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following statements can be made about the effects of
the potentials in quantum theory:

1. These effects change only the phase of the wave
function, and the phase changes are independent of the
kinetic energy and kinetic momentum of the particle.
Thus they are intrinsically quantum-mechanical effects,
with no analog in classical theory.

2. These effects do not affect the gauge invariance of
the theory.

3. These effects can have objective meaning only
when they act differently on different parts of the wave
function of the same particle. A classical particle could
show effects of an electrostatic potential difference or a
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magnetic flux only by following a path passing through a
region of nonvanishing field. A quantum-mechanical par-
ticle need not enter such a region to detect its existence;
the de Broglie waves can pass on either side of it
and receive a relative phase shift that is in principle
observable.

4. These effects are not accidental results of a
particular way of formulating the theory, and they do
not constitute any paradox or inconsistency in the
theory. On the contrary, our discussions of conceptual
experiments have shown that these effects prevent
paradoxes and are essential for the consistency of the
theory.
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A method previously described is used to calculate the probability distribution of the low-frequency
component of the electric field at a neutral point, the distribution of the low-frequency component at an
ion, and that of the high-frequency component at an electron. The results are compared with those obtained

by other authors.

1. INTRODUCTION

N a previous paper,! a method was described by
which the Holtsmark? distribution can be systemati-
cally corrected for the correlations between the particles
producing the field, provided that this correction is not
too large. The result was to put the Fourier transform
F(k) of the field distribution in the form

F(k)=exp[ g (n?/Php (k)] (1)

where » is the density of particles and the functions
hp(k) correspond to increasing orders in a cluster
expansion. Those can in turn be expressed in terms of
other functions gp,

hP(k)=f Q12" " QP

Xgp(x1, Xs, -+, Xp)&P218%%;- + (2)

. daxp,
where
[ exp('ik- E,)'—' 1

©)
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and E; is the electric field produced by the particle of
coordinates x;. The present calculations include only
the first two terms of the series in (1). The corresponding
g functions will be rewritten here explicitly,

g1(x) =VP(x), 4
82(x1,X3) =V Py(x1,X3) — P1(x1) P1(x2)],  (5)

P, and P, being the single-particle and pair distribution
functions, respectively, and U being the volume of the
container. The field distribution itself, W (E), is ob-
tained from

W (E)= (2r)-3 f exp(—ik-BF(K&E  (6)

The distinction was made in I between the low-
frequency component and the high-frequency component
of the electric field in an ionized gas or plasma. The
former is that part of the field whose time variation is
governed by the motion of the ions. It is obtained by
averaging the total field over a time long compared to
typical electronic relaxation times, but short compared
to ionic times. Therefore, it consists of the sum of the
fields from the ions, each field being shielded by a cloud
of electrons. Only the case of singly charged ions will
be considered. Other cases would be equally easy to
treat. The electron and ion densities are then equal and
both denoted by #z. Thermal equilibrium will also be
assumed. One can then use the shielded field given by
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the Debye-Hiickel® theory. Its range of validity is the
same as that of the present cluster expansion method.
The shielded field at the origin due to an ion located at
point x, distance 7, is then

Ep=—er—x(147/)) exp(—7/N), )
with
A= (xT/4mne?)? (8)

It is important to realize that only the electrons par-
ticipate in this shielding of the field of each ion. Ion-ion
correlations cannot be treated by the Debye-Hiickel
theory, as far as their influence on the field distribution
is concerned, because the Debye-Hiickel field is a long-
time average, while one only wants to average over a
time short compared to ion-ion collision times. Ion-ion
correlations are taken into account by the cluster
expansion. The high-frequency component is the differ-
ence between the total field and the low-frequency
component. The surmise was made in I that its distri-
bution was correctly given by considering an electron
gas of density » with uniform positive background.
It consists, therefore, of the sum of the unshielded
Coulomb fields of each electron. For an electron at
point x, distance 7, this is

En=er3x. )

The method has already been applied in I to the
calculation of the distribution of the high-frequency
component at a neutral point. In Sec. 2, the distribution
of the low-frequency component at a neutral point is
discussed. In Sec. 3, the method is applied to the
distribution of the high-frequency component at an
electron and that of the low-frequency component at
an ion. In Sec. 4, the results are discussed and compared
with the work of other authors.

