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X"= (aT/67rrte') & (28)

as a shielding length, and no pair correlations, one would
obtain a very accurate result. It must be pointed out
that the error in Kcker and Muller's distributions is
actually small; all three curves in Fig. 3 are much
closer together than they are to the Holtsmark distri-
bution. Work similar to that of Kcker and Muller has
also been done by Housman and Theimer, ~ but their
numerical accuracy is inferior to that of the former
authors.

Work on field distributions at a charged point has
also been done by Broyles and Lewis and Margenau. '
The latter authors used an unshielded field, hence their
work should be compared with results on the high-

' H. Hohan and O. Theimer, Astrophys. J. 127, 477 (1958).
e A. A. Broyles, Phys. Rev. 100, 1181 (1955); Z. Physik 151,

187 (1958).

lations; this is Ecker and Miiller s result. Curve 3 is
the result of the present theory, which is seen to lie
almost halfway in between the other two. Indeed, were
one to use

frequency component. This is the case where the pair
term was found here to be quite important. This pair
term is not included by Lewis and Margenau, so that
their results dier appreciably from those of the
present work, their distribution being shifted toward
larger fields. The work of Broyles is hard to compare
with others as it does not yield the Holtsmark distri-
bution in the limit of small rv/X; this work would be
useful for large values of rs/X, when the cluster expan-
sion fails completely.
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Nuclear Quadrupole Spin-Lattice Relaxation in Alkali Halides*
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Nuclear quadrupole spin-lattice relaxation times have been measured in alkali halide crystaIs by the
pulsed magnetic resonance technique. Measurements were made on Na" in NaCl, NaBr, and NaI; C13'

in NaCl and KCl; Br' 8' in NaBr, KBr, RbBr, and CsBr; Rb' in RbCl and RbBr; and I' in NaI, KI,
and CsI. Over a temperature range of 298'K to 195'K the relaxation times are inversely proportional to
the square of the absolute temperature. The data are compared to relaxation times calculated from an ionic
crystal model of Van Kranendonk and a covalent model of Yosida and Moriya. The ionic model is modified
to include the interaction between the nuclear quadrupole moment and the electric 6eld gradient due to
electric dipole moments associated with optical modes of vibration. Neither of these models alone predicts
the experimental relaxation times for all cases, but a combination of the two effects is required. The modiaed
ionic model applies reasonably well to crystals which contain the lighter ions.

L INTRODUCTION

~ '%0 theories have been proposed to explain
nuclear quadrupole spin-lattice relaxation times

T& in crystalline solids. The relaxation due to Auctua-
tions of the electric field gradient originating from
ionic point charges is considered in the theory of Van
Kranendonk, ' referred to as the ionic model. The
theory of Yosida and Moriya, ' which applies a co-
valent model, attributes relaxation to the asymmetry
of the electron charge cloud distribution when two

* Supported by the Once of Naval Research and the National
Security Agency.

t Present address: General Atomics, San Diego, California.
$ Present address: Bell Telephone Laboratories, Murray Hill,

New Jersey.' J. Van Kranendonk, Physica 20, 781 (1954).' K. Yosida and T. Moriya, J. Phys. Soc. (Japan) 11,33 (1956).

ions are in a state of covalent bonding. These theories
were applied to the alkali halides and our interest will
be confined to these crystals. A recent attempt' to
interpret relaxation-time data in terms of these models
was inconclusive because of the lack of sufhcient data.
With the enlarged data presented in this paper, we
attempt to confirm, in various cases, the proper
combination of mechanisms that couple the nuclear
quadrupole moment to the lattice-phonon distribution
in the temperature region above the Debye temperature.

An important modification of the ionic model,
calculated by one of the authors (W.E.B.), introduces
the e8ect of induced electric dipole moments associated
with optical modes of the lattice vibration. This

e E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).
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additional degree of freedom is incorporated into the
point charge model of Van Kranendonk.

EI. EXPERIMENTAL RESULTS

Magnetic resonance pulse techniques4 were used in
our measurements because they afford a direct deter-
mination of nuclear spin-lattice relaxation times T».
The inference of relaxation times by the continuous
wave (c.w.) saturation method is dificult in solids
because of complications involving line-shape inter-
pretation. The c.w. method, however, is useful for the
observation of the recovery of nuclear magnetization
toward thermal equilibrium by an adiabatic fast
passage measurement' following initial spin saturation
at an earlier time r. This can be done only if T» is
conveniently long. The pulse method in this investiga-
tion measures T» values ranging from 0.01 sec to 12 sec.
For the short T» measurements, less than 1 sec, a
90'—90' two-pulse sequence was employed. At t=0,
the magnitude of a free nuclear induction signal follow'-

ing a short radiofrequency pulse, having typically a
width of 40 @sec and a rotating Geld component H» of
approximately 1.4 gauss, provides a measure of ufo,
the nuclear magnetization at thermal equilibrium. A
second 90' pulse follows at a time 7 later, when r is
much greater than the free-precession decay time T2,
giving a signal that measures the exponential recovery
toward thermal equilibrium. A "picket-90"' pulse
method was convenient for T» measurements exceeding
1 sec. The initial saturation is produced by a series of
approximate 90' pulses occurring in rapid succession,
separated from one another by a time which is greater
than T2 and much shorter than T». This picket sequence
assures complete initial nuclear saturation without the
necessity of obtaining an exact 90' condition for the
initial single 90 pulse or on the following 90' pulse.
These 90' conditions are dificult to obtain for slow
repetition rates.

