SN+p+ySN+xX Hp,

where E is taken to be even. If the transverse compo-
nents of the spins vary as e '"' (11) can be rewritten,
when we are driving the spins at the frequency Np

+co.a'k', as

Sy (coca k coal coe ) =co6 Sp

Sp+(co.a'k'+cog+2co. ') = —co.'(Si++Sp+),

(12)

SN+(co a'k'+co~+2~') = co' (SN i++S—N+i+),

SN+1 (cosa k coe coe ) coe SN cooSN+2

where co.'=2J'S/h. Now (12) is a set of difference
equations having the solution

where

and

~N ~N~N+ j )

RN F+$1 F+F/(1 ——FRN—p)] ',-—
Rp F+/(1 F+Fp). —— —

(13)

Here P+, E, and Fp are given by

F+= —co,'/(cog+ 2co,'),
F =po.'/(2co, '

cog), —
Fp= —~.'/(co. '+co~)

(16)

If we try a solution of the form of (6) in the ferro-
magnetic region and use (13) and the last of (12),

We now show how an antiferromagnetic surface
layer may pin the direction of the end spins of a
ferromagnetic chain. Qualitatively, because it usually
takes more energy to excite an antiferromagnet than a
ferromagnet, the end spins of the ferromagnetic region
will be electively frozen into the antiferromagnetic
lattice, in which excitations at the ferromagnetic reso-
nant frequency fall oG exponentially. In order to derive
the boundary condition, we consider the equations of
motion of a layer of 2V antiferromagnetically coupled
spins followed by the ferromagnetic region, i.e., the
1Vth spin is coupled antif erromagnetically to the X+1st,
and the X+1st spin is coupled ferromagnetically to the
X+2nd spin. If Hz is the anisotropy field in the
antiferromagnetic region, and J and J' (both written
as positive) are the exchange integrals in the ferro-
magnetic and antiferromagnetic regions, respectively,
the equations of motion are

dSi/dt= —(2J'/tc)S&X Sp+yS, X (Hp+Hg))
dS2/dt= —(2J'/A)SpX (Sc+Sp)+ySpX (Hp —Hg),

we find the pinning condition for the end spin of the
ferromagnetic chain:

n/P= ,'k—a+—co,'(1+RN)/co. ak. (17)

For co,'»co&, it is easy to show from (14), (15), and
(16) that

1+RN =Ncog/co, '. (18)

The boundary condition becomes, for ka(&i,

n/p = incog/co. ak.

If co~~0.1co. and E 10, then we find n/p 10'.
Hence even a thin antiferromagnetic surface oxide
layer can be quite effective in causing the end spins of
a ferromagnetic chain to be pinned.

H+=h+e '"~ (20)

is a small transverse rf field, (5) becomes

—p(AS+/cd) =co a'(O'S+/cjs') —copS++ySk+. (21)

We shall assume eigenmodes of the form of (6) and write

g(k) =n/P. (22)

Because the Hamiltonian is symmetric with respect to
reflection in the center of the film we must have

g(k) sinkL+coskL= &1, (23)

which determines the eigenvalues k. Fquation (23)
reduces to the following transcendental equations for
the wave vectors, according to the choice of sign above:

g(k) = tan(kL/2), (24a)

g(k) = —cot(kL/2), (24b)

with g(k) given. by (8). Here (24a) corresponds to modes
which are even with respect to reflection in the xy plane
at s=I/2, and (24b) gives the odd modes. With a
uniform Geld, only the even modes can be excited.
However, if h+ is not homogeneous and not invariant
under the reflection, the odd modes can also be excited.
It is easily seen from (8) that for large surface ani-
sotropies the solutions of (24a) are very close to

k= pm/L, . (25)

where p is an odd integer. For very small cos the
solutions are approximately given by (25) with even
integers P.

