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following statements can be made about the efFects of
the potentials in quantum theory:

i. These sects change only the phase of the wave
function, and the phasg changes are independent of the
kinetic energy and kinetic momentum of the particle.
Thus they are intrinsically quantum-mechanical sects,
with no analog in classical theory.

2. These efFects do not afFect the gauge invariance of
the theory.

3. These effects can have objective meaning only
when they act differently on different parts of the wave
function of the same particle. A classical particle could
show efFects of an electrostatic potential difFerence or a

magnetic Aux only by following a path passing through a
region of nonvanishing held. A quantum-mechanical par-
ticle need not enter such a region to detect its existence;
the de Broglie waves can pass on either side of it
and receive a relative phase shift that is in principle
observable.

4. These efFects are not accidental results of a
particular way of formulating the theory, and they do
not constitute any paradox or inconsistency in the
theory. On the contrary, our discussions of conceptual
experiments have shown that these effects prevent
paradoxes and are essential for the consistency of the
theory.
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A method previously described is used to calculate the probability distribution of the low-frequency
component of the electric field at a neutral point, the distribution of the low-frequency component at an
ion, and that of the high-frequency component at an electron. The results are compared with those obtained
by other authors.

1. INTRODUCTION

' 'N a previous paper, ' a method was described by
- ~ which the Holtsmark' distribution can be systemati-
cally corrected for the correlations between the particles
producing the Geld, provided that this correction is not
too large. The result was to put the Fourier transform
F(k) of the Geld distribution in the form

gi(x) ='OPi(x),

gs(xr, xs) ='0't Ps(xi) xs) —Pi(xi) Pi(xs) ),
(4)

(5)

and E, is the electric Geld produced by the particle of
coordinates x;. The present calculations include only
the first two terms of the series in (1).The corresponding

g functions will be rewritten here explicitly,

F(k)=exlLZ (n'lP )hp(k)3
P=l

where n is the density of particles and the functions
hp(k) correspond to increasing orders in a cluster
expansion. Those can in turn be expressed in terms of
other functions g~,

W(E) = (2n.) ' ~ exp( —ik E)F(k)d'h. (6)

The distinction was made in I between the ltrto-

frequency component and the high-frequency component
of the electric field in an ionized gas or plasma. The
former is that part of the field whose time variation is
governed by the motion of the ions. It is obtained by
averaging the total Geld over a time long compared to
typica1 electronic relaxation times, but short compared
to ionic times. Therefore, it consists of the sum of the
Gelds from the ions, each Geld being shielded by a cloud
of electrons. Only the case of singly charged ions will
be considered. Other cases would be equally easy to
treat. The electron and ion densities are then equal and
both denoted by n. Thermal equilibrium will also be
assumed. One can then use the shielded Geld given by

hp(k)= "iotios

Xgp(xi, xs, ' ') xp)tPsc]lPscs' ' 'tPstpp (2)
where

q;=exp(ik E;)—1,
~ Supported by the Once of Naval Research.
t Now st Brookhaven National Laboratory, Upton, New York.

The material in this article is part of a thesis submitted by Bernard
Mozer in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy at the Carnegie Institute of Technology.

r M. Barsnger snd B. Mozer, Phys. Rev. 115, 521 (1959),
referred to in the following as I.' J.Holtsmsrk, Ann. Physik 58, 57'7 (1919).

I'j and P~ being the single-particle and pair distribution
(1) functions, respectively, and 'U being the volume of the

container. The field distribution itself, W'(E), is ob-
tained from
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the Debye-Hiickel theory. Its range of validity is the
same as that of the present cluster expansion method.
The shielded field at the origin due to an ion located at
point x, distance r, is then

E&———er 'x(1+r/X) exp( —r/X), (7)

X= (~T/4nrl, e')l (8)

The method has already been applied in I to the
calculation of the distribution of the high-frequency
component at a neutral point. In Sec. 2, the distribution
of the low-frequency component at a neutral point is
discussed. In Sec. 3, the method is applied to the
distribution of the high-frequency component at an
electron and that of the low-frequency component at
an ion. In Sec. 4, the results are discussed and compared
with the work of other authors.