Experiments were performed with optically pure
single crystals obtained from Barshaw Chemical
Company, except for NaBr, RbBr, and NaI which
were grown from our own melt system, and for RbC1,
which was a polycrystalline sample. Depending upon
their gyromagnetic ratios, nuclei were studied at Larmor
frequencies of 12 Mc /sec and 4.5 Mc /sec provided by
a pulsed oscillator. The pulse from this oscillator has a
rise-and-fall time of 2 p,sec, with a peak-to-peak
amplitude of 3000 volts. A nonoverloading wide-band
ampliGer' is used as a receiver and is decoupled from
the transmitter by use of a cross-coil arrangement that
minimizes receiver saturation. The transmitter coil is
wound in the form of a Helmholz coil pair, each of
which is slightly elliptical in shape in order to provide
a more homogeneous rf GeM over the sample. The

4 E. L. Hahn, Phys. Rev. 80, 580 (1950).
fi F. Bloch, Phys. Rev. 70, 460 (1946).
s R. J. Blume (private communication).

Crystal Nucleus Q(barns)

NaCl Na" 0.10

NaBr
NaI
NaCl
KC1
NaBr

KBr

Na~
Na~
CPs
CP~
Brz9
Brsl
Brz9

0.10
0.10—0.078—0.078
0.33
0.28
0.33

Brs' 0.28

CsBr

RbCl
RbBr

NaI
KI

Brz9
Br'
Rbsz
Brsz
Brz'
Brs
I1N
I1N

0.33
0.28
0.15
0.15
0.33
0.28—0.59—0.59

CsI Ilsz —0.59

T~(sec)

12
14.5
28
6.0
5.0
5.2
8.5
0.050
0.071
0.072
0.087
0.166
0.103
0.122
0.230
0.080
0.115
0.250
0,165

0.065~0.040
0.100&0.050

0.012
0.019
0.023
0.045
0.010

Temp ('K)

298
273
195
298
298
298
298
298
298
298
273
195
298
273
195
298
298
298
298
298
298
298
298
273
195
298

r D. F.Holco mb and R. E.Norberg, Phys. Rev. 98, 10/4 (1955);
D. E. Kaplan, Ph.o. thesis, University of California, 1958
(unpublished).' R. V. Pound, Phys. Rev. 79, 685 (1950).

receiver coil is wrapped directly around the sample.
The receiver recovers completely within 10 psec after
the trailing edge of the oscillator pulse is clamped.
The receiver output is coupled through a high-gain
tuned detector, and the Gnal signal enters a dual
channel "boxcar" narrow'-band integrator, ' which then
connects to a Brown recorder.

The experimental results are presented in Table I.
Each relaxation time was measured at least 5 times,
and the tabulated results are the average of these
measurements. Their accuracy is within 10%%uo unless
otherwise stated. The orientation of crystalline axes
with respect to the applied Geld Ho is not speciGed
because no dependence of T» upon orientation was
observed for any nucleus.

Certain overall conclusions can be drawn from an
inspection of the data. Above all, the nuclear lattice-
phonon interactions are definitely quadrupolar in
nature for the following reasons.

1. In relaxation processes, the transition probability
is directly proportional to the square of the matrix
elements connecting two levels of the spin system. In
our case the relaxation times prove to be inversely
proportional to the square of the quadrupole moments
of two isotopes in the same crystal. For example, the
thermal relaxation time ratio Tt(Br")/Tt(Br") of the
Brrs and Br" isotopes is measured to within 5% of the
calculated ratio of the inverse square of their quadrupole
moments, 1.4, in the four cases of NaBr, KBr, RbBr,
and CsBr.

TABLE I. Experimental T& results.
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2. The suspicion that relaxation may be partly due
to paramagnetic ions' was eliminated in the following
manner. The Na" relaxation time was measured in an
F-center doped NaCl crystal. Although the crystal was
noticeably colored, the T& value of 12 sec at 298 K
was unchanged from that obtained from an optically
pure, undoped sample. This characteristic has also
been found to be true for other nuclei. " Also, if the
fractional concentration in the number of ion impurities
is less than 10 ~, it has been found" that a relaxation
time much longer than 12 sec would be expected. The
impurity mechanism is therefore reasonably excluded
for all the measurements reported here, in view of the
fact that the Na" relaxation time is the longest relax-
ation time measured in our experiments.

3.The temperature dependence of T~ for Na" in NaCl,
Br ' "in KBr, and I"7 in KI shows that T& is inversely
proportional to the square of the absolute temperature.
Quadrupole relaxation theories' ' predict a T sdepend--
ence above the Debye temperature because they utilize
Raman processes to describe the nuclear quadrupole
lattice-phonon interactions.

The nature of quadrupole line broadening is evident
in our experiments. The chlorine, bromine, and iodine
resonance lines appear at least to be broadened com-
pletely to first order. "Moreover in the case of RbBr,
some second-order broadening" was evident in the Br
resonance line because of the poor signal-to-noise
ratio encountered. This led to a large error in the
experimental value of T~. A pulse, t„seconds wide, is
able to excite a frequency spectrum of breadth 1/t,
which evidently was exceeded by the overall line
width. Furthermore, even if the wings of the spectrum
are partially excited, the decay from the wings dies
out very quickly, mostly within the dead time of the
receiver following a pulse.