III. EXCITATION IN A FERROMAGNETIC
INSULATOR

In this section we discuss the excitation of spin-wave
modes in an insulator, and we calculate the power
absorbed in each mode as a function of the boundary
conditions. Ke omit all relaxation mechanisms; conse-
quently all the calculated peaks will be infinitely sharp.
We discuss here the case of Hp normal to the film, and
defer until Appendix 8 the case of Hp parallel to the
film. If
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If we let The dc 6eld Bt) interacting with the spins is given by
+„=cosh, s+g(k~) sink„z, (26)

Ht)= H—AM, (37)
we can write the solution to (21) as

S+=o-'"' P„P,+„, (27)
where AM is the demagnetizing field. Eliminating the
electric Geld from (36) gives

where
vSh+=ZnPn+n(~n ~) (28)

where the sum is over all solutions of (24). Substitution
of (27) into (21) gives ( c q'asH+ a aH+ oM aS+

&4 i as 4 at S at
(38)

(39)

Co =Gl +6) 8 k (29) If we assume solutions of H+ and S+ of the form of
(6), and solve the secular determinant arising from

We now calculate the amplitude coefGcients Igr by (21) and (38) we obtain the dispersion law
multiplying both sides of (28) by%' and integrating.
The two integrals in question are pp= ppp+co, esks+4n yM/(1+ aria'ks)

L

I,(k„)= %,+„dz=Lfp,a„„
4p

+Is(k,)a„p+Q(k„)a„„, (30)
a'= c'/2s.

ohio.

(40)

This is a well-known result. The skin depth b is de6ned
by

where

L

Is(k,)= ~ +~ds=L if p=0

=2gk„—' if g = tank L/2

Q(k„)= ', L+grk-r '+ ',g„'L, -
We see from (39) that for short wavelength spin waves,

(31) i.e., k5»1, the frequency cv is largely real and there is
very little damping by the eddy currents. We now use
the usual boundary condition that H+ is continuous
across the surface, and we assume that there is complete
pinning of the spin directions at the surfaces. The four
boundary conditions are

=0 if g= —cotkL/2. (32) h+(0) =h+(L) =hp, S+(0)=S+(I.)=D. (41)

~n (EXH*)i )1 ah+i
Z=4

I I
= —

I

—
I (42)

fH/s ]z p (h+ aZ)z p

Pp ——ySh+/(o p
—rp), P,~p ——0. (33)

We see from (32) that only the modes even with respect To calculate the absorPtion curve, we need the surface

to reflection are excited. prom (30) and (32), it is ™pedanceZ de ned by

readily seen that when co,=0,

Thus, when there is no surface anisotropy or field
inhomogeneity, there is no coupling between a uniform
rf field and nonuniform spin wave modes. However,
for nonvanishing co„we obtain

where n is a unit vector normal to the surface. The
surface impedance is related to the absorbed power
per unit area by

P„=2g(k„)ASH+/k„Q(k )( „—), P= (2/o) (c/4s')'I H Is ReZ. (43)
where the k„'s are the solutions of (24a). The power

O b,
.

(6) (39) d (42) bt
.

th f 11a sor e in t e spin-wave mo es is t en

P=4hy'Sh+'P„P(co~ rp)g'( k)—/k'LQ(k )g (35)

For co, —+ ~ the pinning is complete and the power
absorbed per mode is inversely proportional to k„2.

IV. FERROMAGNETIC METAL

O

2.0—
5 7 9 13

In a metal one source of damping of the spin-wave
modes is the interaction with the conduction electrons
through eddy currents. The e6ect of eddy-current
damping on the spin-wave resonances decreases with
increasing k. The problem is to solve the spin-wave
equation simultaneously with the Maxwell equation:

I0' 50 IOO

(~-~, ) x tps
I 50

c curlH=4s. o.E,
c curlE= —(a/at) (H+4s M).

FIG. 1. Real part of the surface impedance vs (cu —cup) for
(36) L=4X10 s cm, co,a'=10~ rad cm'/sec, Ss=10 P cms, 4sM=10'

oersteds.



662 P. P I N CUS

expression for the surface impedance:

—2i[ki tan-', kiL —ks tansksL+ —',iPkiks(ks tan-,'kiL —ki tan-', ksL) jz=
5s(k,'—k,s)

(44)

I'„,= c'kp'/4vr'Llr. (4S)

We see then that for the short wavelength modes the
amplitudes of the resonances tend to a constant value;
however, the line widths can be seen to decrease with
increasing k&. The fact that the eddy-current damping

I.O

09—
0.8—
0.7

N 0.6
CL

0.5
I

OA

0.3

0.2

O.I—

-30 -20 -I 0 0 l 0 20 30
lo (u- wo)

I'iG. 2. Real part
of the surface imped-
ance for an infinite
slab. The parameters
are the same as in
Fig. i.

