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The effects of the scalar and vector potentials in quantum mechanics, which were pointed out recently
by Aharonov and Bohm, are discussed from the point of view of the consistency of the quantum-mechanical
description of interference experiments. A well-known requirement for this consistency is that if any meas-
uring device is introduced that can be used to determine which path the particle has taken, it must have
the effect of eliminating the interference phenomenon. Two conceptual experiments are discussed, corre-
sponding to the two phase effects noted by Aharonov and Bohm. In each case it is found that the phase
effect is of just the magnitude required to destroy the interference pattern when the circumstances are

such that no pattern should be observed.

1. INTRODUCTION

IN classical physics the electromagnetic field strengths
are regarded as basic physical quantities, and the
potentials as mathematical auxiliary quantities. This
same attitude has been carried over into many discus-
sions of quantum theory. In both kinds of theory it is
customary to motivate and interpret the invariance of
the equations under gauge transformations in terms of
this attitude.

Recently Aharonov and Bohm! have pointed out
some effects of potentials in quantum theory which
have appeared surprising to many physicists, and which
show that a more careful discussion of the part played
by potentials is required. The purpose of the present
note is to discuss these effects from a different point of
view, which we believe can help in understanding
their significance.

Aharonov and Bohm have discussed the possibility
of observing these effects experimentally, particularly
the second (magnetic) effect, and have given references
to work that is of interest in this connection. We are
concerned here with the bearing of these effects on
discussions of the consistency of quantum mechanics.
Our diagrams are schematized accordingly, and depart
rather far from what might actually be feasible; but

1Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). We
wish to thank Professor Purcell for acquainting us with these
arguments before the appearance of the Aharonov-Bohm paper,
and for stimulating discussions.

the principles involved are just those discussed by
Aharonov and Bohm.

We shall be dealing with the principle of comple-
mentarity as applied to a two-slit experiment on the
interference of de Broglie waves. As has been empha-
sized in many discussions,? the key point here for the
consistency of the theory is that the interference
phenomenon can be observed only when a wave picture,
with waves passing through both slits, can legitimately
be used to describe the process. The introduction of

.any device that can tell which slit the particle went

through must have some effect that will cause the
destruction of the interference pattern.

We shall discuss in turn the two effects of potentials
pointed out by Aharonov and Bohm. For each, we
sketch an arrangement that in principle could be used
to demonstrate the effect, by observation of an inter-
ference pattern. We then point out how a different
procedure with the same arrangement could be used
to tell which slit the particle has gone through. For
this procedure it is found that the uncertainty in the
phase effect of the potential is of just the magnitude
required to eliminate the interference pattern.

2N. Bohr, in Albert Einstein, Philosopher-Scientist, edited by
P. A. Schilpp (Tudor Publishing Company, New York, 1951),
especially pp. 217-218; W. Pauli, Handbuch der Physik (Verlag
Julius Springer, Berlin, 1957), Vol. 5, Part 1, pp. 1, 2; D. Bohm,
Quantum Theory (Prentice-Hall, Inc., Englewood Cliffs, 1951),
pp. 118, 119, and 124-129.
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2. THE SCALAR-POTENTIAL EFFECT

If, in a two-slit experiment, the slits are a few
wavelengths wide, and if plane waves fall on them, then
the waves emerging from the slits diverge only slightly
in angle; they will, however, overlap and produce an
interference pattern if the screen on which they fall is
far enough from the slits.

The use of only slightly divergent waves makes it
possible in principle to let the waves travel some part
of the distance beyond the slits inside two metal pipes
P’ and P” (Fig. 1). We now use not an infinite wave
train, but a finite train or “wave packet” which is very
long compared to the wavelength but short compared
to the length of the pipes. There will then be a time
interval during which the waves are well inside the
pipes. During a time T in the middle of this interval
we apply a potential difference V to the tubes; for
definiteness, let us keep P’ at potential zero, and raise
the potential of P” to the value V for the time T.
Before the beginning of the time interval T, and after
its end, the potential is zero everywhere.

With this procedure the waves travel only in regions
where the field is zero at the time of their passage. The
waves in pipe P’ show no change in their probability
distribution, either in coordinate space or momentum
space. The only difference from the case V=0 is that
during the time interval T the frequency of each
monochromatic component of the packet, being equal
to the total energy divided by 7, is increased for the
waves in pipe P by the amount eV/#%. Thus the wave
function of the packet that emerges from the pipe P
is changed by the phase factor e~i¢, with p=¢eVT/%.
The general nature of the interference pattern on the
screen is not changed, but if eV T/% is not a multiple of
27 there will be a shift of the interference fringes. In
principle, though presumably not in practice, one could
demonstrate and study the phase effect by observing
the patterns obtained with various precisely fixed
values of the product V7.

Let us now consider a different use of this apparatus.
It provides in principle a method for obtaining some
information about the process of the passage of a
particle through the two-slit arrangement. For this
purpose we must use a wave train that is the wave
function of a single particle, and suppose that the
pattern is obtained by many repetitions of the experi-
ment. The pipes P’, P” provide electrostatic shielding
for the regions inside them, and allow us to use an
electric field produced by the particle to get information
about its location, without subjecting it to any field
produced by the test body.