III. TRANSITION PROBABILITY EQUATIONS

The experimental relaxation times will be interpreted
in terms of the ionic and covalent models in Sec. IV.
It is first necessary to derive the relaxation equations
that describe the detailed balance between spins
involved in a given pair of levels and also spins of
other pairs of levels which have slightly diferent
spacing because of a small quadrupole splitting. A
coupling among spins, via the dipole-dipole interaction,
is assumed necessary to establish a common spin
temperature. "For a quadrupole system, both hm= ~1
and Ans=&2 transitions are allowed and correspond,
respectively, to relaxation rates 8'& and 8 2, as shown
in Fig. 1. Quadrupole-lattice relaxation between the
trs= &1/2 levels is forbidden to first order. A spin-spin

' N. Bloembergen, Physics 15, 386 (1949).
@N. Bloembergen and P. Sorokin, Phys. Rev. 110, 685 (1958).
"W. E. Blumberg, Ph.D. thesis, University of California, 1959

(unpublished)."
¹ Bloembergen and T. J. Rowiand, Acta Met. 1, 731 (1953).

"A. Abragam and W. Proctor, Phys. Rev. 109, 1441 (1958).

8=2 (Wt —Ws+3s)+8( —Wt —Ws —9s)

+2Bp(2Ws —Wt)

Solutions of the form exp( —tnt) give

m= (Wt+ Ws+xsWp)

+((Wt—Ws+-'Wo)'+Woold (2)

which exists for any lin'ear combination of population
differences observed. IiI the Wp process is neglected,
the transient relaxation'is described by"

C+D exp( —2Wr1)+E exp( —2Wst), (3)

where C, D, and E are constants determined by initial
conditions. It is necessary, however, in our experiments
to include 8'0, and under the assumption that 8'0
)&8 ~,S'2, the transient relaxation is described by

C+D exp/ s(Wt+4—Ws)tj+E exp( ——,'Wp)I. (4)

All values of T2 in our experiments are of the order of 1

Wi

il

w&
ll

d=N

c=N
lp

N,
U

W, , W~ PROCESSES
a = N~yl

+o PROCESSF S

FIG. i. Nuclear relaxation schemes for spin I=(, indicating
spin-lattice quadrupole relaxation rates O'I, lV~, and the spin-spin
relaxation rate Wo.

'4E. F. Taylor and N. Bloembergen, Phys. Rev. 113, 431
(1959). This paper labels 8'0 as P. The authors would like to
thank Dr. Taylor for sending his results before publication."L.Cohen and F. Reif, Sol~d-State Physics, edited by F, Seitz
and D. Turnbull (Academic Press, New York, 1958), Vol. 5.

relaxation rate 8'0 is introduced'4 to account for dipole-
dipole coupling, allowing approach to a common spin
temperature. We assume that spin-spin transitions
which conserve both energy and angular momentum
occur via this coupling at the characteristic rate 8'0.

Consider the case for I=3/2. The number of spins
in each of the four levels is given by u, b, c, and d. We
define, for convenience, the population diGerences,

A=a —d, and B=b—c,

with Ao and 80 given as these differences at thermal
equilibrium. Also, it is necessary to define a spin-spin
transition rate per spin as

P=Wp/N,

where lV is the total number of nuclei. Since pH p/kT«1,
where p, is the nuclear magnetic moment, we let
a=b=c=d=lV/4 wherever these terms do not occur
as differences among themselves, and write PX/4=s.
Then the rate equations are:

A =A ( Wt Ws—s)+—B(W—t Ws+3s)—
+28p(Wt+Ws),
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millisecond and are considerably shorter than. T1. An
order-of-magnitude estimate of We is given by 1/T&.
Consequently, the resolution of our experimental
apparatus was insufhcient for the detection of the fast
(SWe/2) component of relaxation. We therefore define
Tt as s(Wt+4Ws) ' for those nuclei with I=3/2
I see reference 14, Eq. (15)].This equation applies for
either the pulse or c.w. measurement case. When the
8'0 process is not included, however, the pulse analysis
yields Eq. (3) and the c.w. analysis yields Tt (1/Wt——)
+(I/Ws). It has been shown" that when a spin
temperature assumption is introduced, the relaxation
is characterized by a single rate which has the form,
const(Wt+4Ws). This form of the relaxation is ob-
tained upon the assumption of a common spin temper-
ature. The coupling parameter S 0 provides the means

by which the nuclear spins can approach a common
temperature.

For the case of I=S/2, the relaxation analysis is
similar but more complicated by the existence of 6
Zeeman levels. The form of the relaxation time equation
will remain the same, " i.e., Tt ——const(Wt+4Ws) ',
because of the spin temperature approximation.
However, the F27 nucleus does not lend itself to any
obvious interpretation based upon the ionic or co-
valent models, and its analysis will be excluded. It
does appear, however, that the dominant relaxation
mechanism of iodine is covalent in nature.