'4 M. H. Seavey, Jr., and P. E. Tannenvrald, J. phys. radium
20, 323 (1959).

Here krs and kss are the two complex solutions to (39).
One of them resembles an electromagnetic eddy-current
solution mixed with a small amount of spin-wave
excitation, while the other corresponds to a spin wave
with a small admixture of electromagnetic Geld. In
Fig. 1, we have plotted the 6rst few modes in a thin
film for typical values of the parameters, This absorp-
tion curve looks more like (although our calculated
high modes are too narrow) the experimental curves of
Seavey and Tannenwa1d' than the absorption calculated
for antinode boundary conditions. "The latter boundary
condition allows excitation of the spin-wave modes by
a sort of White-Solt eQ'ect, and the inhomogeneity in
the rf fields caused by the eddy currents is not large
enough to give rise to the experimental resonances of
Seavey and Tannenwald. In the high mode number
(short wavelength) limit, k5))1,

ki= kp+4syMi/kpP(oi —pip), (45)
where

kps = (oi—pip)/oi, as;

here ks is quite small and approaches 2(i)l/5. In this
limit, the surface impedance can approximately be
written as

Z= Sx.vMi tan'kiL/—Ski(M pip), (4/)

which gives resonances at ki= pn./L, where p is an odd
integer. The power absorption on resonance is given by

decreases with increasing k was realized by Ament and
Rado~ and Kittel. "

Another rather interesting limiting case of (44) is
that of a thick slab, i.e., I.~ ~. Hp is still taken to be
normal to the surface of the slab. MacDonald" and
Ament and Rado' have treated the case with Hp
parallel to the surface. A similar problem has been
solved by Gurevich'~ using the Ament-Rado antinode
boundary condition. For the antinode boundary condi-
tions, the line width and exchange shift of the resonance
are found to be approximately one half of the corre-
sponding values for pinned boundaries. In this limiting
case, for pinned boundaries, (44) becomes

~= 2(1—s&5'kiks)/5'(ki+ks). (49)

In Fig. 2 we plot the real part of (49) for the same
values of the parameters as in Fig. 1. We see from
(49) that all the subsidiary spin-wave resonances have
disappeared and the resonant frequency is given by

The exchange shift co—cop is quite small and, for ex-
ample, in Permalloy at about 10' megacycles/second,
is only a few percent of cop. The shift is equivalent to a
very small increase in the spectroscopic splitting factor,
g. The eddy current line width is approximately the
same as the exchange shift. In materials of lower
resistivity than Permalloy the exchange shift will of
course be larger.

Rado and Weertman" have estimated the exchange
stiffness constant A for a Fe-Ni alloy (66'Po Ni) as
3.3X10 ' erg/cm by fitting their experimental reso-
nance curves to a theoretical curve for the antinode
boundary condition. This value is in serious disagree-
ment with values (A=0.SX10 s—1X10 i erg/cm)
obtained from experiments by Kondorsky and Fedotov"
and Bean" on similar materials. However, the Rado-
Weertman estimate may have been too high by as
much as a factor of four if the surface spins were pinned.
Then, the Rado-Weertman value would be changed to

' C. Kittel, Phys. Rev. 110, 836 (1958)."J.R. MacDonald, thesis, oxford, 1950 (unpublished).
'7 V. L. Gurevich, J. Exptl. Theoret. Phys. U. S. S. R. 33, 1497

(1957) Ltranslation: Soviet Phys. -JETP 6(55), 1155 (1958)].
's G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids (to

be published)."K. Kondorsky and L. M. Fedotov, Bull. Acad. Sci. U. S. S. R.
Phys. Ser. 16, 432 (1952)."C. P. Bean, Proceedings of the Pittsburgh Conference on
Magnetism and Magnetic Materials, 1955 (unpublished), p. 365.

pp =pip+ (a/5) (32+yMpp, ) '*, (50)

or in terms of the Landau exchange sti6ness constant A,

tp =pip+ (Sy/5) (m-A) l.
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A 0.8X10 s erg/cm, bringing their exchange constant
into agreement with the other experiments.

