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A general formula for the transition rate of the muon capture
reaction, p +{A,Z) ~ v+ (A, Z—1), where the 6nal nuclear state
has de6nite spin and parity, is given in terms of the total and
orbital angular momenta of the emitted neutrino and of the spins
of the initial and 6nal nuclear states. The induced pseudoscalar
interaction and the interaction due to the assumption of conserved
vector current are taken into account, together with the vector
and axial vector interactions. The forbiddenness of the muon
capture reaction is de6ned in a manner analogous to the theory of
the beta decay. The spin and parity changes can assume the values
(0+, 1+), (0—,1—,2 —), Pl(—)",a+1 (—)"g for the allowed,
first forbidden, and ath (a &2) forbidden transitions, respectively.
(+ and —mean the par'ity change "no" and "yes".) For these
transitions, the number of reduced nuclear matrix elements in-
volved is nine, sixteen, and fourteen, respectively. The transition
rate of muon capture reaction is reduced by a factor of 103, ap-

proximately, for a two-unit increase of the forbiddenness, if the
atomic number and the energy of neutrino are constant. The
contribution from the higher order transition to the lower one is
less than 0.1% in the medium and light nuclei. Explicit formulas
for the transition rate are given for the allowed, 6rst forbidden and
nth forbidden transitions. They are related to the corresponding
formulas of beta decay. Our formalism was applied to the calcula-
tion of the partial muon capture rate by C~ ending in the ground
state of B~.The numerical analysis indicates that measurement of
this capture rate can determine whether the conserved vector
current interaction term exists in nature only if the coupling
constant of the induced pseudoscalar interaction and the nuclear
wave functions are well known. The transition rates are given in
Table 7 and Fig. 1, for the j—j coupling shell model and harmonic
oscillator wave functions. They are 9-13% smaller than those
given by Fujii and PrimakofF.

eGects. The theoretical and experimental status at
present has been reviewed by PrimakoG. '

Since, however, the partial transition rate between
two definite nuclear states in the muon capture reaction
depends strongly on the type of the interaction, it is
worthwhile to develop a general formalism for this
problem, in anticipation of future experiments. One such
attempt among many is by PrimakoG and one of the
present authors (A.F.).r Assuming the lepto~ bare-
nucleon coupling to be V—A, they derived an e6'ective
Hamiltonian. The nuclear matrix elements were esti-
mated by using a specific nuclear model. Since they
worked out only special cases of spin and parity changes
(C"~ B~, Li —+ He and He -+ H'), their treatment
is somewhat less general with respect to the angular
momenta of the leptons and the spins of nuclear states.
Furthermore, they neglected some nuclear matrix ele-
ments and all cross terms between the remaining nuclear
matrix elements.

The purpose of the present paper is to present a
general formalism for the parti/ transition rate of muon
capture between definite nuclear states. This formalism
is completely analogous to that of beta decay, and leads
to the theory of orbital electron capture, if we replace
the muon by an electron. Since our calculation is com-
pletely in the spherical representation, the relations
among nuclear spins and lepton angular momenta are
very clear.

In Sec. 2, the interaction Hamiltonian of the muon
capture reaction is discussed. The induced pseudoscalar

1. INTRODUCTION
' 'N the past three years, remarkable progress has been
i ~ achieved in the study of beta decay, both theo-
retically and experimentally. The basic question of the
types of interaction has been settled in favor of V—A
interaction, with C~ =—1.2Cy, C~=Cy' and C~ =C~'.'
It has also been shown that the V-A interaction is
generally acceptable for the weak processes involving
elementary particles. ' ' Among these weak processes,
muon capture by an atomic nucleus and beta decay are
of particular interest, as they involve no strange par-
ticles. Nevertheless, both theory and experiment in-
volving the muon capture reaction are not yet well
established compared with those of beta decay. One of
the reasons is the complexicity of the muon capture re-
action, where the released energy is quite large (of the
order of 100 Mev). This energy will excite many nuclear
levels of the daughter nucleus. Therefore, the partial
transition rate between the definite nuclear states is
dificult to measure experimentally, while that of beta
decay is quite easy. On the other hand, the total capture
rate, which is much easier to obtain experimentally, is
rather insensitive to the type of interaction, because the
character of the elementary process is masked by nuclear
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interaction and the interaction due to the assumption of
conserved vector current are both taken into account.
In Sec.3, the nuclear part of the interaction Hamiltonian
is transformed into a nonrelativistic form while the
lepton part is still kept relativistic. In Sec. 4, all matrix
elements of the muon capture reaction are evaluated,
where the muon is absorbed by the nucleus from a given
orbital state; a neutrino of given total and orbital angu-
lar momenta is emitted, and the nucleus changes from
one state of given spin and parity to another state.
Using the result of Sec. 4, a general formula for the
transition probability is given in Sec. 5. This formula is
also applicable to the orbital electron capture rate,
which will be investigated in a future paper. In nature,
the muon is mostly absorbed from the E orbit of the
p,-mesonic atom. The transition rate for this case is given
in the approximation nZ«1, in Sec. 6. In Sec. 7, we dis-
cuss the de6nition of forbiddenness in the muon capture
reaction, which is the same as that in the theory of beta
decay. We further classify all possible reduced nuclear
matrix elements according to forbiddenness. This classi-
fication is somewhat diGerent from that of the theory of
beta decay. The former focuses its attention on the rank
of the tensor, the latter on the orbital angular mo-
mentum of the lepton system. In this way, the contri-
bution of the (zz+2) th forbiddeness to the zzth one is less
than 0.1% in both cases. ' The transition rate is reduced
by a factor of 10' in the muon capture, assuming the
level distance between the initial and 6nal nuclear
states and the atomic number to be constant, and by a
factor of 10' in the beta decay. In Sec. 8, explicit formu-
las for the transition rate are given for the allowed, 6rst
forbidden, and nth forbidden transitions. In Sec. 9, the
muon capture rate is related to the transition rate of
beta decay. In Sec. 10, our formalism is applied to muon
capture by C". The j-j coupling shell model and the
harmonic oscillator functions are adopted, for the esti-
mation of the nuclear matrix elements, as was done by
Fujii and Primako8. Our theory gives a 9—13jo de-
crease in the transition rate compared with theirs. The
numerical analysis indicates /hat the measurement of
the muon capture rate between the ground states of C"
and B"sheds light on the assumption of the conserved
vector current, provided our knowledge of the induced
pseudoscalar coupling constant, C~, and the nuclear
wave functions is fairly accurate. In Appendix, the re-
duced nuclear matrix elements for muon capture by C"
are evaluated. The reader who is not too interested in
mathematical detail may skip Secs. 3—6 entirely.

Although we adopt the muon wave functions (G i and
F i) for a point nucleus in Secs. 6-8, the general results
in Secs. 4 and 5 hold with modiled G ~ and F ~ for a real
nucleus. Explicit calculation for this is being made.

Although the beta-ray spectrum in Bn ~ Cn varies about 10%
in the whole energy region, the effect in its ft value is about O.i5%.
This is due to the cancellation of the energy integral of (XI.p+Ep.
In most beta decays, this effect is iess than 0.01%.