IV. QUADRUPOLE RELAXATION MECHANISMS

The many-electron wave function in a crystal, such

as Nacl, may be written in the form (Xl I
A

I I+ I I
&

I I),
where the determinant

I
AI I

of the wave function

corresponds to a configuration of Na and Cl atoms,
and the determinant

I I I3I I
corresponds to a configura-

tion of Na+ and Cl ions. The coeKcient ) is a small

number which is a measure of the amount of covalent

bonding that exists between Na and Cl ions. As a 6rst
approximation, 8 can be called the ionic model wave

function and A can. be called the covalent model wave

function. The latter function includes eGects due to
covalency arising both from charge transfer, where un-

occupied excited states become occupied, as treated by
Yosida and Moriya, and from overlap of electron wave

functions describing states which are already occupied,
as treated by Kanda and Yamashita. '7 In the ionic

model the field gradient at a nucleus is produced by an

external charge and the electron wave functions only

serve to enhance the interaction between the nuclear

quadrupole moment and this charge. This enhancement

is usually referred to as the Sternheimer factor or anti-

shielding eGect."' The problem becomes quite com-

'~ I,. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
The authors would like to thank Professor Slichter and Dr.
Mieher for bringing these points to their attention.

'7 J. Kanda and J. Yamashita, J. Phys. Chem. Solids 10, 245
(1959).The authors would like to thank Dr. Kanda for sending
these results before publication.

R. M. Sternheimer, Phys. Rev. 95, 736 (I954).

. TABLE II. Cal'culated:. relaxation times based on an ionic model.

TI (ionic+induced
&i (expt. ) r& (ionic) dipole mechanism)'

Nucleus Crystal (sec) (sec) (sec)

Na23
Na"
Na23
CP5
CP5
K»
Brz'
Brzg
Brz~
Brzg
Rbsz
Rb'z
I127.

I127
I127

NaCl 12.
NaBr 6
NaI 5
ÃaCl 5.2
KCl 8.5
KCl 6.2b
NaBr 0.052
KBr 0.0'72
RbBr 0.065~0.040
CsBr 0084
RbCl 0.250
RbBr 0.165
NaI 0.012
KI 0.019
CsI 0.010

420
340
350

6.4
12.5

202
0.095
0.244
0.252
0.545
4.51
4.8
0 039e
0.0910
0 172e

30
10.8
2.8
5.8
7.0

28
0.082
0.133
0.098
0.183
0.845
0.510
0.028
0.043
0.060

a See Sec. IV, subsection B.
~- Relaxation time estimated from Kanda's measured ratio for

TI(K») /TI(Cls') in KCl of 0.73 (reference 17).
'Assumed XI= 2(IVI+4TV2) I and equal quadrupole moment matrix

elements.

The nearest-neighbor ions in alkali halides are
considered by Van Kranendonk' to be effective in
causing relaxation. The acoustic modes of the Debye
spectrum are assumed to describe the phonon distribu-
tion in which the "second-order" Raman processes are
the most important. The expression for the transition
probability from state m to tm+u is given' by

W(tts m+1) =y'IQ„„Is(;T*&~ (Te) (8)

where C=27e'/32trd'nsa", d is the crystal density, e is
the velocity of sound, 0 is the nearest-neighbor distance,
T*=T/0 is the re—duced temperature, 0 is the Debye
temperature, Q =(tN+NIQ Im) is the nuclear quadru-
pole moment matrix element, and E„(T*)is given by

E+t (T*)= 1330(1—0.0056/T*')

E+s(T*)= 476(1—0.0056/T*')

for T~&0.5. The y is introduced by assuming that the
actual ionic charge is q=pe, where e is the electronic
charge, and the parameter y is a measure of the nuclear
quadrupole-lattice coupling. Following %ikner and
Das, ' we shall write y=1—y„, where y„ is defined as
the enhancement factor for the interaction of the
nuclear quadrupole moment with the external charge.
The enhancement is caused by the distortion of the
electron cloud about the nucleus. Using Eq. (8) and
Tt ——s(Wt+4Ws) ', the results are tabulated in Table
II. The constants used in these expressions are given
in Table III. With the above expression for T1, Van

plicated if the relaxation theory is treated in a rigorous
fashion by including cross-term effects between 'A

I I
A

I I

and
I I BI I. These cross terms arise since the total wave

function occurs squared in the transition probability
expression.

A. The Ionic Model
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Kranendonk's theory predicts no T& anisotropy, " i.e.,
11 does not depend on which direction the Ht) field is
applied to the crystal. This fact is verified by our
experiments. It must be kept in mind, however, that
any theory that uses the charge symmetry assumed in
the ionic model will predict the same result.

For the Na" and K" nuclei there is a marked dis-
agreement between the theory based upon the acoustic
ionic model of Van Kranendonk and the experimental
values. On the other hand, the acoustic ionic model
provides reasonable agreement with the relaxation
times measured for chlorine and bromine. Consideration
of the induced dipole moment associated with the
optical modes in addition to the acoustical modes in
the ionic model serves to correct the serious discrepan-
cies for Na and K relaxation data. Calculations which
follow are carried out for the Cl and Br salts of Na, K,
and lb. There is overall agreement between the
following theory and experiment within a factor of two.

B. The Induced Dipole Mechanism

Optical vibrations produce large internal electric
fields inside a crystal, which in turn induce electric
dipole moments in the electronic shells of the ions."
These electric dipole moments produce strong electric
6eld gradients at the sites of neighboring ions. A theory
will be developed for the interaction of the nuclear
quadrupole moment with the electric dipole moment
induced by optical vibrations. This interaction will be
incorporated into the calculation of Van Kranendonk,
and the result will be applied to some crystals in which
covalent eGects can be neglected.