Young and Uehling" have carried out ferromagnetic
resonance experiments on Supermalloy with Ho perpen-
dicular to the surface of the sample. Their results show
relatively large line widths of about 400 oersteds. Eddy
current line widths of these materials are only about
50 oersteds. Hence, this is some indication that there is
a line broadening mechanism in addition to the eddy
current damping. The experimental curves fit quite
well with a Bloch type damping with T2 of the order
of 10 ' sec. Young and Uehling state that their experi-
ments were quite sensitive to surface conditions, and
hence there may be some type of surface broadening
mechanism, possibly from mechanical distortion of the
surface.

Hoskins" has also carried out ferromagnetic resonance
experiments in Fe-Ni alloys (30—50% Ni) for the
perpendicular field geometry at 25 kMc/sec. He finds
line widths of the order of 200 oersteds which are also
too large to be completely explained by eddy current
damping.

the calculations. He would also like to thank Dr. P. G.
de Gennes for his frequent invaluable discussions.

APPENDIX A. QUANTUM-MECHANICAL DER1VATION
OF BOUNDARY CONDITIONS

We now rederive Eq. (8), using the Bloch spin-wave
states. We consider a finite line of X+1 spins (S=-',),
with the ends experiencing a surface anisotropy field
Hs. The Hamiltonian can be written as

J
X= ——Q t ~'o *+-'(o.+o .—+o.—o"+)j2»2'

gpss
Hs (o p'+o rj'), (A1)

where we consider only nearest-neighbor interactions;
the 0-'s are the Pauli spin matrices. For one reversed
spin, we look for an eigenfunction of the Bloch form:

(A2)
where

V. ACKNOWLEDGMENTS pj= rr(pi . . o'j-ipjrs j+i. rriv (A3)

The author would like to express his most sincere
appreciation to Professor C. Kittel who closely followed

Here n and p are the eigenvectors of o.* with eigenvalues
+1 and —1, respectively. Then

2ggaHs
(p, ~5('. ~+ )=——2C; '+2Cj+i"+(&—4)C;"+ C f» j&0, &,

2 J
= —(J/2) I 2C,'+ (E—2)Cpsj
= —(J/2)t 2Csl is+(N —2)Cjj"$

for j=0,
for j=S. (A4)

If we write the eigenvalue equation as

then
+I =~a+a,

(p j~X~@s)=EsCj".

(AS)

(A6)

If we try an expression for C;~ of the form

Cj"=a sinjak+P cosjak, (A7)

APPENDIX B

where a is the lattice constant, and combine Eq. (A6)
with Eq. (A4), we obtain the usual energy expression:

E& —(J/2) (1V—4) —2J co——sak —gpsHs (Ag)

Now, combining Eq. (AS) with Eq. (A4), and using
the approximation ka((1, we arrive at precisely the
same boundary condition as that given by Eq. (8).

field problem treated in Sec. III, Hs vanishes, but it is
nonzero for other geometries. Kittel and Herring" have
derived the ferromagnetic dispersion relation as a
function of the angle, es between k and the magnet-
ization. We calculate here the power absorption per
mode in the parallel case, i.e., 8s=m/2. The constant
magnetic field is taken along the s axis, parallel to the
surface of the film. The spin waves are directed along
the x axis perpendicular to the surface.

The field Hs is determined by the Maxwell equations:

div(Hs+4m M) =0, curlHs ——0. (81)
We look for solutions

S*=R(k) cospit(o. sinkx+P coskx),
(82)S"= sin&et (n sinks+ P coskx),

where R(k) is to be determined. From (81) and (82),
we obtain

In a general geometry, there is an additional magnetic
field Hs, parallel to k, arising from the dipolar inter-
action of the spins themselves. In the perpendicular

s' J. A. Young, Jr. , and E.A. Uehling, Phys. Rev. 94, 544 (1954)."R. Hoskins, thesis, University of California, 1955 (unpub-
lished).