2. DISTRIBUTION OF THE LOW-FREQUENCY
COMPONENT AT A NEUTRAL POINT

Let the origin be the point at which the field distri-
bution is calculated. The one-body function #;(k) is
given by

() = f Cexp(ik- E1)—1]d%, (10)

since the function g;(x) is unity for this case. As in I,
all lengths will be expressed in units of 7, given by

(4/15) (2m)¥ro*n=1, (11)
and y, z, and 8 will be defined by
y=ro/}, (12)
x=FkE,, (13)
B=E/E,, (14)

3 P. Debye and E. Hiickel, Physik. Z. 24, 185 (1923).
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where E, is the normal field strength
'Eo=e/1‘02. (15)

With these notations, the contribution of one-body
clusters to the series in (1) can be written in the form

nhy(k) = — 2’ (xty) (16)

The function x’ was found by numerical integration.
It depends only on the variable x*y and is plotted in
Fig. 1.

For calculating the second term of the series in (1),
the pair correlation function is needed. For this, it is
proper to use the result of the Debye-Hiickel theory.
The corresponding expression for g, was derived in I
and is ‘

g2(X1,%) = — *@12'/kT, (17)
with

P1o'= [ X1— X[ 7! exp(— | xi— x| /N'). (18)

The Debye length which enters this equation must
express the shielding of the ion-ion interaction by both
the electrons and the other ions; hence, it must be
calculated with 2#% as particle density. It differs then by
a factor V2 from the previously defined \,

N=(xT/8nne®)t=N/V2.
The two-body function 4y(k) is given by

(19)

s (k) = — (¢2/«T) f f 1o Prdns  (20)

The three factors of the integrand were expanded in
spherical harmonics, in analogy with Eqgs. (24), (25),
(26) of I. As in the case of I, one can see that the series
thus obtained is convergent and that the main contri-
bution comes from the second term, i.e., /=1. Only the
first three terms of the series were evaluated. The
calculations are harder than those of I because one
must use the shielded field Ey, instead of the straight
Coulomb field Ex. The result will be written in the form

3n7hy (k)= ¥y’ (xhy). 1)

The function ¢/ is plotted in Fig. 1. The pair corrections
for the low-frequency component are an order of magni-
tude smaller than those for the high-frequency com-
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ponent. This is a consequence of the use of the shielded
field and is due to the fact that the main contribution to
the pair effects is made by pairs that are fairly distant
from the field point, of the order of a Debye length
away. Therefore, the use of the shielded field reduces
their effect drastically.

Finally, the Fourier transform of the field distribution
takes the form

F(x)=exp{—[x' (xty) —¢' (x}y) ]}.

For all values of the parameter y that were used, ¢’ is
much smaller than x’, which indicates that the cluster
expansion is good. The field distribution itself is given
by (6) and is independent of angles. Therefore, the
probability distribution H (8) for the scalar quantity 8 is

H (B)=4mB*W (8)

(22)

— 218 f T )P (adn. (23)
0

3. FIELD DISTRIBUTIONS AT ONE OF
THE CHARGED PARTICLES

For the calculation of the distribution of the high-
frequency component at an electron, and that of the
low-frequency component at an ion, the function g;(x)
is not unity. Rather, it is equal to the pair correlation
function with one member of the pair located at the
origin. For this it is again appropriate to use the Debye-
Hiickel result which is

gu(x)=exp[—e*(rxT)~" exp(—7/A)]
(high-freq. comp.),

exp[ —e*(rT)~ exp(—7/N')]

(low-freq. comp.). (24)

The first term of the series in (1) was then obtained by
performing numerically the integral in Eq. (2) for P=1,
the electric field used being Ex and E_, for the high- and
low-frequency components, respectively. The result is
a complicated function of both variables x and y.

The two-body function go(x1,Xs) may be considered
as the sum of two parts. The first part is the same two-
body function that was used in the calculation of the
field distribution at a neutral point. The second part
is the correction necessary to take into account the
existence of a charged particle at the origin. This
correction, however, is a three-body effect whose order
of magnitude would be the same as that of the third
term of the series in (1). Since all other three-body
effects have been neglected, it is consistent to drop this
one too and to use as the second-term of the cluster
expansion (1) the same expression that was used for
the field distributions at a neutral point, namely, (21)
for the low-frequency component and (I, 31) for the
high-frequency component. This was done, and further

MOZER AND M. BARANGER

justification was obtained from a rough numerical
estimate of the correction, which showed it to be small
for all values of 7¢/A considered. The smallness of the
correction may be understood on the basis of the re-
mark, made in Sec. 2, that the pairs that contribute to
ho(k) are rather distant from the origin; therefore, the
presence of a charged particle at the origin does not
matter much.