The polarization per unit volume produced by an
optical vibration may be written as the sum of three
parts, viz. ,

P=P++P +Ze(u+ —u )a '. (10)

The displacements of all the positive and negative ions
in a given region of the NaCl type crystal have been
written as u+, assuming a long wavelength disturbance,
and the induced polarization in the positive and
negative ions is written as P~. Z is the valence of a
positive ion. Figure 2 will serve to illustrate these three
parts of the polarization. The scale of the drawing is
appropriate to the KCl lattice, and the small circles
represent the positive ions. The mid-section shows
schematically a short wavelength acoustical wave. Note
that each ion is shown with the nucleus in the center
of the electronic shell, and that no dipole moments are
induced by this type of vibration. On the right is shown
a long wavelength optical wave. The last term in (10)
is illustrated by a gross movement of charge. The

'9 The authors would like to thank Dr. Mieher and Professor
Slichter for bringing this to our attention. Mieher and Slichter
will soon publish a paper which will discuss this problem to a
greater extent.

~ M. Born and K. Huang, Dymamica/ Theory of Crysta/ Lattices
(Clarendon Press, Oxford, 1954).

TAsLE III. Crystal and nuclear constants used in
relaxation time calculations.

Lattice Velocity
spacing' of sound

u(A) v(m/sec)
Density

d(g/cm')
Debye temp. '

ow( I)
NaC1
NaBr
NaI
KCl
KBr
KI
Rbcl
RbBr
CsBr
CaI

2.815
2.98
3.23
3.14
3.29
3.52
3.27
3.43
3.71
3.95

4738
3330

(2600)s
4490
3570
2940

(3600)~
(3100}~
(2600)d
(2100)~

2.165
3.203
3.667
1.984
2.75
3.13
2.76
3.35
4.44
4.51

281
200
151
227
177
130
179
140

(125)~
95

Na
K
Rb
Cl
Br
I
Cs

Antishielding
factor'

+00

4.5—12.84—49.3—49.4—99—179

(1/r') values'
&1/. )X10

1.66
2.98
5.74

48.64
92.05

122.3

Atomic
pOlarizabilitieSIt'

0!y

0.28
1.13
1.79
2.92
4.12
6.41
2.85

R. W. G. Wyckopf, Crystal Structures (Interscience Publishers, Inc.,
New York, 1951), Vol. 1. Here "a" is the nearest-neighbor distance, not
the lattice constant ap.

b Calculated from elastic constant data, viz. , u =(C11/d)&, where Cll is
the longitudinal elastic constant, and d is the density.

K. Lonsdale, Acta Cryst. 1, 144 (1948).
See reference 3.

& R. G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).
Ig See M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Clarendon Press, Oxford, 1954).
d Estimated values.

"W. Shockley, Phys. Rev. 70, 105 (1946).

positive ions are shown displaced downward, and the
negative ions are displaced upward. This produces an
e6ective Geld in the upward direction, with the result
that the negatively charged electronic shells of both
kinds of ions are displaced downward with respect to
the nucleus. This has caused a dipole moment to be
introduced in each ion.

Assume the ionic polarization can be written as

Py —rryEe f fs

where E,ir is an effective local electric field acting on
the positive and negative ions alike, and n~ is the
electric polarizability of the positive or negative ions
in the crystal. "Then the induced dipole moment of an
ion may be expressed as

rr~LPa' —Ze(ui. —u )7
ep~ ——P~a'=

Q++rr

It is now necessary to calculate P as a function of the
relative displacement u+ —u . In the absence of an
externally applied electric field, the eftective Iorentz
field at any point in the crystal is given by

E,rr ——(4gr/3) P. (13)

The effective field can be eliminated from (11), (12),
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UNDISTORTED
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VIBRATION

FIG 2. Schematic representation
of an acoustic and an optical
vibration emphasizing the distor-
tion of the ions which occurs
during an optical vibration. The
scale is appropriate to KC1, the
positive ions being represented by
the smaller circles.

and (13), to obtain
Ze(u+ —u )

a'—(4'/3) (n++n )
(14)

The magnitude of the displacement is now written as
o. Then the magnitude of the induced dipole moment is

ep~ =Z8e (15)
1—(4n./3)(n++n )a—' n++n

Because of the assumed isotropy of the crystal, the
direction of the dipole moment is parallel to the
relative displacement of the positive and negative ions.

Any eGects of the electric 6eld gradient at the
nucleus of an ion caused by the electric dipole deforma-
tion of that ion are considered to be negligible. This is
presumed to be generally true, based upon a calculation
by Sternheimer" for the Cl ion, in which the Geld
gradient at the chlorine nucleus, caused by an electric
B.eld acting to polarize the ion shell, occurs only as a
second-order perturbation. The interaction with the
nuclear quadrupole moment depends upon the square
of the electric 6eld and, therefore, upon the square of
the displacement. . For the small displacements caused
by thermal vibrations, this interaction may be neglected
in comparison with the 6eld gradient caused by a
dipole deformation of a neighboring ion, which depends
linearly upon displacement.