C,=C,'. (2)

We assume that the relation also holds in muon capture
reactions. Comparison between the "weak current" and
electromagnetic current gives'

Csr =Cv (p,„p,~)/2M, p—v ps= 3.706. — (3)

Here p „and p, are the anomalous magnetic moments of
the proton and neutron in nuclear magnetons, and M
is the nucleon mass. By the dispersion-theoretical ap-
proach, Goldberger and Treiman' obtained the relation

C~=SC~. (4)

The experiments on the beta decay of the neutron and
nuclear 0-0 transitions give'

Cg = —1.21Cy.
P M. L. Goldberger and S. S. Treiman, Phys. Rev. 111, 354

(1958).
'p We note here that the interaction due to the assumption of

conserved vector current is automatically taken into account in
the. theory of the elementary particles given by S. Sakata, Progr.
Theoret. Phys. (Kyoto) 16, 686 (1956), where fundamental par-
ticles are assumed to be proton, neutron, and lambda only. There,
the pion is considered as a bound state of the nucleon-antinucleon
system. Thus, the detection of C~ term becomes of twofold
importance, namely for veri6cation of Sakata model of elementary
particles and for that of the Feynman-Gell-Mann interaction of
beta decay. One of the authors (M.M.) would like to express his
sincere thanks to Dr. S. Okubo, University of Naples, Italy, for a
stimulating discussion.

2. INTERACTION HAMILTONIAN FOR MUON
CAPTURE REACTION

We assume the lepton bare-nucleon coupling is via
vector and axial vector interactions of the Fermi-type.
Thus, the most general interaction Hamiltonian density
for the reaction, p +p ~ v+n, is'

B=f„Xf„,
with

VZ5E'-=& [C g.& ii„)+C 'g,» g„)j
+zv&vs[C~(g, zyiysg„)+C~ (Ppygk, )$
+ys[Cp(f„yak„) Cp'(—P,P„)j

+o i,p[Citr p p(p,zygo„)+CD'pv(p i yxygf „)j, (1)
and ox, s[——Yi—y, y,y—ij.

The dagger and asterisk mean the Hamiltonian conju-
gate and complex conjugate, hereafter. Here the sub-
script, I, p, v, and p, stand for the neutron, proton,
neutrino, and muon, respectively. In the fourth line of
Eq. (1), the differential operators p„[—iV, -8/81$,
act on the lepton covariants, but not on it v. The first,
the second and the third lines represent the vector, axial
vector and the induced scalar interactions, respectively.
The fourth line is the interaction, which is introduced by
the assumption of the conserved vector current. " ' "As-
suming the time reversal invariance of Eq. (1), we caii
choose all coupling constants C; and C to be real. The
relative strength of C; and C is not specified in the
above, but the fact that the helicity of the neutrino is
almost completely left handed concludes'
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3. NONRELATIVISTIC REDUCTION OF
NUCLEON OPERATORS

We adopt the following representation of the Dirac
matrices, which is common in the theory of beta
decay. ""

t'0 i—~l (—1 0)
v= —iPn=

I . I
v4= —&=

Ioj' 40

(0 1q
vs= v&vsvsv4=

41 0)

The interaction Hamiltonian density, Eq. (7), in-
volves odd and even operators. We transform these
operators into equivalent even operators by the Foldy-
Wouthuysen transformation modified by Rose and
Osborn. " We replace the relativistic nucleon wave
function

6

(0 e~ (o' 0) /1 0)
(o OJ &0 o~ (0 1)

(vy o"PQ

EN)
(10)

Here 1 and e are the two by two unit and Pauli matrices.
Using Eqs. (2)—(6), the Hamiltonian density becomes

with

where I and n are large and small components of the
Dirac spinor, corresponding to the eigenvalue —1 and
+1 of P, respectively.

The transformed interaction Hamiltonian is given
by'4

H=Cv[1 I.(1)—a L(a,)]
+C L L( ) vL(v—)l+C Pv L(Pv)
+(C /2&) (I —I -)[—'0 .PXL( )

+&~ pL(1) iP~ P4L—(~)j. (7)

Here the lepton covariants are abbreviated as

L(er) =P„t[(1+vs)/v2)eiP„, etc.

Therefore,

L(n) =I.(o), and I.(1)=L(vs).

In the theory of beta decay, the interaction Hamil-
tonian is expanded in the multipole order of the emitted
electron-neutrino system, and the whole calculation is
relativistic. The nuclear matrix elements (i.e., the
nucleon part of this expansion) are also left in relativistic
form, as phenomenological parameters which may be
determined by experimental data, e.g., by the shape of
the electron spectrum. On the other hand, we know only
the transition rate in the muon capture reaction, but not
the spectral resolution of the neutrino. Therefore, we
cannot leave the nuclear matrix elements as phenomeno-
logical parameters. (The situation is the same in calcula-
tion of the fg value of beta decay. ) For this purpose, it
is necessary to reduce all the relativistic nuclear matrix
elements (namely, the momentum-type matrix ele-
ments) into nonrelativistic forms. We thus transform,
first, the nuclear part of the interaction Hamiltonian,
Eq. (7), into nonrelativistic form leaving the relativistic
lepton part, whose evaluation is very easy. In the entire
calculation of the muon capture rate, Eq. (11) below is
expanded in the multipole order of the emitted neutrino
in a way analogous to that of the theory of beta decay.

"E.J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
(1941).

'M. Yamada and M. Morita, Progr. Theoret. Phys. (Kyoto)
S, 431 (1952).

with

H=Cv1 L(1)+Cga L(o)
+(Cv/23f)[2L(n) p+p L(e)+ie PXL(n) j
+ (CQ/2M') [2L(Vs)e P+e PL (Vs)j

(C,/2IrI)—~ PL(Pvs)

+(~o—
I -)(Cv/2~)[i~ PXL(~)j (11)

In Eq. (11),all terms of order (p/2M)' are omitted. The
differential operators y standing on the left of the lepton
covariants act only on them, but not on I„.Equation
(11) is equivalent to Eq. (4) of Fujii and Primakoff,
since the nonrelativistic muon wave function obeys the
relation

(12)

4. THE SPHERICAL COMPONENTS OF THE
MATRIX ELEMENTS

Throughout this paper, we adopt the units 5=c=m,
=1. The free neutrino state is specified by its linear
momentum q and the direction of spin vs=~~. Ex-
panding the plane wave neutrino in the normalized
spherical spinor x„„,"
f„(q, m; r)=Pi'(l-', p,—mm~jls)I'p "(q)g„„~"&, (13)

It„„(r)=
f

( sf X eo't--
& g.x-. j

g„=or &j &(qr), f,=rr &S„j&(qr),

x.,=E- (I —:I
—m' m'I jI )I' " "'(r)~t-:-' (16)

+ M. E. Rose and R. K. Oshorn, Phys. Rev. 93, 1315 (1954).' We have opposite sign for the axial vector and the pseudo-
scalar interactions compared with the results given in Table I of
reference 13.