2. DISTRIBUTION OF THE LOW-FREQUENCY
COMPONENT AT A NEUTRAL POINT

I et the origin be the point at which the field distri-
bution is calculated. The one-body function hi(k) is
given by

hi(k) = [exp(ik El) —1]d'x,
f

It is important to realize that only the electrons par-
ticipate in this shielding of the field of each ion. Ion-ion
correlations cannot be treated by the Debye-HQckel
theory, as far as their inhuence on the field distribution
is concerned, because the Debye-Huckel field is a long-
time average, while one only wants to average over a
time short compared to ion-ion collision times. Ion-ion
correlations are taken into account by the cluster
expansion. The high-frequency component is the diR'er-

ence between the total field and the low-frequency
component. The surmise was made in I that its distri-
bution was correctly given by considering an electron
gas of density n with uniform positive background.
It consists, therefore, of the sum of the unshielded
Coulomb fields of each electron. For an electron at
point x, distance r, this is

~~II ——er—x.—3

where Eo is the normal field strength

&o= e/ro'. (15)

With these notations, the contribution of one-body
clusters to the series in (1) can be written in the form

Nki(k) =—xlx'(x&y) (16)

with
4 go I

xi xo[ ' exp( —
I
xi—x&I/X'). (18)

The Debye length which enters this equation must
express the shielding of the ion-ion interaction by both
the electrons and the other ions; hence, it must be
calculated with 2' as particle density. It diGers then by
a factor V2 from the previously defined X,

X'= (aT/8orne') &=X/v2.

The two-body function ho(k) is given by

f
4(k) = —(e'/~T)

~ pioooC io'd'xid'xo. (2o)

The three factors of the integrand were expanded in
spherical harmonics, in analogy with Eqs. (24), (25),
(26) of I. As in the case of I, one can see that the series
thus obtained is convergent and that the main contri-
bution comes from the second term, i.e., 3=1.Only the
first three terms of the series were evaluated. The
calculations are harder than those of I because one
must use the shielded field Ez, instead of the straight
Coulomb field E~. The result will be written in the form

-'e'ho(k) =x&P'(xly). (21)

The function p is plotted in Fig. 1.The pair corrections
for the low-frequency component are an order of magni-
tude smaller than those for the high-frequency com-

The function z' was found by numerical integration.
It depends only on the variable x:y and is plotted in
Fig. 1.

For calculating the second term of the series in (1),
the pair correlation function is needed, For this, it is
proper to use the result of the Debye-Huckel theory.
The corresponding expression for g2 was derived in I
and is

g2(xi xo) = —e'C'12 /a+

since the function g, (x) is unity for this case. As in I,
all lengths will be expressed in units of rp given by

(4/15) (2') *ro'e = 1,

I.O

0.8

and y, x, and P will be defined by

y=ro/X,

x= kEp,

P =E/Eo,
' P. Debye and E. Huckel, Physik. Z. 24, 185 (1923).

(12)

(13)

(14)

FIG. i. The one-body func-
tion y' and the two-body func-
tion P' for the low-frequency
component at a neutral point
versus x&y. See text for the
explanation.
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ponent. This is a consequence of the use of the shielded
Geld and is due to the fact that the main contribution to
the pair effects is made by pairs that are fairly distant
from the Geld point, of the order of a Debye length
away. Therefore, the use of the shielded field reduces
their effect drastically.

Finally, the Fourier transform of the field distribution
takes the form

F(x)=exp{-xfLy. '(x&y) —tp'(x&y)j}. (22)

For all values of the parameter y that were used, lt" is
much smaller than x', w'hich indicates that the cluster
expansion is good. The Geld distribution itself is given
by (6) and is independent of angles. Therefore, the
probability distribution II(8) for the scalar quantity P is

P(P) =4nP'W(P)

justification was obtained from a rough numerical
estimate of the correction, which showed it to be small
for all values of rp/X considered. The smallness of the
correction may be understood on the basis of the re-
mark, made in Sec. 2, that the pairs that contribute to
hs(h) are rather distant from the origin; therefore, the
presence of a charged particle at the origin does not
matter much.