Tasre L. Distribution of the low-frequency component, H(8),
at a neutral point for several values of 7o/A. This distribution is
to be used in line broadening calculations involving a neutral
radiator when the perturbing ions are treated by the static approxi-
mation. The accuracy of the numerical work, for this and the
following tables, is of a few units in the last figure quoted. The
case 7o/A=0, the Holtsmark distribution, was calculated entirely
by numerical integration and therefore shows some very slight
deviations from the distribution previously published®; the present
calculation is to be preferred.

8 f’o/)\=0 1’0/>\=O.2 I’o/)\=0.4 To/)\=0.6 ro/)\=0.8
0.1 0.00422  0.00729  0.01327  0.02333  0.03813
0.2 0.01667 0.02848  0.05102  0.08757  0.13867
0.3 0.03664 0.06168 0.10751  0.17774  0.26834

.04 0.06308 0.10401 0.17482  0.27530  0.39237
0.5 0.09460 0.15201  0.24450 0.36386  0.48754
0.6 0.129059  0.20201  0.30911  0.43269  0.54520
0.7 0.16636  0.25054 0.36324 0.47746  0.56760
0.8 0.20323  0.29472  0.40392  0.49898  0.56241
0.9 0.23864 0.33234 0.43032 0.50101  0.53841
1.0 0.27122  0.36203 0.44324 0.48846  0.50329
1.1 0.29987  0.38320  0.44451 0.46611  0.46291
1.2 0.32378  0.39591  0.43645 0.43795  0.42121
1.3 0.34246  0.40078  0.42143  0.40703  0.38073
14 0.35570  0.39873  0.40159  0.37545  0.34287
1.5 0.36357 0.39091  0.37878  0.34457  0.30829
1.6 0.36633  0.37852  0.35444 0.31521  0.27721
1.8 0.35850  0.34459  0.30527  0.26253  0.22516
2.0 0.33694 0.30475 0.25951  0.21848  0.18476
2.2 0.30684 0.26444 0.21935  0.18245  0.15345
2.4 0.27275  0.22682  0.18523  0.15325  0.12896
2.6 0.23822  0.19338  0.15673  0.12960  0.10945
2.8 0.20557  0.16454 0.13314 0.11034  0.09361
3.0 0.17606  0.14012  0.11367  0.09457  0.08056
3.25 0.14437 0.11508 0.09401  0.07873  0.06726
3.50 0.11837 0.09514 0.07845 0.06623  0.05667
3.75  0.09741  0.07927 0.06606 0.05624  0.04827
400 0.08067 0.06660 0.05611 0.04814  0.04163
425 0.06733 0.05642 0.04804 0.04154  0.03629
4.50  0.05667 0.04818 0.04146  0.03613  0.03188
475 0.04811 0.04147 0.03603  0.03163  0.02810
500 0.04118 0.03596 0.03152  0.02785  0.02481
5.25 0.03553 0.03139  0.02774  0.02465  0.02198
5.50 0.03080 0.02757  0.02455  0.02196  0.01957
575 0.02704 0.02437 0.02185 0.01966  0.01758
6.00 0.02380 0.02165 0.01954 0.01766  0.01593
6.5 0.01879  0.01735 0.01583  0.01443  0.01325
7.0 0.01514 0.01414 0.01303  0.01197  0.01098
7.5 0.01241  0.01170  0.01087  0.01005  0.00919
8.0 0.01032  0.00981  0.00918 - 0.00854  0.00794
8.5 0.00870 0.00832  0.00783  0.00732  0.00688
9.0 0.00741  0.00713  0.00674  0.00634  0.00589
9.5 0.00638  0.00617 0.00585  0.00552  0.00514

10.0 0.00554 0.00537 0.00512  0.00485  0.00461

s See reference 1.
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TasLE II. Distribution of the low-frequency component, H(8),
at an ion for several values of 7o/\. This distribution should be
used in line broadening calculations involving a singly-charged
ion as the radiator.

