FORBUSH DECREASE OF HEAVY NUCLEI

change in the energy spectrum. The exponent of the
integral energy spectrum of .S nuclei, obtained in this
experiment, over the range of energies from 0.23 to
9 Bev/nucleon is 1.784-0.24; this is, within limits of
experimental error, consistent with the values 1.54
+0.16° and 1.60£0.15% obtained in other experiments
for energy intervals above 1.5 Bev/nucleon. Similarly,
in the experiments of McDonald,>" for a particles of
energy between 0.28 and 0.9 Bev/nucleon, the exponent
in the integral energy spectrum is 1.5 (as calculated by
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us from his data) for the March 13, 1956 flight and
1.4£0.2 for the July 7, 1955 flight.

We conclude, therefore, that there is evidence for a
large Forbush type of decrease in the intensity of the
heavy nuclei (Z26) of the primary cosmic radiation;
unfortunately, one can say very little about the energy
dependence of the decrease.
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Relativistic, fixed momentum-transfer dispersion relations are derived (but not proved) for pion scattering
from = and A particles and the processes 74-A < 7=, Separate equations for the S- and P-wave amplitudes
are obtained under the assumptions that high-energy processes and baryon recoil may be neglected. The
P-wave equations are identical to those derived from Chew-Low theory for these processes. A brief discussion
is given of the behavior of the P-wave amplitudes under the assumption of global symmetry. It is pointed
out that the production of K—N pairs may play an important role in both the S- and P-wave equations.

I. INTRODUCTION

N recent years relativistic dispersion relations have
become a useful tool in the theoretical investigation
of the pion-nucleon interaction. Dispersion relations
have also been applied to K meson-nucleon scattering,’
and there is every reason to believe that the dispersion
approach to the strong interactions involving strange
particles will become more and more useful as the
experimental data concerning these interactions becomes
more and more abundant.
We consider here the possible usefulness of the
dispersion approach to the following three types of
interactions involving systems of strangeness minus

one:
+Y - r+7, (1a)
K+4+N—7+7, (1b)
K+4+N—EK+N, (1c)

where the symbol ¥ denotes either a = or a A hyperon.
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There is much evidence that the K—N—Y interaction
is somewhat weaker than the pion-nucleon interaction.
On the other hand, the binding of A particles in nuclei
is most easily explained by the hypothesis that the
m—2Z—A interaction is comparable to the pion-nucleon
interaction. Hence it is probable that the pion-hyperon
interactions are somewhat stronger than the K—Y—N
interactions. Thus the relationships among the three
processes, (1a) through (1c), are analogous to those
among the following three processes: (a) pion-nucleon
scattering, (b) photopion production from nucleons,
and (c) photon-nucleon scattering. However, there are
two important points of difference between the (K,r)
processes [Eq. (1)] and the corresponding (v,r)
processes mentioned above (besides the obvious
differences in mass, charge, and spin). First, the K
interactions are not really weak as are the electro-
magnetic interactions. This nonweakness complicates
the relations between the amplitudes for the three
processes. For example, the w— ¥ scattering amplitudes
may be affected appreciably by the K— Y —N interac-
tions.? The second point of difference is that in the
reactions of Eq. (1) the total rest mass of the particles

2 R. H. Dalitz and S. F. Tuan, Phys. Rev. Letters 2, 425 (1959).
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in the strong channel (r—Y channel) is less than the
total rest mass of the particles in the other channel.
Because of this fact, the dispersion relations for
processes (1b) and (1c) necessarily involve an important
and bothersome unphysical region.

Despite these differences between the processes of
Eq. (1) and the corresponding (7y,m) processes, we
believe that much can be learned from the analogy.
It is likely that the strong w—Y interaction leads to
one or more resonances in the 7—Y scattering ampli-
tude similar to the low-energy pion-nucleon resonance,

and if such resonances exist, they will certainly be felt

in the inelastic processes
K+N—x+7.