TmLz I. Distribution of the low-frequency component, FI(8),
at a neutral point for several values of r /pX Th. is distribution is
to be used in line broadening calculations involving a neutral
radiator when the perturbing ions are treated by the static approxi-
mation. The accuracy of the numerical work, for this and the
following tables, is of a few units in the last 6gure quoted. The
case rp/X=O, the Holtsmark distribution, was calculated entirely
by numerical integration and therefore shows some very slight
deviations from the distribution previously published'; the present
calculation is to be preferred.

=2w—'P sin(Px)F(x)xdx.
60

(23)

3. FIELD DISTRIBUTIONS AT ONE OF
THE CHARGED PARTICLES

For the calculation of the distribution of the high-
frequency component at an electron, and that of the
low-frequency component at an ion, the function gi(x)
is not unity. Rather, it is equal to the pair correlation
function with one member of the pair located at the
origin. For this it is again appropriate to use the Debye-
HQckel result which is

0.1
0.2
0.3

. 0.4
0.5

0.6
0.7
0.8
0.9
1.0

1.1
1.2
1.3
1.4
1.5

rp/X=0

0.00422
0.01667
0.03664
0.06308
0.09460

0.12959
0.16636
0.20323
0.23864
0.27122

0.29987
0.32378
0.34246
0.35570
0.36357

rp/P =0.2
0.00729
0.02848
0.06168
0.10401
0.15201

r,/&=0.4

0.01327
0.05102
0.10751
0.17482
0.24450

0.20201 0.30911
0.25054 0.36324
0.29472 0.40392
0.33234 0.43032
0.36203 0.44324

0.38320 0.44451
0.39591 0.43645
0.40078 0.42143
0.39873 0.40159
0.39091 0.37878

rp/X=0. 6

0.02333
0.08757
0.17774
0.27530
0.36386

rp/x=0. 8

0.03813
0.13867
0.26834
0.39237
0.48754

0.43269 0.54520
0.47746 0.56760
0.49898 0.56241
0.50101 0.53841
0.48846 0.50329

0.46611 0.46291
0.43795 0.42121
0.40703 0.38073
0.37545 0.34287
0.34457 0.30829

gi(x) =expL e'(r~T—) ' exp( —r/X)g

(high-freq. comp. ),
exp[ —e(r~T) ' exp( —r/X') j

(low-freq. comp. ). (24)

The first term of the series in (1) was then obtained by
performing numerically the integral in Eq. (2) for I'= 1,
the electric field used being E~ and E~ for the high- and
low-frequency components, respectively. The result is
a complicated function of both variables x and y.

The two-body function gs(xi, xs) may be considered
as the sum of two parts. The Grst part is the same two-
body function that was used in the calculation of the
field distribution at a neutral point. The second part
is the correction necessary to take into account the
existence of a charged particle at the origin. This
correction, however, is a three-body eGect whose order
of magnitude would be the same as that of the third
term of the series in (1). Since all other three-body
eGects have been neglected, it is consistent to drop this
one too and to use as the second-term of the cluster
expansion (1) the same expression that was used for
the field distributions at a neutral point, namely, (21)
for the low-frequency component and (I, 31) for the
high-frequency component. This was done, and further