8 ro/A=02  7o/A=04  7e/A=0.6  ro/A=0.8
0.1 0.00755 0.01443 0.02697 0.04699
0.2 0.02948 0.05538 0.10087 0.16949
0.3 0.06382 0.11648 0.20368 0.32423
0.4 0.10754 0.18885 0.31327 0.46752
0.5 0.15700 0.26315 0.41060 0.57207
0.6 0.20838 0.33126 0.48377 0.62953
0.7 0.25810 0.38743 0.52861 0.64475
0.8 0.30313 0.42862 0.54684 0.62840
0%9 0.34124 0.45415 0.54339 0.59177
1.0 0.37105 0.46517 0.52425 0.54433
1.1 0.39198 0.46386 0.49502 0.49291
12 0.40417 0.45286 0.46025 0.44185
13 0.40828 0.43481 0.42329 0.30373
14 0.40533 0.41206 0.38641 0.34981
1.5 0.39652 0.38657 0.35105 0.31049
1.6 0.38312 0.35985 0.31799 0.27573
18 0.34726 0.30690 0.26005 0.21862
2.0 0.30581 0.25853 0.21291 0.17512
2.2 0.26428 0.21672 0.17521 0.14193
2.4 0.22580 0.18162 0.14518 0.11641
2.6 0.19181 0.15261 0.12124 0.09655
2.8 0.16265 0.12880 0.10205 0.08090
30 0.13807 0.10929 0.08657 0.06846
3.25 0.11299 0.08976 0.07122 0.05622
3.50 0.09310 0.07442 0.05923 0.04672
3.75 0.07735 0.06229 0.04975 0.03925
4.00 0.06481 0.05261 0.04218 0.03330
4.25 0.05477 0.04481 0.03606 0.02849
450 0.04668 0.03847 0.03107 0.02456
475 0.04010 0.03327 0.02696 0.02132
5.00 0.03470 0.02897 0.02355 0.01862
525 0.03024 0.02539 0.02069 0.01637
5.50 0.02653 0.02238 0.01828 0.01447
5.75 0.02341 0.01984 0.01623 0.01285
6.00 0.02077 0.01767 0.01448 0.01145
6.5 0.01660 0.01421 0.01167 0.00923
7.0 0.01350 0.01161 0.00955 0.00754
7.5 0.01115 0.00963 0.00792 0.00623
8.0 0.00933 0.00808 0.00664 0.00523
8.5 0.00790 0.00685 0.00563 0.00441
9.0 0.00676 0.00587 0.00482 0.00377
9.5 0.00584 0.00507 0.00415 0.00324

10.0 0.00508 0.00441 0.00361 0.00279

4. RESULTS AND DISCUSSION

Tables I to III contain the calculated values of the
three field distributions for several values of 7¢/A up to
0.8. The distribution of the high-frequency component
at a neutral point will be found in I. Other values of 7o/A
can easily be obtained by interpolation. The theory is
not expected to be good when 7o/ is larger than unity.
In terms of the ion density #, in cm™3, and the tem-
perature T, in degrees Kelvin, r¢/\ is given by

70/\=0.089871/5T—, (25)

In all cases the peak of the distribution shifts smoothly
toward smaller fields as 7o/A increases.
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In Fig. 2 the four different types of distributions, for
a common value of 7¢/\, are compared together and
with the Holtsmark distribution. One notes that each
of the curves for the low-frequency component is
appreciably displaced toward the left compared to the
corresponding curve for the high-frequency component.
This displacement is due to the use of the shielded field
for the low-frequency component and emphasizes the
importance of the ion-electron correlations. One can
also compare a distribution at a neutral point with the
corresponding distribution at a charged point. In both
cases, the latter distribution has its maximum raised
and its tail lowered compared to the neutral distribu-

Tasre IIL. Distribution of the high-frequency component,
H (B), at an electron for several values of 7o/\. For the distribution
of the high-frequency component at a neutral point.2