The treatment and notation of Van Kranendonk are
followed in the evaluation matrices for the strength
of the interaction of the nuclear quadrupole moment
with the surrounding ions. However, some diferent
assumptions concernirig the nature of the crystal must
be made. Since the main interest lies in the relaxation
due to the optical modes of vibration, it cannot be
assumed that the nuclei are all equivalent. A perfect
NaCl-type lattice of alternating positive and negative
ions is assumed, which has dipole polarizabilities n+
and n, respectively. The frequency distribution of

phonons is taken to be the Debye spectrum. This is
probably not the most realistic spectrum to assume,
but jt is chosen for convenience in comparing the
results with those for the case of relaxation due to
acoustical vibrations using the Debye spectrum. The
integrated spectrum of optical vibrations is comparable
to that of acoustical vibration, so that this assumption
is sufhcient in view of errors inherent in other parame-
ters chosen. The greatest portion of the optical phonons
have 1/ko»a, where ko=2or/X is the magnitude of the
reciprocal wave vector, and those phonons for which
1/ko is comparable to the lattice constant play a
negligible role in the relaxation process. However, just
the opposite is true in the case of acoustical phonons,
as treated by Van Kranendonk, where the acoustical
phonons for which 1/ko=a contributed most to the
relaxation. Under these assumptions, we may write the
matrix elements of the perturbing Hamiltonian as

where e„is the number of quanta at frequency ar, M is
the mass of the crystal, and the required values of E„
are computed to be

Xg—5292(ap/do)oa-co snd ~o g140(g&/go)oa-so (17)

for the case in which the magnetic Geld is along a [100]
direction in the crystal. Then the expression for the
transition probability becomes

W'(m, m+I)

2w r "~ )3&'O'V ~
' 2A exp Ace/kT

A' ~ o E 48'ko'a') Ma) (exp &co/kT 1)—
XE„y'(Q „)'e'do), (18)

where V is volume of the crystal and or is the Debye
cutoG frequency.

In order to facilitate a comparison with the theory
of Van Kranendonk, it is desirable to write the expres-
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The relation

E'(T*)=T*
~e (e'- 1)'

(20)

ks9a= (6rr') &As (21)

may be used to introduce the velocity of acoustic
waves into (18). The values of E for this case are
Er ——4704, Es——7236.

Now the results of the induced dipole process may
be combined with the results of the acoustic case for a
nuclear spin of 3/2. For this case, the values of
W(m, srr+I) are the same for all values of m, 63/2 —I
/except W( —1/2, 1/2) =Oj and may be written as W„.
The combined relaxation rate due to both modes of
vibration is

1/Tr (total) =ysQ'CT*L1806E*

+11,940(diu/de)sE'3, (22)

where E* and E' are given by Eqs. (9) and (20),
respectively. Here it is assumed that the antishielding
factor for each process is the same. ~ Since covalent
effects are neglected, and since the electric Geld gradient
acting on a given ion arises entirely from a charge
configuration lying entirely outside that ion, it is
assumed that the shielding theory of Sternheimer'8
holds. Relaxation times T&(total) are computed by
first obtaining the value of dp/de from (15) using the
values of the crystal polarizabilities computed by
Shockley. " At room temperature, the values of both
E (Te) and E'(T*) are approximately unity and

1 1—=Li+6.62(dp, /de)']
~1 Tr (acoustic)

Because of the large number of simplifying assumptions
made in the theory of relaxation caused by a Debye
spectrum for both phonons and optical phonons, the
factor 6.62(der/de)s should not be taken too literally.

Some calculations based on (22) are presented in
Table II. The lithium halides and alkali Quorides have
been omitted from consideration, as relaxation does
not proceed entirely via the nuclear quadrupole
moment in these compounds at room temperature.
The cesium halides and the alkali iodides have been
omitted for two reasons. The nuclear spins of both
Cs'" and I"' are greater than 3/2, so the relation

~ This is justified in a paper by G. Burns and E. G. Wikner
(to be published).

sion for 1F in the form,

W(I:, sos+I) =ys
i Qe„ i

sCE„T*sE'(Te)(dp/de)s (19)

where C is the same as in Eq. (8). The function E is
the result of all the geometrical factors governing the
coefficient of Q„ in the matrix elements of Ks'. The
function E'(Te) here is not quite the same as defined

by (9). It is here defined as

~11" e.ed&

employed in Eq. (4) does not apply. In addition, there
is possibly some effect on the relaxation time caused by
the partial covalency exhibited by these large ions,
especially I~'. Results for only one of the isotopes of
Cl, Br, and Rb have been shown for each element.
The calculated relaxation times for the other isotopes
of Cl and Br may be obtained by multiplying the listed
results by the appropriate inverse square of the ratio
of quadrupole moments.