1.6
1.8
2.0
2.2
2.4

0.36633
0.35850
0.33694
0.30684
0.27275

0.37852 0.35444
0.34459 0.30527
0.30475 0.25951
0.26444 0.21935
0.22682 0.18523

0.31521
0.26253
0.21848
0.18245
0.15325

0.27721
0.22516
0.18476
0.15345
0.12896

2.6
2.8
3.0
3.25
3.50

0.23822 0.19338
0.20557 0.16454
0.17606 0.14012
0.14437 0.11508
0.11837 0.09514

0.15673 0.12960
0.13314 0.11034
0.11367 0.09457
0.09401 0.07873
0.07845 0.06623

0.10945
0.09361
0.08056
0.06726
0.05667

3.75 0.09741
4.00 0.08067
4.25 0.06733
4.50 0.05667
4.75 0.04811

0.07927
0.06660
0.05642
0.04818
0.04147

0.04827
0.04163
0.03629
0.03188
0.02810

5.00
5.25
5.50
5.75
6.00

0.04118 0.03596
0.03553 0.03139
0.03089 0.02757
0.02704 0.02437
0.02380 0.02165

0.03152
0.02774
0.02455
0.02185
0.01954

0.02785 0.02481
0.02465 0.02198
0.02196 0.01957
0.01966 0.01758
0.01766 0.01593

6.5
7.0
7.5
8.0
8.5

0.01879
0.01514
0.01241
0.01032
0.00870

0.01735
0.01414
0.01170
0.00981
0.00832

0.01583 0.01443
0.01303 0.01197
0.01087 0.01005
0.00918 0.00854
0.00783 0.00732

0.01325
0.01098
0.00919
0.00794
0.00688

9.0
9.5

10.0

0.00741
0.00638
0.00554

0.00713
0.00617
0.00537

0.00674
0.00585
0.00512

0.00634
0.00552
0.00485

0.00589
0.00514
0.00461

ss See referenCe 1.

0.06606 0.05624
0.05611 0.04814
0.04804 0.04154
0.04146 0.03613
0.03603 0.03163
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0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0'.9
1.0

roy=0. 2

0.00755
0.02948
0.06382
0.10754
0.15700

0.20838
0.25810
0.30313
0.34224
0.37105

ro/) =0.4
0.01443
0.05538
0.11648
0.18885
0.26315

0.33126
0.38743
0.42862
0.45425
0.46517

rp/X=0. 6

0.02697
0.10087
0.20368
0.32327
0.41060

0.48377
0.52861
0.54684
0.54339
0.52425

rp/X=0. 8

0.04699
0.16949
0.32423
0.46752
0.57207

0.62953
0.64475
0.62840
0.59277
0.54433

TABLE II. Distribution of the low-frequency component, B(8),
at an ion for several values of rp/P. This distribution should be
used in line broadening calculations involving a singly-charged
ion as the radiator.

In Fig. 2 the four diferent types of distributions, for
a common value of ro/X, are compared together and
with the Holtsmark distribution. One notes that each
of the curves for the low-frequency component is
appreciably displaced toward the left compared to the
corresponding curve for the high-frequency component.
This displacement is due to the use of the shielded Beld
for the low-frequency component and emphasizes the
importance of the ion-electron correlations. One can
also compare a distribution at a neutral point with the
corresponding distribution at a charged point. In both
cases, the latter distribution has its maximum raised
and its tail lowered compared to the neutral distribu-

1.1
1.2
1.3
1.4
1.5

1.6
1.8
2.0
2.2
2.4

0.39198
0.40417
0.40828
0.40533
0.39652

0.38312
0.34726
0.30581
0.26428
0.22580

0.46386
0.45286
0.43481
0.41206
0.38657

0.35985
0.30690
0.25853
0.21672
0.18162

0.49502
0.46025
0.42329
0.38641
0.35105

0.32799
0.26005
0.22291
0.27521
0.14528

0.49291
0.44185
0.39373
0.34981
0.31049

0.27573
0.21862
0.17512
0.14293
0.11641

0.1
0.2
0.3
0.4
0.5

rp+= 0.2

0.00569
0.02235
0.04881
0.08325
0.12338

rp/P =0.4
0.00787
0.03076
0.06658
0.11219
0,16377

rp/lj. =0.6

0.01089
0.04229
0.09062
0.15056
0.21600

ro/& =0.8
0.01469
0.05667
0.12019
0.19693
0.27766

TAsz.z III. Distribution of the high-frequency component,
H(8), at an electron for several values of rp/) . For the distribution
of the high-frequency component at a neutral point. '