3 ro/)\=0.2 ro/)\=0.4 ro/)\=0.6 7’0/)\ =0.8
0.1 0.00569 0.00787 0.01089 0.01469
0.2 0.02235 0.03076 0.04229 0.05667
0.3 0.04881 0.06658 0.09062 0.12019
0.4 0.08325 0.11219 0.15056 0.19693
0.5 0.12338 0.16377 0.21600 0.27766
0.6 0.16667 0.21731 0.28085 0.35377
0.7 0.21055 0.26903 0.33985 0.41848
0.8 0.25266 0.31576 0.38912 0.46749
0.9 0.29098 0.35511 0.42632 0.49908
1.0 0.32394 0.38563 0.45063 0.51365
1.1 0.35049 0.40672 0.46247 0.51318
1.2 0.37009 0.41854 0.46319 0.50051
1.3 0.38266 0.42181 0.45456 0.47873
14 0.38853 0.41764 0.43873 0.45085
1.5 0.38827 0.40736 0.41769 0.41941
1.6 0.38271 0.3v232 0.39325 0.38647
1.8 0.35927 0.35309 0.34000 0.32179
2.0 0.32540 0.30859 0.28755 0.26396
2.2 0.28718 0.26462 0.24028 0.21534
24 0.24897 0.22439 0.19978 0.17576
2.6 0.21341 0.18926 0.16607 0.14406
2.8 0.18178 0.15942 0.13844 0.11881
3.0 0.15447 0.13451 0.11596 0.00871
3.25 0.12616 0.10934 0.09370 0.07916
3.50 0.10350 0.08957 0.07649 0.06425
3.75 0.08549 0.07403 0.06308 0.05275
4.00 0.07119 0.06175 0.05256 0.04379
4.25 0.05979 0.05198 0.04421 0.03671
4.50 0.05065 0.04414 0.03752 0.03107
4.75 0.04326 0.03780 0.03211 0.02652
5.00 0.03725 0.03261 0.02769 0.02281
5.25 0.03231 0.02834 0.02405 0.01976
5.50 0.02822 0.02480 0.02103 0.01723
5.75 0.02480 0.02183 0.01850 0.01511
6.00 0.02193 0.01932 0.01636 0.01333
6.5 0.01743 0.01538 0.01299 0.01052
7.0 0.01411 0.01246 0.01050 0.00846
7.5 0.01161 0.01025 0.00861 0.00690
8.0 0.00968 0.00855 0.00716 0.00570
8.5 0.00818 0.00721 0.00602 0.00477
9.0 0.00698 0.00615 0.00511 0.00402
9.5 0.00601 0.00529 0.00438 0.00343

10.0 0.00523 0.00459 0.00379 0.00295

s See reference 1.
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F16. 2. A comparison of the field distributions for 7/A=0.8.
Curve 1 is the Holtsmark distribution, curve 2—the high-fre-
quency component at a neutral point, curve 3—the high-frequency
component at an electron, curve 4—the low-frequency component
at a neutral point, and curve 5—the low-frequency component
at an ion.

tion, but the two maxima occur for practically the
same . In other words, most of the effect of the re-
pelling charge at the origin consists in cutting down
the probability of large fields; then the whole curve has
to be raised in order to preserve the normalization.
That the presence of the charge at the origin affects
mostly large fields has been mentioned previously by
Edmonds* and Ecker and Miiller.5

For very large values of 8, all the neutral distributions
should tend toward the Holtsmark distribution, which
itself tends toward 1.4968—%. When there is a repelling
charge at the origin, on the other hand, Lewis and
Margenau® found that the leading term for large 8 is

H(8)=~1.4965% exp[ —0.334(ro/N)28%],  (26)

in other words that, in spite of the repulsion, large
fields are still preponderantly due to a single particle
getting very close. As in the neutral case, unfortunately,
expression (26) becomes good only for very large g,
and for =10 it is still too small by about 15%,. Lewis
and Margenau® also gave the second term in the
asymptotic expansion, but it turns out that higher
terms have much larger coefficients than it, and this
term becomes significant only for extremely large
values of B (of order 10 000). An accurate expression
for moderately large values of B is therefore not
available.

It is fairly easy, however, to calculate the average 52
for the distributions at a charged point (at a neutral
point, it is divergent). This is simply related to the
behavior of F (k) for small k. It turns out to be almost
the same for the high-frequency and the low-frequency

4F. N. Edmonds, Astrophys. J. 123, 95 (1956).

5 G. Ecker and K. G. Miiller, Z. Physik 153, 317 (1958).
8 M. Lewis and H. Margenau, Phys. Rev. 109, 842 (1958).
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H(B)

F16. 3. A comparison of the distribution of the low-frequency
component at a neutral point with the work of Ecker and Miiller
for 7o/A=0.6. Curve 1 is the distribution neglecting pair correc-
tions (¢'=0), curve 2—Ecker and Miiller’s result (A — \’), and
curve 3—this paper.