Hs*= 4rrMS /S, Hss= Hs'=0-.
The equations of motion become

rjS /rjt = —(u as (Bs5&/rim')+ pppS&

rjS&/rjt =pp, a'(rj'S /rj jrs) rp pS*+ySH„*—
~' C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).

(83)
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Substituting (32) into (84), we obtain the dispersion Then, we try solutions of the form
law S*=cosppt P„Ps k„*, S&=sinppt P„Ppk„". (89)

&= (oio+rp a k ) (tpp+tpea ks+4iryM) (85)

When k= 0, this is the usual (BH)& resonance condition;
combining (82), (84), (85), we find that R(k) is given
by

R(k) = —t (pop+ cp, a'k') /(o~p+ pp, ask'+4sy M)). (36)

yShp =Q [(opp+ pp.a'k~s)P„"+piR(k„)P„*)+r",

yShp ——g LcpP„"+(ppp+ pp.a'k, s (810)

From (87) and (89) we obtain the following coupled
equations for the amplitude coefficients P„*and P~&:

+4x~M)R(k„)P,.fe„.Following Sec. III, we apply a uniform transverse rf
field (hP cosset, hP sin~t, 0) and calculate the amPlitude The ratio P /P P is then found to be
coefficients. With the additional rf driving field, the

Q 2g 2
equations of motion become Vp GO Mo 07eQ ky

PP R(k~) (pp pop p—p,ask—„s 47ryM—)BS*/Bt= —
pp. a'( c'iS/ csi')+copS"—yShp cosppt,

BS"/itt =&p,as(8'S*/Bx') —rppS~

+yShp sincot+ySHs*.
(37) The power absorbed per mode is now easily seen to be

I:1+R'(k )jg'(4) S(~—~.)I' =(2''Sh+')Q, (812)
r k„'LQ(k~)The boundary conditions are the same as those in Sec.

III and, consequently, the eigenmodes are the same.
We now define +„*and %~& by where pp„ is given by (85). We see that the absorption

Per mode in the Parallel use is only ssL1+R'(k~) j of
n sink~x+P cosk~x, V~*=R(k„)%~". (38) that in the perpendicular case.
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Spin Relaxation and Line Width in Alkali Metal Vapors
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Relaxation constants T1 and T2 have been computed for experiments involving optical pumping and
optical detection in alkali metal vapor. The calculations have been performed for several possible spin
relaxation mechanisms; namely, magnetic dipole, electric quadrupole, spin exchange, and the optical
pumping process itself. For all of these mechanisms a reorientation experiment will approximately predict
a spin resonance line width (equivalent to the statement 2"q= Tp for spin-~p particles. ) However, a spin re-
orientation experiment of the type originally performed by Dehmelt, employing circularly polarized light,
gives approximate results because of the nonexponential character of the reorientation. A more suitable ex-
periment is one employing hyperfine population differences and unpolarized light.

INTRODUCTION

HE recent observation of long spin reorientation
times in alkali metal vapors in buQ'er gases, ' or

with burring wall coatings" has prompted consider-
able speculation as to the existence of correspondingly
narrow line widths and application to magnetic field
and frequency measurements. Implicit in this is the
assumption that conditions in the alkali vapor are
analogous to those of nuclear magnetic resonance of
spin- —, nuclei in a nonviscous Quid, for which one has

' H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
I H. G. Robinson, E. S. Ensberg, and H. G. Dehmelt, Bull. Am.

Phys. Soc. Ser. II, 8, 9 (1958).
P W. Franzen, Phys. Rev. 115, 850 (1959).

equal times (Ti= Ts). However, the alkali vapor
diGers from an ensemble of spin--,' particles in two
important respects; first, because of the strong hyperfine
coupling, and secondly, because of the special nature of
the observables measured by optical detection. Thus,
for example, the quantity measured by the optical
detection of hyper6ne population diGerences using
unpolarized light4 is not simply related to classical
dynamical variables such as magnetic dipole moment,
electric quadrupole moment, etc.

The observed values of reorientation times in alkali
vapor, in the limit of vanishing light intensity, are of the

4 W. E. Bell and A. L. Bloom, Phys. Rev. 109, 219 (1958); M.
Arditi and T. R. Carver, Phys. Rev. 109, 1012 (1958).