"M. E. Rose, Elementary Theory of Aegedar Momentum (John
Wiley 8z Sons, Inc., New York, 1957'), Chap. IX.
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and j= l——,
' for I(:)0,

l= —»—1 and j=l+s for»(0. (17)

For example, z = —f, 1, —2, and 2 corresponding to s~

pi, ps, and di, respectively. Here summation over»
means the sum over all possible values of j ued /. In the
above, subscripts, l and l of the spherical Bessel func-
tions denote the orbital angular momenta corresponding
to K and —~, respectively. j and r" are the unit vectors in
the direction of the neutrino momentum and space
coordinate, respectively. The normalization of f„is such
that

P„t(g', m'; r)f„(tL m, ; r)dr=5 b(q' —g), (18)

Here jt(qr)'s are spherical Bessel functions, fi "s are
the spin wave functions of two dimension, and S„is the
sign of I(:. The total and orbital angular momentum, j
and l, of the neutrino for a particular value of a is given
by

state. Explicit forms of these wave functions for a point
nucleus are given, e.g., by Bethe and Salpeter, "for fs~,
2si 2pi and 2pi. In the lowest state 1si

K= f~ p= &2p

G i= (2Z/ap)&

X$(1+y)/2F (2p+1)]'e "t"(2Zr/esp) v '

F i= —L(1—y)/(1+y)]iG i with y=I 1—(aZ)']&.
(20)

Here uo is the Bohr radius of the p,-mesonic atom and Z
is the atomic number of the nucleus. If we assume aZ (a
fine structure constant) to be very small, they become

G i——2(aZm„')ie z

F i=0, with m„'=m„l 1+(m„/AM)] '. (21)

Here m„ is the muon mass. The nz„' is the muon reduced
mass in the parent p-mesonic atom. The normalization
for iP„ is such that

) g„'(»', tz'; r)f„(», ts; r)dr=a„„b„„. (22)

where the integral extends over whole space.
The bound state wave function of the muon is ex-

pressed in the same way as that of the neutrino, but it
has only a single value of corresponding to a definite
orbit. Namely,

Using these lepton wave functions, we evaluate the
spherical component of the interaction Hamiltonian
dehned by

(»t I HI»'t ') —= Q.o'"' Hf"o'"'). (23)
ZFs7t „„'t—

0'o(»~tsi r) =0'so" =
'l

G„y„„)
Calculation of the spherical component of each term in
Eq. (11) can be performed by a method similar to that
developed by Rose and his collaborator '3""Takebe '8

G„and F„being the radial wave functions of the bound and others. Here we give the results only.

1 (»ts
~

1 )»'ts') = (—)"+"+'P (jj ' ttts'
~

I ts' ts)—gl p.„"' "(r)[
—g„G„Sp„„(»»') f F, Sp„„(—»—, —»') ]6„„, (24)

with
(25)

e (»tz(e~i»'ts')=( )o+"+'+'p(j—j' tsts'(igts' ts)—g)&„„' (r—e)fg„G;S—t. (»»') f F„Si„„(——», —»')], (26)

with
g) t,„&'—o(r,e) =P (1v —m m ts+ts'~ I ts' —ts) Y."+&' &—(r)iI)t "(e)-. -

(2&)

Here Ft" and g) t are the spherical and solid harmonics defined in reference. "In Eqs. (24) and (26), Sp„and Si,„
are given by

S&„(»»')= [2(2l+1)(20+1)(2j+1)(2j'+1)]&(l/'0 O~v0) j j ' I for k=0 and 1, (28)

with

t l l' e

j j' zt =P(2f+1)W(l'j'tsk, tsf)W(jvtvP lf)W(jj'vk, gf).
f

(29)

'P H. A. Bethe and E. E. Salpeter, Qnantnm Mechanics of One and Tzoo E-lectron Atom-s (Academic Press Inc. , New York, 1959),
p. 69."L.C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25, 729 (1953).

'P H. Takebe, Progr. Theoret. Phys. (Kyoto) 12, 561 (1954).
"They are"given, e.g., by A. R. Edmonds, Angnlar Momentnm in Qnantnm Mechanics (Princeton University Press, Princeton,

1957), p. 124.
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Here k, e, and I are the resultant spin, orbital, and total angular momentum of the neutrino-muon system, re-
spectively.

(«) lel«'~') y=(—)"+"+'+'Z(jj' / I
—'ll/" ))—s[f G"S»-(—«, ")+g. " » («, —')]5»-"' "(,y). (3o)

Here the definition of g)» s' "(P&y) is similar to Eq. (27).

y («/ lel«'/')=3'( —)"+"+'+'Z(jj' —»'IN/' »—
X([(+I)/(2 +3)]'Io, "' "( )&. .D —[/(2 —I)]'gl . "' "( )&.- .D }

vrith'0
X[f„G„.S,.„(—«, ")+g.F..S»„(«, —.')], (31)

V

a+=——
dr r

d v+1
D = +-

dr
(32)

se yx(«plel "v')=6'(—)"+"+'+'Z(jj' »'I&—/' /)—
X [( v+1) IW(11 Nv, 1 v+1)gt,+t „s'—s(P,e)D+—vIW(11lv, 1v—1)gt, &

„s' s(f,e)D ]
X[f„G"S»„( K& K )—+g„F„S»„(«&—«')]. (33)

(«~ I»l "p')e.y= (—)"+"+'E(jj' —»'I I I

'—»
X@)o.~"' "(&)[f.G"So.~( «& «')+—g.F"So,~(«&

—«')]e g.~ (34)

e yl «I «'/" 1=3 '( )"+"+'+—'Z(jj' —»'ll/' —»
t)v

X([(v+1)/(2v+1)]&gt,+t„"' s(r,e)D+—[v/(2v+1)]ig~~t „"' "(P,e)D }
X[f.Gg So. ( «, «')+g—.F.So ~(«& —«')]b.~. (35)

As is vrell known, the transition rate for the C ~C,' term is exactly the same as that for the C;*C;term. Therefore,
ere shall not give here the spherical components for C terms.

5. TRANSITION RATE

To illustrate the method of calculation, let us consider the matrix element of the reaction, p, +p -+ v+os, induced
by the main even part of the axial vector interaction. By Eqs. (11), (13), (19), and (26),

M.E.=C~ (N,tel„)(P„teil„)dr

=C~P(N, teN„)s—'(I-'s Peseslj ,—/s)Fr& "*(g) («ylel«'P, ')

=C~2 2 s '(J l /s eseslj»l'—~~"*(0)( )"+"+'+'(jj—' —
/ I'Il/" —»

X) I„'Q„„s' s(P&e) [gG;S»—„(«&«') fF;S»„( «,—«')]to„d—r —(36).

The matrix element for the reaction, /s
—+ (A,Z) ~ v+ (A, Z—1), is obtained from the above equation assn&ning

that every dressed nucleon in a nucleus does not perturb the other. We introduce the subscript s labeling the
nucleons and the operator ~ ' which transform the sth nucleon from proton to neutron state. The a&ave functions
of the neutron and proton in Eq. (36) are replaced by those of the initial and final nucleus, whose total and magnetic
quantum numbers are represented by J~; and J/M f Thus

A

M.E.=C~ Uz/ / P e,v Q„rni&„Uz; 'drtdrs ~ dr~. (37)

s& The subscripts of D are inverted co&npared with those in E&I. (4/) oi reference 13& because our D+ (D ) Increases (decreases)
the order of the spherical Bessel function by one unit.
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TABLE I. C&'& and 9Rp &'& in Eq. (40). K, &'& is defined by

~

~

~ ~

~ ~

A
UJr&rlt x,r 'UzP'dr'gdrp ~ &frA=- (I, IM; Mr —M,

~
Jr Mr)l01,

d~l

where, is given in the table. In the last line, + and —signs refer to i=7 and 8, respectively.