The test body, of charge g, is between two condenser
plates separated by a distance ! (Fig. 1). It is held
fixed half-way between them (x=1/2) until the waves
are inside the tubes, and is brought back to this position
before the waves emerge; thus it produces no field
between the pipes at any time when the field could
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Fi6. 1. Electrostatic effects.

act on the particle. The test body is free to move
during a time interval T when the waves are certainly
inside the pipes, and by observing the direction in
which it is accelerated during this time T" we can find
out which tube contains the particle.

The potential difference produced by the presence of
the particle in one tube or the other is v=d-¢/(2C),
where C is the total capacity of the condenser and
attached pipes. The magnitude of the field strength is
thus?

|E[=¢/(2IC). (1)

The force on the test body is gE. If its direction is to
be determined, it must produce a change of the mo-
mentum of the test body that is larger than the uncer-
tainty in that momentum:

q| E[T>ap. )

Displacement of the test body from its central position
at x=1/2 produces a potential difference*

V=(g/C)- (x—1/2)/1,
and the uncertainty of the potential difference is
AV =(g/IC)Ax. (3)

Substituting Eq. (1) in Eq. (2) and multiplying by
Eq. (3), we have

geTAV/(2IC)> (¢/IC)ApAx> (g/IC) -1/ 2.

Therefore
eTAV >, @

and the uncertainty in the phase difference ¢ caused by
the potential produced by the test body is

Ap=eTAV/h>1. ©)

3 The discrete nature of the mobile charges in the conducting
materials would of course deprive the argument of all meaning,
if e is the charge of an electron. A basic principle accepted in all
such arguments is that the materials used for the apgaratus are
to be treated as ideal continua, and no significance is to be attached
to the actual numerical values of the charges and masses of
particles [see N. Bohr and E. Rosenfeld, Kgl. Danske Videnskab.
Selskab, Mat.-fys. Medd. 12, No. 8 (1933)§.

4 This formula results from the application of Green’s electro-
static reciprocity theorem to the parallel-plate geometry; the
argument is a familiar one in calculations on the collection of ions.
The reciprocity theorem can be used to show that the final result
of Eq. (4) holds for any arrangement for producing a fairly
uniform field in the region where the test body is accelerated.



SIGNIFICANCE OF POTENTIALS IN QUANTUM THEORY

We get fairly certain information as to which slit the
particle went through if we make ¢| E|T at least three
times Ap; A then has a value 23, which is precisely
enough to wipe out the interference pattern.

3. THE VECTOR-POTENTIAL EFFECT

We consider the same sort of two-slit experiment as
before, with slits wide enough so that the waves from
them remain fairly well separated until they have
travelled a considerable distance beyond the slits, after
which they overlap and interfere. Beyond the slits, in
the space between the separated beams of waves, is a
region R in which there can be a nonvanishing magnetic
flux ®. Aharonov and Bohm speak of either a long,
closely-wound solenoid or a ferromagnetic rod or
“‘whisker.” We shall consider the case of a ferromagnetic
rod. It can be thought of as infinitely long in the
direction perpendicular to the plane of the diagram
(Fig. 2), so that there is no stray flux outside it, and
thus no field in the regions traversed by the de Broglie
waves. Actually a yoke could be used to close the
magnetic circuit and secure the same effect.

Although there is no field outside the rod R, the line
integral of the vector potential A around any path
inclosing R is equal to the flux ®. In hydrodynamical
language, the vector potential has zero rotation but a
circulation equal to ®. Aharonov and Bohm point out
that there is a resulting phase difference o= (¢/%c)®
between the waves that have passed above and below
R. This means that in principle a phase effect of the
vector potential can be demonstrated by observation
of a shift of the interference fringes, in a case in which
the particle is never subject to a field; apparently the
actual demonstration may not be beyond the range of
experimental possibilities.

We now consider an apparatus in which a search
coil of N turns is wound around R and connected to
the condenser plates C. Passage of a particle through
S’ and on to the screen involves a transient current that
flows counterclockwise with respect to R; passage
through S”” means a transient clockwise current. By
Lenz’s law, in either case a current in the opposite
direction is induced in the search coil. Observation of
the sign of the resulting charge on C will then reveal
which slit the particle went through.

For the greatest convenience in the discussion and
the most favorable conditions for the proposed obser-
vation, we make two assumptions:

(a) The permeability of the rod R is enormous, and
the resistance of the search coil and plates is zero. The
current induced in the search coil is then just that
required to prevent any change in the flux . Passage
of the particle through either slit and on to the screen
is tantamount to flow of the charge e through one-half
turn; accordingly, the charge delivered to C is®

Qi==e/2N. ©)

5 The comment of footnote 3 applies with the same force here.
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(b) The characteristic time of the circuit®
T=(LC)*/c

is very long compared with the time of passage of the
wave packet through the apparatus. Thus we can have
the advantage, as compared with the case of the
scalar-potential experiment, of ample time for the
determination of the sign of Q.