2.6
2.8
3.0
3.25
3.50

3.75
4.00
4.25
4.50
4.75

5.00
5.25
5.50
5.75
6.00

6.5
7.0
7.5
8.0

8.5
9.0
9.5

10.0

0.19181
0.16265
0.23807
0.11299
0.09310

0.07735
0.06481
0.05477
0.04668
0.04010

0.03470
0.03024
0.02653
0.02341
0.02077

0.01660
0.01350
0.01115
0.00933

0.00790
0.00676
0.00584
0.00508

0.15261
0.22880
0.20929
0.08976
0.07442

0.06229
0.05262
0.04481
0.03847
0.03327

0.02897
0.02539
0.02238
0.01984
0.01767

0.01421
0.01161
0.00963
0.00808

0.00685
0.00587
0.00507
0.00442

0.12124
0.10205
0.08657
0.07122
0.05923

0.04975
0.04218
0.03606
0.03107
0.02696

0.02355
0.02069
0.01828
0.01623
0.01448

0.01167
0.00955
0.00792
0.00664

0.00563
0.00482
0.00415
0.00361

0.09655
0.08090
0.06846
0.05622
0.04672

0.03925
0.03330
0.02849
0.02456
0.02132

0.02862
0.01637
0.01447
0.01285
0.01145

0.00923
0.00754
0.00623
0.00523

0.00441
0.00377
0.00324
0.00279

0.6
0.7
0.8
0.9
1.0

1.1
1.2
1.3
1.4
1.5

1.6
1.8
2.0
2.2
2.4

2.6
2.8
3.0
3.25
3.50

3.75
4.00
4.25
4.50
4.75

0.16667
0.21055
0.25266
0.29098
0.32394

0.35049
0.37009
0.38266
0.38853
0.3882'I

0.38271
0.35927
0.32540
0.28718
0.24897

0.22342
0.28178
0.25447
0.12616
0.10350

0.08549
0.07119
0.05979
0.05065
0.04326

0.21731
0.26903
0.31576
0.35511
0.38563

0.40672
0.41854
0.42181
0.41764
0.40736

0.39i32
0.35309
0.30859
0.26462
0.22439

0.18926
0.15942
0.13451
0.10934
0.08957

0.07403
0.06175
0.05198
0.04414
0.03780

0.28085
0.33985
0.38912
0.42632
0.45063

0.46247
0.46319
0.45456
0.43873
0.41769

0.39325
0.34000
0.28755
0.24028
0.19978

0.16607
0.13844
0.12596
0.09370
0.07649

0.06308
0.05256
0.04421
0.03752
0.03211

0.35377
0.41848
0.46749
0.49908
0.51365

0.51318
0.50051
0.47873
0.45085
0.41941

0.38647
0.32179
0.26396
0.21534
0.27576

.0.14406
0.12881
0.09871
0.07916
0.06425

0.05275
0.04379
0.03671
0.03107
0.02652

4. RESULTS AND DISCUSSION

Tables I to III contain the calculated values of the
three Geld distributions for several values of rp/X up to
0.8. The distribution of the high-frequency component
at a neutral point will be found in I.Other values of rp/X
can easily be obtained by interpolation. The theory is
not expected to be good when ro/X is larger than unity.
In terms of the ion density e, in cm ', and the tem-
perature T, in degrees Kelvin, rp/X is given by

5.00
5.25
5.50
5.75
6.00

6.5
7.0
7.5
8.0
8.5

0.03725
0.03231
0.02822
0.02480
0.02193

0.01743
0.01411
0.01261
0.00968
0.00818

0.03261
0.02834
0.02480
0.02283
0.01932

0.01538
0.01246
0.01025
0.00855
0.00721

0.02769
0.02405
0.02103
0.01850
0.02636

0.01299
0.02050
0.00861
0.00716
0.00602

0.02281
0.01976
0.01723
0.01511
0.01333

0.01052
0.00846
0.00690
0.00570
0.00477

rp/X=0. 0898n'"T &. (25)

In all cases the peak of the distribution shifts smoothly
toward smaller fields as rs/X increases.