Cv
—Cg

—Cv/M'

—vFCv/2M

(k)tCv—(I+( v &p p)/M—

CA/M
—CA/2vFM

C»/2AM

Np. u r '(r.)[gh"So.o(«)«') fZ—"Sop~( «,——«')]Spo

I)&» I (r"„o.)gg,G:Sl«(«q«) fgFg—S»~( «, «)j
prf, G;S».( «,—«')+g.Fo S».(«&

—«')3h, ~ (r"„y.)
(((v+1)/(2v+3))&NO e+1 +~I ~&(r",)g,+& ~+—(v/(2v —1)j&pp „&„MI pr'(r", )S„,~ )

XpfaGg'S»a( «& «)+gLFr'Slvo(«& «))
L (v+1)ply'(I 1 pp v, lv+ 2)Nq, +r „~I ~'(r„&r,)D+ v&W (1—1 I v 1v 1)I—q, q ~~r ~'(r"„&r,)D j

Xgf,G;S»p( «r «)—+g.F;S»~(«, «)g
pip, ~& ~'(r, )gf,G;Sp, ( ««)+g„—F Sp («, —«)jpr 'p,

(6( v+1)/(2v+ 1)3'S~.+~ o~"'( .,r&)rD+ —Lv/(2v+1)3'S~. -~ -"~"'(.,rp)rD-)
X(f.G:Sp, ( «, «')&g—„F.So, («, «')gb, „—

Furthermore, we de6ne the reduced nuclear matrix element by using the %igner-Kckert theory, '"

A

U Jr rt Q (g)»„«' P(r„rr, )[g„G,.S»„(K,K') f F„.S»—„( KK )]—}r 'Uz™dr&drs ~ drA.

(J,~—M; I' I ~

J—, M,)K„„(38.)
The reduced nuclear matrix element K,„does not depend on the magnetic quantum number and it is, in principle,
calculable if one knows the nuclear wave functions of the initial and final states, by the def&ning Eq. (38).

M.E.=p p i '(3 —,
' —

p mm—
) y m) F&« "*(q)-( )&+&'+—'+'(j g' Ip y'—(I &p' , fA)(J—~M; fs' f&

~

J—kg)CAK„„(39.)

and i and i' are in the same group, or e—e'= odd andi
andi' are in diferent groups.

The transition rate of the muon capture reaction from
a particular nuclear state, J;, to another one, Jy ~.s given
by

Generalizing the argument to the Hamiltonian density
of Eq. (11), the matrix element is obtained by replacing
CAK. by

Q. C&oK &o

"W = 2m.()M.E.)'),„q'dq/dEg,

dq/de= $1 q(m„+AM) —'j,

(41)

(42)

q= (m„Wp)[1—,'m„(m—„+—AM)'i (4.3)

Here C&'& and K,„&'& are given in Table I. The super-
script (i) specifies the individual term in Eq. (11).We with
now sum over all magnetic quantum numbers, integrate
over q, and average over the initial substates in the
absolute square of the matrix element. The result is

= i(2j'+1) (2J~+1)j—' dQ, P Q ~
M.E.~'

=P(2Jr+1)/(2J +1)(2J~+1)j
XP P P C&'&'C&»LPK. „&'&*)[PK..&»]. (40)

'gg g 44 0'

evince the subscript I of the nuclear matrix element
indicates the rank of the tensor, we have no cross term
between two K's with different N. The orthonormality
of the x„„brings the sum over ~, which specifies j and l
of the neutrino simultaneously, outside of the absolute
square. On the other hand, there are some cross terms
among K's with different v. By the definition of K,„&'&,

the parity changes of the nuclear states is (—)' for
i= 1, 2 and (—)'+' for v= 3, 4, , 8. Consequently, two
matrix elements interfere with each other, if e—e'= even

Here lVO is the energy difference between the initial and
final nuclear states plus one electron mass.

In this section, we did not specify any particular value
of I(,

" for the bound muon. This means that our formula
applies to the capture rate of the muon from any orbit
of the p-mesonic atom, or to the capture rate from two
or more orbits, if necessary. However, the muon in the
higher orbits goes down to the E orbit (K'= —1) by
electromagnetic transitions before being captured by the
nucleus. Consequently, the muon capture takes place
from the E orbit. The general results in Secs. 4 and 5
hold with more realistic muon wave functions than Eq.
(20) or (21). We can take the Gnite size and the rela-
tivistic effects on the muon wave function into account,
with modi6ed 6 ~ and E ~ for a real nucleus. "

p' These efiects would be of order of aZ, which is 4.4'%%uq in C".
After this work was completed, a paper by Flamend and Ford,
Phys. Rev. 116, 159 (1959), has been called to our attention.
They showed, in fact, these sects for muon capture in C" to be
-6% correction in the capture rate.
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0. MUON CAPTURE RATE FROM EC ORBIT

The muon quantum number is sc'= —1 for the E orbit

(1sI). We assume the nuclear charge to be not so large,
nZ((1. In this approximation, the radial wave functions

of the muon are given by

G i=2(o.Zrw„')qe ~x~»'" and F i——0. (44)

Using the results in Secs. 4 and 5, the muon capture rate
is given by

with

'N =48(nZm„') o[(2Jf+1)/(2J,+1)][1—g(nz„+AM)-']q', (45)

~=& & ICvK[0 t u]So-(»)5i--C~K[1 «]Sr-(»)—(C~/u)K[1 i u p]S,„'(—»)

+3'*(C&q/2M) ([(3+1)/(2l+3)]'*K[0(+1u +]Bi+ia+[l/(2l —1)]oK[0t—1 u —]BI i „}Sr~'(—»)

+(s)k(Cvq/M)(1+pi, —p )f(&+1)'W(11ut, 1t+1)K[1Z+1u+7+L~W(11ul, I l—1)K[1l—1u —]}
&&S,„'(—«)+ (Cg/M)K[0 l u p]So.'(—»)5-,„+(-,') I(C~—Cp) (q/2M)

)& f [(t+1)/(2t+1)]'*K[1 l+1 u +)+[t/(2l+1)]'*K[1 t—1 u —]}So~'(—»)Bi„l'. (46)

= L(2j+I)/(2I+1)]'5i. for k=0, (48)

S« '(—»)=S„S«(—«), S„=sign of ».

The reduced nuclear matrix elements are listed in
Table II.

In the expression for I', the summation over n dis-

appear, because the muon has zero orbital angular
momentum /'=0, and consequently e=l or ~=l. Sum-
mation over I for a Axed rc is necessary only for the
second, the third, and the fifth terms in Eq. (46). In
fact, this summation consists of only two terms because
of the triangular condition among the arguments of the
Racah coefficient in S«„(») and S« '(—«). Although

Eq. (46) looks complicated, the selection rule on the
spin and parity reduces the number of the nonvanishing

reduced nuclear matrix elements into manageable size.

This will be done for diGerent forbiddenness in the next
section.

TABLE II. Definition of reduced nuclear matrix elements in the
muon capture reaction,

f A

UJp&t g e ~ ~1""eCo,r 'UJ; 'dr1dr2 ~ .dry
@=1

=—(K[k w oog or K[k w u +g) (j; oo M; Mf —M;
~

Jf M f)~

where 4, is given in the table.

K[0wg]
K[1w oog

K[0w I +g
99t 1 m I ~g
K[0wI pg
K[1we pj

i ~(qro)low~ f ~'(ra)S .
J (qg )g Mg M(P g )
[S'-(qr.)+~(m, '/p. li (qr. )5go..~f "'(r.)S, -
[i ( qr)a~( .rw' p/. )jmvl(qr, )gei„„MI ( M„r)or

V-(a ~.)$o (r.)0'u~
v-(& .)e...('.,~.)