components. The explanation of this phenomenon
resides in the fact that most of the contribution to the
average comes from quite large values of 8, and that
for large 8 the distributions of the two components of
the field actually cross each other, the probability of the
low-frequency component becoming larger than the
other because its pair corrections are smaller. The root
mean square § was found to be well represented by
the formula
Brms=2.99\/7,. 27
The distribution of the low-frequency component at a
neutral point will now be compared with the work of
Ecker and Miiller.> These authors do not make a
separate calculation of the effects of ion-ion correlations.
Instead, they argue that those can be taken into account
by using an electric field shielded by both electrons and
ions, i.e., by using A’ in (7) instead of A. It was seen in
the introduction to the present paper that this cannot
be correct because the instantaneous field is desired,
not a time average. Indeed, it would seem that the
method of Ecker and Miiller overestimates the correc-
tion due to ion-ion correlations by a factor 2 since the
correlation of a given ion pair is taken into account
twice: once when they use the A’-shielded field for one
of the ions, and once when they use it for the other.
Figure 3 shows this to be the case: curve 1 is obtained
by using the field (7), but no pair correlations, i.e., by
omitting the function ¢’ in (22). Curve 2 is obtained by
substituting A" for A in (7), again omitting pair corre-
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lations; this is Ecker and Miiller’s result. Curve 3 is
the result of the present theory, which is seen to lie
almost halfway in between the other two. Indeed, were

one to use
N'= (xT/6mne®)} (28)

as a shielding length, and no pair correlations, one would
obtain a very accurate result. It must be pointed out
that the error in Ecker and Miiller’s distributions is
actually small; all three curves in Fig. 3 are much
closer together than they are to the Holtsmark distri-
bution. Work similar to that of Ecker and Miiller has
also been done by Hoffman and Theimer,” but their
numerical accuracy is inferior to that of the former
authors.

Work on field distributions at a charged point has
also been done by Broyles® and Lewis and Margenau.®
The latter authors used an unshielded field, hence their
work should be compared with results on the high-

7 H. Hoffman and O. Theimer, Astrophys. J. 127, 477 (1958).

8 A. A. Broyles, Phys. Rev. 100, 1181 (1955); Z. Physik 151,
187 (1958).
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frequency component. This is the case where the pair
term was found here to be quite important. This pair
term is not included by Lewis and Margenau, so that
their results differ appreciably from those of the
present work, their distribution being shifted toward
larger fields. The work of Broyles is hard to compare
with others as it does not yield the Holtsmark distri-
bution in the limit of small 7o/X\; this work would be
useful for large values of 7¢/A, when the cluster expan-
sion fails completely.
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Nuclear quadrupole spin-lattice relaxation times have been measured in alkali halide crystals by the
pulsed magnetic resonance technique. Measurements were made on Na® in NaCl, NaBr, and Nal; CI3
in NaCl and KCl; Br®:# in NaBr, KBr, RbBr, and CsBr; Rb%” in RbCl and RbBr; and I'*” in Nal, KI,
and CslI. Over a temperature range of 298°K to 195°K the relaxation times are inversely proportional to
the square of the absolute temperature. The data are compared to relaxation times calculated from an ionic
crystal model of Van Kranendonk and a covalent model of Yosida and Moriya. The ionic model is modified
to include the interaction between the nuclear quadrupole moment and the electric field gradient due to
electric dipole moments associated with optical modes of vibration. Neither of these models alone predicts
the experimental relaxation times for all cases, but a combination of the two effects is required. The modified
ionic model applies reasonably well to crystals which contain the lighter ions.

I. INTRODUCTION

'WO theories have been proposed to explain
nuclear quadrupole spin-lattice relaxation times
T in crystalline solids. The relaxation due to fluctua-
tions of the electric field gradient originating from
ionic point charges is considered in the theory of Van
Kranendonk,! referred to as the ionic model. The
theory of Yosida and Moriya,?2 which applies a co-
valent model, attributes relaxation to the asymmetry
of the electron charge cloud distribution when two
* Supported by the Office of Naval Research and the National
Security Agency.
T Present address: General Atomics, San Diego, California.
1 Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.

17, Van Kranendonk, Physica 20, 781 (1954).
2 K. Yosida and T. Moriya, J. Phys. Soc. (Japan) 11, 33 (1956).

ions are in a state of covalent bonding. These theories
were applied to the alkali halides and our interest will
be confined to these crystals. A recent attempt® to
interpret relaxation-time data in terms of these models
was inconclusive because of the lack of sufficient data.
With the enlarged data presented in this paper, we
attempt to confirm, in various cases, the proper
combination of mechanisms that couple the nuclear
quadrupole moment to the lattice-phonon distribution
in the temperature region above the Debye temperature.

An important modification of the ionic model,
calculated by one of the authors (W.E.B.), introduces
the effect of induced electric dipole moments associated
with optical modes of the lattice vibration. This

3 E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958).