9.0
9.5

10.0

0.00698
0.00602
0.00523

0.00615
0.00529
0.00459

0.00511
0.00438
0.00379

0.00402
0.00343
0.00295

See reference 1.
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X"= (aT/67rrte') & (28)

as a shielding length, and no pair correlations, one would
obtain a very accurate result. It must be pointed out
that the error in Kcker and Muller's distributions is
actually small; all three curves in Fig. 3 are much
closer together than they are to the Holtsmark distri-
bution. Work similar to that of Kcker and Muller has
also been done by Housman and Theimer, ~ but their
numerical accuracy is inferior to that of the former
authors.

Work on field distributions at a charged point has
also been done by Broyles and Lewis and Margenau. '
The latter authors used an unshielded field, hence their
work should be compared with results on the high-

' H. Hohan and O. Theimer, Astrophys. J. 127, 477 (1958).
e A. A. Broyles, Phys. Rev. 100, 1181 (1955); Z. Physik 151,

187 (1958).

lations; this is Ecker and Miiller s result. Curve 3 is
the result of the present theory, which is seen to lie
almost halfway in between the other two. Indeed, were
one to use

frequency component. This is the case where the pair
term was found here to be quite important. This pair
term is not included by Lewis and Margenau, so that
their results dier appreciably from those of the
present work, their distribution being shifted toward
larger fields. The work of Broyles is hard to compare
with others as it does not yield the Holtsmark distri-
bution in the limit of small rv/X; this work would be
useful for large values of rs/X, when the cluster expan-
sion fails completely.
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Nuclear Quadrupole Spin-Lattice Relaxation in Alkali Halides*
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Nuclear quadrupole spin-lattice relaxation times have been measured in alkali halide crystaIs by the
pulsed magnetic resonance technique. Measurements were made on Na" in NaCl, NaBr, and NaI; C13'

in NaCl and KCl; Br' 8' in NaBr, KBr, RbBr, and CsBr; Rb' in RbCl and RbBr; and I' in NaI, KI,
and CsI. Over a temperature range of 298'K to 195'K the relaxation times are inversely proportional to
the square of the absolute temperature. The data are compared to relaxation times calculated from an ionic
crystal model of Van Kranendonk and a covalent model of Yosida and Moriya. The ionic model is modified
to include the interaction between the nuclear quadrupole moment and the electric 6eld gradient due to
electric dipole moments associated with optical modes of vibration. Neither of these models alone predicts
the experimental relaxation times for all cases, but a combination of the two effects is required. The modiaed
ionic model applies reasonably well to crystals which contain the lighter ions.

L INTRODUCTION

~ '%0 theories have been proposed to explain
nuclear quadrupole spin-lattice relaxation times

T& in crystalline solids. The relaxation due to Auctua-
tions of the electric field gradient originating from
ionic point charges is considered in the theory of Van
Kranendonk, ' referred to as the ionic model. The
theory of Yosida and Moriya, ' which applies a co-
valent model, attributes relaxation to the asymmetry
of the electron charge cloud distribution when two

* Supported by the Once of Naval Research and the National
Security Agency.

t Present address: General Atomics, San Diego, California.
$ Present address: Bell Telephone Laboratories, Murray Hill,

New Jersey.' J. Van Kranendonk, Physica 20, 781 (1954).' K. Yosida and T. Moriya, J. Phys. Soc. (Japan) 11,33 (1956).

ions are in a state of covalent bonding. These theories
were applied to the alkali halides and our interest will
be confined to these crystals. A recent attempt' to
interpret relaxation-time data in terms of these models
was inconclusive because of the lack of sufhcient data.
With the enlarged data presented in this paper, we
attempt to confirm, in various cases, the proper
combination of mechanisms that couple the nuclear
quadrupole moment to the lattice-phonon distribution
in the temperature region above the Debye temperature.

An important modification of the ionic model,
calculated by one of the authors (W.E.B.), introduces
the e8ect of induced electric dipole moments associated
with optical modes of the lattice vibration. This

e E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).