Here we use the following abbreviations:

S«(»)=S«„(», —1)
=[2(2j+1)]'*W(-,' 1 jI, —,'u)5&„ for k=1 (47)

7. ALLOVfED AND FORBIDDEN TRANSITIONS
IN MUON CAPTURE REACTION

In analogy to the theory of beta decay, """we define
the forbiddenness of muon capture reaction in the
following and discuss the connection with the forbidden-
ness of beta decay.

The reduced nuclear matrix elements are specified by
three numbers, k w u, and an additional symbol, + or
—or p. Their explicit forms are given in Table II. We
list all possible reduced nuclear matrix elements ac-
cording to forbiddenness of the muon capture reaction
in Table III. The definition of the forbiddenness is ex-
actly the same as that in the theory of beta decay. It is
given in the second and third rows of Table III as parity
and spin changes between the initial and final nuclear
levels. On the other hand, the classification of the re-
duced nuclear matrix elements with respect to forbidden-
ness is somewhat di6'erent from that in the theory of
beta decay" ""and the number of the nuclear matrix
elements belonging to a particular forbiddenness is con-
siderably large, It is 9, 16, and 14 for the allowed, - first
forbidden and other transitions, respectively. The selec-
tion rule for the nuclear spin of the matrix element is
J';+Jf&u&

l J;—Jf l
because the third number u repre-

sents the rank of the tensor. The parity change is given
by the second number w, namely (—)"and (—)"+' for
K[k w u] (or K[kw u ~]) and K[kw u p], respec-
tively, because the m represents the rank of the spherical
harmonics with the argument r" and the additional
minus parity is required by the operator y. m is equal to
m for K[k w u] or K[k w u p] and r &I for K[k w u ~].
Here e is the orbital angular momentum of the neutrino.
k represents the resultant spin of the neutrino-muon
system.

The above classification of the reduced nuclear matrix
elements is based on the tensorial rank of the nuclear
matrix elements and the property of the neutrino wave

M. Morita, Phys. Rev. 113, 1584 (1959); Nuclear Phys. 14,
106 (1959).
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TABLE III. Reduced nuclear matrix elements in the allowed and forbidden transitions of the muon capture reaction. They are classified
with three numbers, k, I, u, and additional symbols % or p in each forbiddenness. Here u is the rank of the tensor. For a capture from
E orbit K[1 ii+1 I —]and R[1a —1 a +]will not appear, because of the selection rule. 1n the second row, the plus and minus indi-
cate no parity change and parity change, respectively.

Forbiddenness
Parity change
Spin change

~
Jr —1;

~

Matrix elements

K[0ug], K[0aN +]
K[1I+1I], K[1a+1 ' +]
K[1 sess], K[1NN a]
K[1 si—1 sc], K[1I—1 a —]K[0llp]
K[1N+1lp]
K[1u sc p]
K[1m —1gp]
No. of matrix elements

Allowed
+

0, 1

000'
121

101
011
110iii

First

0, 1, 2

Oii
110~
132iii
112
000
022
121
122
101

16

Second
+23

022
143

122
123
033
132
133
112

14

Third

3, 4

033
154

133
134
044

143
144
123

14

Fourth
+

4, 5

044
165

144
145
055

154
155
134

14

nth
( )n

rs, (I+1)

Onn
1 (rs+2) (I+1)

inn
1 n(n+1)

0(I+1)(n+1)

1(1+1)I
1(is+1)(I+1)

1(n—1) n

a There are no KI.O G 0 +j and Kt.1 1 G +j.

j (qr)&(10 '-10 ')Xj (qr).

This leads to

(50)

PP[k w+2 u')&3X10 'K[k w u),
PP[k w+2 u' +)&3X10 '+[k w u &),
K[k w+2 u' p) &3X10-'92[k w u p). (51)

Here I' may or may not be equal to N. The above ap-
proximation may not hold in heavy nuclei because of the
large nuclear radius. Also the atomic number of the
nucleus becomes large, and consequently, the neglect of
Ii

& is not justified. Thus, the theory will be more com-
plicated, as seen in Sec. 5. For the nuclear matrix ele-
ments involving p, K[kwu), which represents the
relativistic correction, we have

(1/M)K[k w u p)~ (p/M)K[k w u), (52)

with p/M % 10 ', where the p and s are the nucleon
momentum and its velocity in the nucleus. Taking these
relative magnitudes of the nuclear matrix elements into
account, we obtain the classification shown in Table III.
Another relation for the nuclear matrix elements is

K[k w u —)=K[k w u), (53)

because the second term in the integrand is very small
compared with the first (see Table II).But K[k w u+)
is different from K[k w u) because the two terms in the
integrand (see also Table II) have almost the same
magnitude.

~ E.g., see National Bureau of Standards. Tables of Spherical
Bessel Functions (Columbia University Press, ¹wYork, 1947).

function involved as an integrand, namely the spherical
Bessel function of the order m. The argument of the
spherical Bessel function j (qr) is roughly 1 or 2 at the
nuclear radius for light or medium nuclei. Consulting
the values of j„(qr)'s in the numerical tables of spherical
Sessel functions" in the range of qr=0 —2, we conclude
that

Since we have no cross term between two nuclear
matrix elements with diferent I s, the contribution of
the (n+2) th forbiddenness to the nth forbiddenness is
very small and of the order of 0.1% or less. This means
that the daughter nucleus of the muon capture reaction
goes mostly to states which have ( J;—Jf t =0, 1 without
parity change, or

~
J,—J'f

~
=0, 1, 2 with parity change,

in the low Z region.
So far we have assumed E orbit capture and neg-

lected the small component of the muon wave function
F ~. When more exact muon wave function is used, the
above classification into forbiddenness still holds. In the
theory of orbital electron capture or beta decay, the
quantum number ~' for the initial lepton state is not
restricted to —j. only. In the conventional theories of
beta decay" "and orbital capture, ""all quantities are
expanded in powers of (f1+p,) r, which is of the order of
0.01. Therefore, the lowest term in this expansion is
always dominant and the higher terms are negligible.
However, if (tl+p, ) r becomes of the order of 0.1, e.g.,
in the case of beta decays of 8"and N", we must take
higher order terms, too. This has been done by one of
the authors. "The present formalism of muon capture
has a close analogy to the theory of beta decay with
higher order corrections, but the difference in the
classification of the reduced nuclear matrix elements is
shown in Table IV. As is seen there, the classification of
nuclear matrix elements in muon capture is made by the
third number u (the tensorial rank), in beta decay
theories by the second number m.