The apparatus now under consideration, unlike the
purely electrostatic apparatus of Fig. 1, necessarily
involves a nonvanishing inductance.” The circuit thus
has two canonically-conjugate dynamical variables,
the charge Q and the flux linkage N®, which appear in
the Hamiltonian for the equivalent harmonic oscillator,

H=0Q%/2C+ (N®)*/2L,
and satisfy the uncertainty relation
AQ-NAD> Liic. )

If we are to determine the sign of Q;, we must have

|Q: >aQ. ®
From this and Eqgs. (6) and (7) we get
eAD> Jic, 9)

and the uncertainty in the phase difference ¢ caused by
the vector potential associated with the flux & is

Ap=(e/hc)AD>1. (10)

Thus if ¢ is well enough determined so that we can (in
repeated experiments) observe an interference pattern,
then AQ is so large that we cannot learn which slit a
particle has gone through by observing the sign of Q;;
and if the oscillating circuit is prepared in such a way
that we can learn which slit the particle has gone
through, the phase effect from the uncertainty in the
flux will eliminate the interference pattern.

4. CONCLUSION

In view of the discussion given by Aharonov and
Bohm, and the discussion in the present paper, the

¢ Like Aharonov and Bohm, we are expressing e in esu and &
in Maxwells. L and C are in cm. The factor ¢ in the uncertainty
relation (7) is also characteristic of the use of these electrical
units.

7The deflecting plates in Fig. 1 could of course be much more
directly connected to the pipes; in principle they could be parts
of the outer surfaces of the pipes.
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following statements can be made about the effects of
the potentials in quantum theory:

1. These effects change only the phase of the wave
function, and the phase changes are independent of the
kinetic energy and kinetic momentum of the particle.
Thus they are intrinsically quantum-mechanical effects,
with no analog in classical theory.

2. These effects do not affect the gauge invariance of
the theory.

3. These effects can have objective meaning only
when they act differently on different parts of the wave
function of the same particle. A classical particle could
show effects of an electrostatic potential difference or a
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magnetic flux only by following a path passing through a
region of nonvanishing field. A quantum-mechanical par-
ticle need not enter such a region to detect its existence;
the de Broglie waves can pass on either side of it
and receive a relative phase shift that is in principle
observable.

4. These effects are not accidental results of a
particular way of formulating the theory, and they do
not constitute any paradox or inconsistency in the
theory. On the contrary, our discussions of conceptual
experiments have shown that these effects prevent
paradoxes and are essential for the consistency of the
theory.
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A method previously described is used to calculate the probability distribution of the low-frequency
component of the electric field at a neutral point, the distribution of the low-frequency component at an
ion, and that of the high-frequency component at an electron. The results are compared with those obtained

by other authors.

1. INTRODUCTION

N a previous paper,! a method was described by
which the Holtsmark? distribution can be systemati-
cally corrected for the correlations between the particles
producing the field, provided that this correction is not
too large. The result was to put the Fourier transform
F(k) of the field distribution in the form

F(k)=exp[ g (n?/Php (k)] (1)

where » is the density of particles and the functions
hp(k) correspond to increasing orders in a cluster
expansion. Those can in turn be expressed in terms of
other functions gp,

hP(k)=f Q12" " QP

Xgp(x1, Xs, -+, Xp)&P218%%;- + (2)

. daxp,
where
[ exp('ik- E,)'—' 1

©)

* Supported by the Office of Naval Research.

1 Now at Brookhaven National Laboratory, Upton, New York.
The material in this article is part of a thesis submitted by Bernard
Mozer in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy at the Carnegie Institute of Technology

! M. Baranger and B. Mozer, Phys. Rev. 115, 521 (1959),
referred to in the following as

2 J. Holtsmark, Ann. Physik 58 577 (1919).

and E; is the electric field produced by the particle of
coordinates x;. The present calculations include only
the first two terms of the series in (1). The corresponding
g functions will be rewritten here explicitly,

g1(x) =VP(x), 4
82(x1,X3) =V Py(x1,X3) — P1(x1) P1(x2)],  (5)

P, and P, being the single-particle and pair distribution
functions, respectively, and U being the volume of the
container. The field distribution itself, W (E), is ob-
tained from

W (E)= (2r)-3 f exp(—ik-BF(K&E  (6)

The distinction was made in I between the low-
frequency component and the high-frequency component
of the electric field in an ionized gas or plasma. The
former is that part of the field whose time variation is
governed by the motion of the ions. It is obtained by
averaging the total field over a time long compared to
typical electronic relaxation times, but short compared
to ionic times. Therefore, it consists of the sum of the
fields from the ions, each field being shielded by a cloud
of electrons. Only the case of singly charged ions will
be considered. Other cases would be equally easy to
treat. The electron and ion densities are then equal and
both denoted by #z. Thermal equilibrium will also be
assumed. One can then use the shielded field given by