It can be seen from Table II that the values of the
relaxation time for the halide negative ion nuclei are
not greatly changed upon addition of the optical
phonon process. The values for the alkali positive ion
nuclei, however, show marked reduction in relaxation
times because af the large polarizability of the neighbor-
ing negative ions. Thus the importance of the optical
phonons in the nuclear magnetic relaxation process
has been demonstrated approximately, whereby the
nuclear Zeeman energy is taken up by the lattice
vibrations through an interaction of the nuclear
quadrupole moment with the time-varying electric
Geld gradient arising from ionic and lattice distortion
caused by optical phonons. The inclusion of this
relaxation process places the calculated values for the
relaxation times for each crystal studied in the range
of experimentally determined values of relaxation
times. %e notice, however, that there is still some
disagreement between theory and experiment in the
case of the heavier nuclei. Some of the disagreement
might be ascribable to the calculated antishielding factor.
The cubic environment of the nuclei precludes any
large eGect on y„by the crystalline Gelds themselves.
The crystalline environment, on the other hand, will

modify the free ion wave function used in the y„
calculations since the wave function wi11 not now
extend as far out. The result of this will be to lower
the radial wave function expectation values leading to
a decrease in y„. Burns» has computed this effect for
Cl and finds that y„decreases from 50 to 27. Also,
ultrasonic measurements, """second-order broadening
effects, ss and Geld gradient calculations's all tend to
show that y„(calc) is fairly reliable for the positive
ions, but is too large for the negative ions. Modified
values of y„ for the negative ion, assuming y„ for
positive ions unchanged, can be predicted from the
measurement of relaxation time ratios of diGerent ions
in the same crystal. Assuming y„ for Na to be 5, the
modified ionic model for relaxation times predicts a y„
of 20 for Cl, again a smaller value than computed.

The calculated values of y„ for bromine and iodine
are uncertain in the original calculation because
interpolated wave functions without exchange were
used. It appears that y„calculated on this basis is

+ D. A. ennings, W. H. Tantilla, and O. Kraus, Phys. Rev.
109, 1059 1958).

» D. I. Bolef and M. Menes, Phys. Rev. 114, 1441 (1959).» E. Otsuka and J. Kawamurs, J. Phys. Soc. Ospsn) 12, 1071
(1957).

s' R. Bersohn, J. Chem. Phys. 29, 362 (1958).
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overestimated, since Burns has shown for chlorine that
the ratio of y„(using Hartree wave functions) to y„
(using Hartree-Pock wave functions) is 3.1, which
demonstrates the importance of exchange in reducing
the value of y„.

The T~ data for the bromine sequence in Table II
shows a steadily increasing discrepancy between theory
and experiment through the series NaBr, KBr, and
CsBr. (RbBr is omitted here because of the large
inaccuracy in its Ti measurement. ) The ratio
Ti(calculated) to Ti(experimental) for Br" is 1.13,
1.32, and 1.56, respectively for this series. If we also
consider iodine, we find that in passing from KI to CsI,
a decrease in T& occurs for P'~ which is not predicted by
the ionic model. This trend can be accounted for by
introducing covalency eGects for the heavier atoms.

C. The Covalent Model

Thus far the perturbing infiuences of the electron
charge transfer and overlap of electron wave functions
have been neglected. For a given anion X, these per-
turbing inQuences will increase along the series NaX,
KX, and CsX and thereby lead to a decrease in T» along
this series.

1. Theory of Yosida and Moriya

This theory' is based upon a covalent crystal model
and differs from the ionic picture only in the mechanism
which produces the field gradient. The same assump-
tions concerning lattice vibrations (Debye model, etc.)
and nearest-neighbor interactions are employed. For
an ion with completed electronic shells, the charge
distribution around the nucleus is spherically sym-
metric. But in a state of covalent bonding, there is a
small charge transfer and the asymmetry caused by
this transfer in the closed shell configuration generates
an electric field gradient proportional to (r ')~ at the
position of the nucleus. The subscript p refers to the
outermost p state of the ion in question. Based on this
model, Yosida and Moriya obtain the following expres-
sion for the transition probability equations:

W(ni, rn+n) =A "co
i Q „i'T*'P N„„D„(T*), (24)

where A'=3~eA(r ')„, A=eg/I(2I —1), co' ——(6m') for
sc crystals, and co' ——9v3&/2 for bcc crystals. The
D„(T*)terms have the form (x+y) T* ', where x and y
are constants. The E„ terms have the form

N„„=X'i a+b(X'/X)+c(X'/X)'+d(X"/X) j, (25)

where u, b, c, and d are numerical constants, 'A is the
degree of covalency obtained from chemical shift data, '
and X' and )" are, respectively, the first and second
derivatives of t with respect to the interionic distance.
These derivatives arise since Raman processes, which
are of second order, are used in describing the nuclear

quadrupole-lattice interactions. These are estimated
by assuming li exp( —r/0. 345), after Born and Mayer,
where r is the interionic distance. The representation
of the excited covalent-state wave functions by such a
simple exponential term is, of course, only a first
approximation. This approximation is crude since the
value of E„„is essentially dominated by the magnitude
of the 'A" term. To improve this model, however,
would require an accurate knowledge of the electron
distribution near the peripheral regions of the ion, and
hence a band structure calculation is necessary to
obtain the electron wave functions. Another point to
consider is the phenomenon of double repulsion among
the cations. In the Li and Na halide crystals especially,
the disparity in ionic sizes between the alkalies and
halides allows the like-charged halides to overlap, thus
enhancing the repulsive forces they experience. This
will further increase the distortion of the electron
charge density for these crystals, and therefore a
nearest-neighbor model is insufficient. The inclusion of
next nearest neighbors could be carried out by a difficult
and involved band-structure calculation.

The formula relating the chemical shift to the degree
of covalency is based on the same model used in the
covalent relaxation theory. However, for crystals com-
posed of large ions, such as the cesium halides, the
chemical shift formula should be modified to include
bonding d orbitals. This would be especially true for
nuclei which exhibit a comparatively large chemical
shift, such as Br in CsBr and I in CsI (see Table IV).
Undoubtedly this is the cause of some of the discrepan-
cies that arise in the calculations to follow.