8. EXPLICIT FORMULAS FOR THE
MUON CAPTURE RATE

According to the defi.nition discussed in the last sec-
tion, the muon capture rate will be given for each

u S. R. de Groot and H. A. Tolhoeh, Physics 16, 456 (1950).
2~ H. Brysk and M. E. Rose, Oak Ridge National Laboratory

Report ORNL-1830, 1955 (unpublished).
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Matrix elements
Theory of

muon capture

Theory of beta decay or
orbital electron capture

With higher Without
order higher order

correctionb correction

gntOnnj, mtOnn ~~
99$1nn —1j,ggt1nn —1+)
K(1nng, Kt1n n ~)
KL1 n n+1), KPi n n+1 —g
Ktonnpj,
Kt 1 nn-1 pJ
gPL1 n n pg
E1 n n+1 pj

the nth
the (n —2) th
the nth
the nth
the (n —1)tha
the (n —1)th
the (n —1)th
the (n+1)th

the nth
the nth
the nth
the nth
the (n+1)th
the (n+1) th
the (n+1)th
the (n+1)th

the nth
tO
the nth
the nth
fc
t
the (n+1)th

TABLE IV. Comparison of the theory of muon capture and that
of beta decay or orbital electron capture. The reduced nuclear
matrix elements are classified according to forbiddenness in each
theory. In the table, "the nth" means the nth forbidden transition,
etc. t means that the relevant nuclear matrix element is neglected,
being regarded as a small quantity. Two exceptions are mentioned
at the bottom of the table.

hyperhne states of the p-mesonic atom are statistically
populated. " This eGect of the hyperfine splitting is
omitted. We also adopt the muon wave function, Eq,
(44), for the point nucleus in the approximation nZ«1,
which neglects the small component Ii 1."We abbrevi-
ateK[k w I7 by [k w I]etc., to save space. This should
lead to no confusion, These nuclear matrix elements can
be evaluated from their definitions in Table III. Ex-
amples are shown for muon capture by C" in the
Appendix.

The muon capture rate is given by

'N = sI'o (nZm„')'[(2 Jf+ 1)/(2J+1)]
X[1—q(nz„+AM) 'jq' (54)

with
2PO ——P, and 5=c=m, = i. (55)

a ppL1 1 Og and %[00 0 p$ are in the first forbidden transition.
b See reference 23.
o 9Rt1 1 0) and gH/0 0 0 pj are in the first forbidden transition and

included.

forbiddenness. In the calculation of Eq. (46), we neglect
all terms of order (p/2M)' except for Cz ', which would
be large compared with the other coupling constants.
For J;/0 the result depends on the assumption that the

Here m„and m„' are the muon mass and its reduced
mass in the parent p-mesonic atom, respectively. The
neutrino momentum q is given by Eq. (43). For a given
order of forbiddenness, only those reduced nuclear
matrix elements for which J;+Jr&zz&

~
J,—Jr

~
actu-

ally should be included. The Po for each forbiddenness
is:

I. Allowed Transition

I =Cy [0 0 0] +sCg ([10 1]+[12 1) )+Cy q M [0 0 0][00 0 —)—sC~CyqM (1+zzs—zz„)

X (2'[1 0 1]—[1 2 1])(2'[1 0 1 —]—[1 2 1 +])+ zo C~ (C~—Cz) qM '([1 0 1]+2'[1 2 1])
X([101—]+2l[121+]) (zs)-*.2Cy3II—'[000][110P]—(zs)'-'sCgCyM '(2l[101]—[121])[111P]

+ sC&sM '([1 0 1]+2'[12 1])[01 1 P]+ (Cpq/6M)'([1 0 1 ]+2*[12 1 +])' (56)

II. First Forbidden Transition

Po ——Cy'[0 1 1]'+—'C~'([1 1 0]'+[1 1 1]'+[1 1 2]'+[13 2]')+-'Cy'qM '[0 1 1](2[01 1 —]+[0 1 1 +])
+s(s)ICy qM (1+zz&—zz~)[0 1 1](—[1 1 1 —)+[11 1 +])+s(s)'C~CyqM [1 1 1]
X([011—]—[011+]) zsC&CyqM '(1+zzn zz ){to[111]([111]+2[111+])
+ s (3I[11 2]—2*'[1 3 2])(3'*[11 2 —]—2'[1 3 2 +])}+(1/1 )C& (C&—Cz )qM '( (2'*[1 1 2]+3'[13 2))
X (2'[1 1 2 —]+3'[13 2 +])+5[11 0][11 0 +]} sCy'M '[0 1 1]([10 1 P]+2*[12 1 P])
+s CgCyM '{(s) '*[1 1 1](2l[1 0 1 pj —[1 2 1 p])+ (-', ) '(—3'*[1 1 2]+2'*[13 2])[12 2 p]}
+(ts)I2C&sM '{[110][000p]+(zs)*(2'[1 1 2]+3'[13 2])[02 2 p]}

+ (1/60) (Cz q/M)'{5[1 1 0 +7'+ (2'[1 1 2 —7+3*'[13 2 +])'}. (57)

III. The nth Forbidden Transition

Po ——Cy'[0 n ej'+ srC~'([1 n n]'+ [1e n+1]'+ [1n+2 n+ 1]')+(2n+1) 'Cy'qM '[0 n n]
X{n[0nn+]+(n+1)[0n n ]}+[n(n+1)/3)I(2n+1) 'Cy'qM '(1+zz~ zz )[0 n —]n
X (—[1n n —7+[1n e+])+[e(n+1)/3]l(2e+1) 'CgCyqM '[1 n n]([0 e n —]—[0 n n+])
—-'sC~CyqM '(1+zz„—zz„)((2n+1) '[1 e e](n[1 en —]+(n+1)[1nn+)}+(2n+3) '

X{(n+2) '[1 n e+1] (e+1)**—[1n+2 n+1]}((n+2) '*[1 n e+1 —]—(n+1)'*[1e+2 n+1 +]})
+s(2e+3) 'C~(C~ —Cz)qM '{(e+1)*[1e n+I]+(n+2)'[1 n+2 e+1)}
X((n+1)*'[1e n+1 —]+(n+2)'[1 e+2 n+1 +]}—2[3(2n+1)] ICy M '[0 e n]
X (e**[1e—1 n P]+ (n+1) l[1 n+1 n P]}+sC~CyM ((2n+3) **(—(n+2) ''[1 e n+1]
+ (n+1)l[1 n+2 n+1]}[1n+1 n+1 p]+ (2n+1) l[1 e n]{(n+1) l[1 n 1n p]—n[1 n+1 n p]})—
+2[3(2n+3)] lC&'M '( (n+ 1)I[1e n+1]+ (n+2) *'[1n+2 e+1]}[0e+ 1 e+ 1 p]

+rzs (2n+3) '(Czq/M)s((n+1)*'[1 n e+1 —]+(n+2)'[1 n+2 e+1 +7}'. (58)
"E. g. , see, J. Bernstein, T. D. Lee, C. ¹ Yang, and H. PrimakoR, Phys. Rev. 111,313 (1958).
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9. BETA DECAY AS THE INVERSE PROCESS
OF MUON CAPTURE

The transition rate of beta decay from the state Jf to
the state J;, considered as the inverse nuclear process of
the muon capture, can be expressed by

W'p

'9l7p= (8/pr) ~ PppF(Z, W)

X(Wp —W)'Wp+W[(2J~+1)/(2Jf+1)]. (59)

Here p„W, and Wp are the electron momentum, its
energy and its maximum energy, respectively. F(Z,W)
is the Fermi function. Pop is given by a formula familiar

to Po given in the last section. It is called the correction
factor of the beta-ray spectrum, and can be expressed by
the already publisher's formulas as follows:

167r'Pop=+ az, z,"l of references'" " (60)
L

=Q(—) (2I-+1) fbr, l, l'l of references"' (61)
L

=C[(2Jf+1)/(2J,+1)l of references"" (62)

Here, it should be noticed that the reduced nuclear
matrix element is defined in the transition Jf + J' for
beta decay, while J,—+ Jf for muon capture.

The transition rates of muon capture and beta decay
the relation,

'tP7 pr(nZm„')'Ppq'[1 q(m—„+AM) 'l )2Jf+1i s

Wp &2J,+1j
PopF (Z,W) (Wo —W)PWPA W

(63)

For the allowed transition, we have

'|PPp= (2pr') 'f(Z&Wo)[Cv'K'(1)+Ca'K(n)][(2J, +1)/(2Jr+1)]

=(2n') 'f(Z, Wo) Cv'i ' 1
I +Caf t' i' ( t' i'

j
= (8/pr) f(Z&Wo) (Cv'[0 0 Olp'+ rsC~'[1 0 1lp') [(2J;+1)/(2Jy+1)l,

(64)

(65)

(66)

in the notation of references 27 to 30, of references 31 and 32, and of the present work, respectively. Therefore, the
muon capture rate is given in terms of the beta decay transition rate as"

vrith

pr(nZm„')'Ppq'[1 —q(m„+AM) 'l (2Ji+1 i '

f(Z&Wo)(Cvs[000lps+srCg'[1 01) ') I 2J,+1)

P =[Eq. (56)l,

[k 0 klp'[(2J +1)/(2J, +1)l=([k0 kl with q=m„'=0)

(67)

for both k=0 and 1. Here f(Z,Wo) is the integrated [101—l= —(s)4—'[(1—-'sX)e—""
Fermi function. i b4 ss)&+—(4/3—5))-'}l=—0.135, (69)

10. EXAMPLE: MUON CAPTURE RATE BY C'~

Ke calculate the muon capture rate in the transition
from the ground state of C" to that of 8'. Since the
spin and parity changes are 0+ —+ 1+, this is an allowed
transition. The relevant nuclear matrix elements are
[10 1l, [10 1 —l, [12 1l, [12 1 +l, f 0 1 1 pl, and
[1 1 1 Pl. The transition rate '9I7 is given in terms of the
well known transition rate of the beta decay 3"—+ C".
The nuclear matrix elements are evaluated for the j—j
coupling shell model with the harmonic oscillator wave
functions. The detailed calculation of the reduced
matrix elements is given in the appendix. The results are

[10 1l= —(~)4.—'[(1—-'X)s-M4

—i (1——',)i+—,
' Xs)7= —0.138, (68)

'~ Square terms of the interactions, see M. Yamada and M.
Morita, Progr. Theoret. Phys. (Kyoto) 8, 431 (1952).' Cross terms among interactions, M. Morita, Progr. Theoret.
Phys. (Kyoto) 10, 363 (1953),and Y. Kato and M. Morita, Progr.
Theoret. Phys. (Kyoto) 13, 276 (1955) with errata, ibid. 14, 174
(1955).

"M. Morita, Progr. Theoret. Phys. (Kyoto) 14, 27 (1955) and
15, 445 (&956).

~ M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958).
3' Square terms of the interactions, see E. J. Konopinski and

G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).There is a misprint,
in Cov, the second line of the page 315. $Z (21.&+No) should be
read as gIP(2L1+Mp).

~ Cross terms among interactions, see A. M. Smith, Phys. Rev.
82, 955 (195i).

~ This is apparently different from Eq. (10)of reference 7, in the
power of the statistical weight of spins. This comes, however, from
the difFerence of the definition in the reduced nuclear matrix
elements. Taking this into account, our Kq. (63) for the allowed
transition is equal to Eq. (10) of reference 7.
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FIG. 1.Calculated transition rate
for the muon capture reaction be-
tween the ground states of C" andB"versus Cr/Cg. C~ and Cg are
the coupling constants of the
induced pseudoscalar and axial
vector interactions. In the figure,
Exp. I and II refer to the experi-
mental data b and c given in
Table V.

3 5

24 40

[12 1]= (-', )&(2w) '[-')te ""
-|.{-,'X- (2/35)) s))=0.00482, (70)

[121+]=(s)'(2w) '[-') e '"
+|'{-'s——,'oh+ (1/14)X')]=0.00584, (71)

Lo 11p]= (l)'*(q/2 )L-'(1——'.»e '"
—{{1—-'X+ (1/14)X'))=0.00575M, (72)

[111p]= (l)'(q/2w)[se ""
—{.{-',—,', )~+ (1/70)X'j]=0.0030131, (73)

with

) = —,'p'qs= q'/a,

II. (pr —p, ) term omitted.

% =4.84+0.00481[(C~/C~) —21.2)'. (78)

[10 1 —] by [10 1),

[I 2 1+) by [1 2 1],
[0 1 1 p] and [1 1 1 p) by zero,

(79)

([10 1)~2+I[12 1])' by ([10 1]'+[12 1]').

Here %' are given in units of 10' sec '.
Our calculation should coincide with that of PrimakoG'

and Fujii and PrimakoII, if we replace in Eq. (56):

I TABLE V. Theoretical and experimental transition rates for the{= (8/3)cr ~s (wa) (8/ )+~(~& /q) (~/w) ' ( ) muon capture reaction between the ground states of Cu and B~s.
The last column gives the ratio of our value to that of Fujii and

Here p is the root mean square value of the nuclear primakog.
radius. %'e use the following experimental values~:

p=252X10 "cm,
q= 91.4 Mev/c,

VP p=33.15 sec ' for 812~ C"

f(Z,Ws) =5.625X 10' for 8"—+ C"

For the coupling constants, we assume'

C~&= —1.21Cvt')

Cv =0.9&2cvt',

Cg =0.999cgt'.

(75)

(76)

8
8—8—8

included
omitted
included
omitted

Experiments

Cz/C~ (p„—p ) terms Ratio

7.12
5.68

10.39
8.95

7.86
6.34

11.80
10.25

0.91
0.90
0.88
0.87

9 05+0.95b
9.18&0.5'
6.6 &1.1"

8 ~15e
5.9 &1.5f

w (C"~B")in 108 sec—'
Present Fujii and

work Primako6

Here the coupling constants with the superscript P refer
to beta decay.

Using Eqs. (56), (67), and (68)—(76), the muon cap-
ture rate by C" is calculated for diferent assumptions
regarding conserved vector current (see also Fig. 1):
I. (p„—p ) term included.

'K =6.28+0.00481[(Cp/Cg) —21.2)'. (7'I)

See references 6 and T.
b F. B. Harrison, H. V. Argo, H. B. Kruse, and A. D. McGuire, Gatlin-

burg Conference on Weak Interactions, Gatlinburg, Tennessee, October,
1958 (unpublished), paper S4.

ss J. O. Burgman, J. Fischer, E. Leontic, A. Lundby, R. Meunier, J. P.
Stroot, and J. D. Teja, Phys. Rev. Letters 1, 469 (1958).

& J. G. Fetkovich, T. H. Fields, and R. L. Mcllwain, Bull. Am. Phys.
Soc. 4, 81 (1959).

e W. A. Love, S. Marder, I. Nadelhaft, R. T. Siegel, and A. E. Taylor,
Bull. Am. Phys. Soc. 4, 81 (1959).

& T. N. K. Godfrey, Ph.D. thesis, Princeton University, 1954 (unpub-
lished) and Phys. Rev. 92, 512 (1953).
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This has also been checked in the numerical calculation. '4

Our values for the muon capture rate are 9—
13%%uq less

than those of references 6 and 7 (see Table V).
As is seen in Fig. 1, the same transition rate often

arises from more than one set of parameters. The
inaccuracy involved in the nuclear wave functions brings
a further complication. "
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U' 0,0(C12)

(-; —;m—m~00)
m

&&2T2W);" rs(2,3, ,8)XI-"(I)22;
—rs(1). (A2)

The nuclear wave function of 3"is

P M,-l(B12)

=(-,')&p p 01 (-,'-,'mM —m~ 1 M)

X8'f, f" &(2,3, ,8)X)M-"(1)q;-&(1). (A3)

Here 1'means the replacement of a member in (2,3, ,8)
by 1. e~ is the sign due to this permutation.