In Table IV are listed the measured chemical shifts
0-, the degree of covalency ); the energy of excitation
hE between ground and excited states, as deduced by
Yosida and Moriya, ' and Kanda and Yamashita'; the
relaxation times as calculated from Eq. (24); and the
experimental relaxation times. The degrees of covalency
listed in parentheses are estimates, because the formula
relating the chemical shift to the degree of covalency
assumes a negative shift while these ions exhibited a
positive shift. A positive shift most likely means the
reference point is somewhat uncertain and the assump-
tion that the reference aqueous salt solution is com-
pletely ionized is not entirely correct. The theoretical
ratio Ti(Na)/Ti(C1) =R in NaC1, obtained from Table
IV, is about 500 as compared to the measured E of
about two. The great diff'erence in these ratios is ac-
counted for by the respective (r ') values (see Table III)
of Na and Cl obtained from hyperfine-structure data,
where corrections due to the Sternheimer polarization
eff'ects on the atomic core are neglected. These are
usually important and would be expected to modify the
tabulated (r ') values. However, to obtain a "correct"
theoretical R in NaC1, the (r ') value for Na would
have to be increased by a factor of 10 which is rather
unreasonable for this tightly bound ion. It would also
be unreasonable to choose a higher covalent bond
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TABLE IV. Calculated Tj values. '

(a) Calculated T~ values based
Chemical

shift 0.

Nucleus Crystal X (104) AZ (ev)

Na~ NaC1 none
observed

Na" Na Br none
observed
+0 3 o ~ ~

+0.58—0.22—2.5—0.9—1.29—1.2—1.0—5.0

NaC1
NaBr
KBr
CsBr
Rbcl
RbBr
NaI
KI
CsI

C13$
Br79
Br79
Br79
Rb87
Rb87
I127
Ii%7

I197

~ ~ ~

10.1
9.4

20
20
9.0
9.0
8.4

on the covalent model

Ti(calc) T~(exp. )
(sec) (sec)

(0.01)b 2.3X10s 12

(0 01)b 2 X10' 6

(0.01)b
(0 002)b
0.004
0.02
0.007
0.0083
0.0091
0.0076
0.0284

44
2
0.190
0.002
0.012
0.003
See part
See part
See part

5.2
0.050
0.072
0.080
0.250
0.165

(b) below
(b) below
(b) below

(b) Ratios of P~z relaxation times TI in KI and CsI to
that of II27 in NaI

NaI KI CsI

Expt.
Covalent (calc)
Ionic (calc)

1 16
1 157
1 1.5

0.83
0.04
3.6

a The Br and I shifts are obtained from reference 10. The Rb data are
obtained from reference 1'I. hE is obtained from reference 2.

~ Estimated values.

character for the Na ion, since, for Br in KBr, which
exhibits a larger chemical shift, the covalent character
is only 0.4% per bond. The essential arguments are the
same for NaBr, and thus it is apparent that the charge
transfer covalent model is inadequate in explaining the
observed relaxation times in these crystals. For the Br
sequence, it is evident that the spin-lattice relaxation
of Br in NaBr is dominated by an ionic process, because
the amount of covalent bond character (2.84%) needed
to give agreement is much too high (the CsBr bond
character is only 2%). The dominating relaxation
process in KBr is dificult to determine, but certainly
in CsBr it is covalent in nature. Also, as mentioned
previously, the I"' nuclear quadrupole relaxation
process also appears to be dominantly covalent in
nature.

Z. Theory of OverlaP Cova1ency

Recently, Kanda and Yamashita" have calculated
the inQuence of the overlap covalency, arising from the

so-called "exchange eR'ect" alone, on the nuclear
quadrupole spin-lattice relaxation. The charge distribu-
tion around an ion is nonspherical because of the
mutual overlap of the electron charge clouds of nearest-
neighbor ions. This distribution provides a 6eld gradient
at the nucleus which is modulated by the lattice
vibrations. It diGers mainly from the Yosida and
Moriya theory in the appearance of an overlap integral
between the metal and halogen orbitals, instead of the
covalency, and in the case of the metal ion, there
appears the value of (r-s) for an occupied orbital
instead of the excited outer orbital. The relaxation
times for the alkali and halogen nuclei then become of
the same order of magnitude. We learned of the results
of Kanda and Yamashita near the end of our investi-
gation and therefore did not include their mechanism
in the prediction of relaxation due to covalency.

V. CONCLUSIONS

It appears that the predominant contribution to the
relaxation times is neither covalent nor ionic, but that
both effects must be considered. When dealing with
relaxation processes it is not valid to consider the
crystals studied here as being purely ionic in character.
However, the theory for the ionic model, based on the
original calculation of Van Kranendonk, and later
modified to include the antishielding factor and the
induced dipole polarization, is better established than
the covalent model. The latter has been only in-
completely studied at this point by virtue of the
neglect of the overlap covalency and the treatment of
the charge transfer calculation of Yosida and Moriya.
Although the two conditions, ionic and covalent, may
be in some cases of equal importance in contributing
to the relaxation mechanism, considerable improvement
is necessary in the covalent theory.
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