Inserting (A2) and (A3) into (Ai) and integrating
over the 3X (8—1) dimensions, the result is

([1I 1), etc.)

=P(—)* "($-', mM —m~1 M)

APPENDIX. EVALUATION OF REDUCED NUCLEAR
MATRIX ELEMENTS IN MUON CAPTURE BY C" X M rite N—zm p'—r@X —wad r (A4)

By definition, Eq. (38), the reduced nuclear matrix Here
elements, [1E ig, etc., in the muon capture by C" are

([1l 1j, etc.) (0 1 0 M
~
1 M)

Xf =yp(12 m f2Is~j m)p—fsyt &(r). (AS)

)I Ut(B12)

8

&& P e ~ ~~'r @AT 'U(C")drrdr2 . drs (A1).

Here C, is given in Table Il. We assume the j—j coupling
shell model and the harmonic oscillator wave functions.
The four nucleons in the is shell are assumed to be inert

during the ground state to ground state transition. As is

given in reference 7, the nuclear wave function of C" in

the standard notation is

The p is the oscillator potential wave function in the ip
state,

y=Xr exp( ar2/2) —with 1P= (8/3)2r 4&. (A6)

Inserting (AS) into (A4), we have, e.g., for [1 1 1 p):

Li 11 pl

=p p p p (—)I—"(-2'-,'m M —m~1 M)

)&(I 1 M' M —M'~1 M)(1-', M—m —p p~-'2 M —m)

)& (1-,' —m —p' p, '~-,' —m)

~ M. E. Rose and R. H. Good, Jr., Ann. Phys. 9, 211 (1960).
They gave a formula for the angular distribution of recoils from
muon capture in 0 -+ J transitions. Equation (20) in their paper is
consistent with our Po's, if we adopt the assumption Eq. (79),
except for its fourth line. Without this assumption, a formula has
been given by D. Greenberg and one of the present authors
(M.M.), the second part of the present paper.

'6 Using our nuclear wave functions of C"and 3",Kqs. (A2) and
(A3), the transition rate, Eq. (65), of beta decay 8'2-+ C" is
calculated, % p ~h, ,~=159 sec '. This is 4.8 times larger than its
experimental value, Eq. (75). This inaccuracy of wave functions
is almost cancelled in the ratio oPg)'tgs, as is seen in Fig. 1. It is,
however, diAicult to estimate the limit of error due to the crudeness
of nuclear wave functions. I,.Wolfenstein, Nuovo cimento 13, 319
(1959) did a similar calculation of the muon capture rate in C"
which has been called to our attention after completion of our
work. The result agrees with ours. There, the errors involved in
the calculated transition rates due to the inaccuracy of the nuclear
wave functions are estimated as roughly 20—30%.

t [y py M p(r)y jt7' (qr)e
—z—mr' y M —

(M)r—

'(p)1p;&'yt &'(r) p jr'drdO. (A7)

Summing over all magnetic quantum numbers except
for M, (A7) becomes

[1 1 1 p) = —Q 2r '2 & 3 (2l+ 1)(l 1 0 0
~
1 0)

&&W(1111,/ 1)W(1-; 1-'„-', 1)

X) @e '"~"j1(qr)(D10)r'«, (A8)
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with
)d iq

Ds= (-')'I ———
I

&dr r) '

D1=0,
(d 2)

Do= —
/

—+- I.
idr r

(A9)

I 1 l 1j=—or
—'3L3(2l+1))&

1 E

X(l 100110) rs1 ss

1 1
2&

Similarly,

LO 1 1 P]=Q or '3&(2l+1)(l 100i10)

ye-ezra„' j (qr) (D y)rod» (A10) Integrating over radial coordinate, we have the results

given in (68)-(73) of Sec. 10.
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Ayylication of Disyersion Relations to K„and K„s Decays

R. F. SAwYER
Physics Department, University of Wisconsin, Madison, Wisconsin

(Received October 26, 1959)

The decay modes, E',3 and E„3,are studied by means of a dispersion relation. It is assumed that the funda-
mental couplings involved are the strong pion and X-meson couplings to the baryons and a weak four-Geld
coupling connecting nucleon, hyperon, and the lepton pair. The baryon-antibaryon pair contribution to
the absorptive part of the decay amplitude is expressed in terms of the imaginary part of the pion propagator
in the same approximation. The decay rate is determined in terms of the various coupling constants and
the quantity Z wMch renormalizes the pion propagator. Comparison with experiment is made for the case
g '/gx =15.The results are consistent with a hyperon leptonic decay coupling constant an order of magni-
tude less than the beta-decay strength.

1. INTRODUCTION

''T is not known whether four-Fermi forms are
- appropriate to represent the fundamental weak

interactions. However, many authors' have suggested
various weak couplings of the form Z„ l, ——)J„J„where
J„consists of vector and axial-vector combinations of
various baryon and lepton pairs. So far evidence for a
universal coupling constant is found only in the strange-
ness conserving decays; present data on hyperon decays
into a nucleon plus leptons indicate that if nucleon-

hyperon terms are present in J„, they are present in a
reduced amount. '

Aside from the leptonic hyperon decays the most
direct evidence bearing on the strangeness noncon-

serving "current" comes from the E+~ ts++ v, E+~ ts+

*Supported in part by the University of Wisconsin Com-
mittee with funds provided by the Wisconsin Alumni Research
Foundation.

t A portion of this work carried out at CERN while the author
was a National Science Foundation postdoctoral fellow.

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); S. Okubo et al , Phys. Rev. 112, 66.5 (1958);J.Schwinger,
Ann. Phys. 2, 407 (1957).' J. Leitner et al. , Phys. Rev. Letters 3, 186 (1959); F. S.
Crawford et al., Phys. Rev. Letters 1, 3/7 (1958);J. Orear et al. ,
Phys. Rev. Letters 1, 380 (1958).

+v+or' and E+-+ e++v+rro decay modes, and the
similar K decay modes. The partial lifetimes for these
processes are fairly well known, and if it were possible
to connect them to the strength of a strangeness
violating Fermi interaction one would have an indica-
tion of the consistency of such a form.

In a perturbation calculation the divergence problem
renders this connection impossible. Either one must
choose a numerical value for a cutoG or one must
introduce counter-terms in the form of fundamental E
decay couplings for each process. Nevertheless there is
some hope that another calculation procedure could
avoid this problem; that in this case the divergence is
really a consequence of the perturbation expansion.

Recently Goldberger and Treiman' have used a
dispersion relation approach to the similar problem of
sr-+ts+v decay. An answer for the decay rate was
obtained in terms of the pi-nucleon and mu capture
coupling constants. The same method is applicable to
the E-+tt+v mode, e except that here the coupling
constants involved are unknown.

3 M. L. Goldberger and S. S. Treiman, Phys. Rev. 110, 1178
(1958).' II. Sakita, Phys. Rev. 114, 1650 (1959).C. H. Albright, Phys.
Rev. 115, 750 (1959).