Because of the interconnections among the amplitudes
for processes (1a) through (1c), it is worthwhile to
derive the dispersion relations for pion-hyperon scatter-
ing, even though this process is not directly observable.
In this paper we write down (without proof) these
pion-hyperon dispersion relations for fixed, arbitrary
values of the momentum transfer. In Sec. III we
derive approximate equations for the S- and P-wave
amplitudes by neglecting various recoil terms and
high-energy processes in the dispersion relations. The
P-wave equations are analogous to the Chew-Low
equations for pion-nucleon scattering; these have
previously been discussed by one of the authors,® and
by Amati, Stanghellini, and Vitale.* A brief discussion
is given of the effects of the K—N channel on the
location of possible resonances in the 7#— ¥ system.

II. THE DISPERSION RELATIONS

We assume that the strong interactions are charge
independent, and make the usual isotopic spin assign-
ments. It is further assumed that the = and A are spin
particles of the same parity. For each different angular
momentum and parity state there are five different
pion-hyperon scattering amplitudes, corresponding to
7—2 scattering in states of total isotopic spin 2, 1,
and 0, v—A scattering in the state /=1, and the
reaction 74A — w+2 in the state 7=1. These ampli-
tudes are denoted by the symbols M, M1z, Mo, M1,
and Msa, respectively. In order that the crossing
relations be expressible in simple form, it is convenient
to work with the following five combinations of the
isotopic spin amplitudes,

MO=(T/12)M +iM 1z+EM,,
M®=(5/12)M;—iMz—%:M,,
M®=3M+3M s, @
M@= MIA,
M®= M12A/\/2_.

3 Michael Nauenberg, Phys. Rev. Letters 2, 351 (1959).

4D. Amati, A. Stanghellini, and B. Vitale, Nuovo cimento
(to be published).
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The amplitudes M® are simply related to amplitudes
for scattering in states of particular pion and hyperon
charge, i.e.,

MO=3[M (r+Z*; w24+ M (- Z+; 727)]

=M (rZt; mZt)+ M (m2t; 721)],  (3a)
MO=3[M (x*Z+; 2*ZH)— M (x Z+; 7 2F) ]

=4[M (xZ; m2H)— M (w2t; mZt)],  (3b)
M®=M (x'2*; x"Z%), (3¢)
M®=3[M (ztA;wtA)+M (mA; 7A)]

=3[M (miA; mA)+M (oA 5 maA) ], (3d)
MO=3[M (2" xtA")— M (x2"; 7A")]

=3[ M (m:2%; 7:A°) — M (m:2°; mA°) ], (3e)

where M (8;a) is the amplitude for the production of
the state B from the state a. The states i, 73, and 3
are defined by the equations, w¥=2"}(mzims) and
'Il'o =3

The method of derivation of the dispersion relations
to be used here is essentially the same as that used for
other meson reactions by Capps and Takeda® and by
Jin%; hence only a brief sketch of the derivation is
given. As in references 5 and 6 no attempt is made to
prove the relations. The derivation makes use of
Heisenberg picture matrix elements of the pion current
operators, Ji, Js, and J3; these operators are defined
by the equations

[(P=r)a(2)=—Ja(%), 4)

where ¢, is the pion field operator for pions of charge
state « in the Heisenberg picture. The form of J.(x)
depends on the nature of the interaction ; we assume the
pion-hyperon interaction Hamiltonian density H to
be of the form,

H(x)=Ga[Z(x)ivsA(x)]- 6 (x)+H.c.
—iG3[2(x)XivsE(2)]- 6(x), (5)

where s is anti-Hermitian, £ and A(x) are the field
operators for the 2 and A particles, and the dot and
cross refer to scalar and vector products in charge
space of the isotopic spin vectors ¥, 2(x), and ¢. The
constants 7% and ¢ are taken equal to one. (The global
symmetry model corresponds to the choice” Gs?=Gy?
=14 in this equation.) The current J.(x) may be
computed by the method of Low,® and is given by

J1(x)=—Gar(SviysA)+H.c.H1iGz(ZoiveZs
—ZgiysZ)+oulp1—Ag'1, (6)

with similar equations for Ja:(x) and Js(x). The last
two terms result from renormalizations associated
with the pion mass and the pion-pion interaction,
respectively.
5 R. H. Capps and Gyo Takeda, Phys. Rev. 103, 1877 (1956).
8Y.S. Jin, Nuovo cimento 12, 455 (1959)

T Murray Gell-Mann, Phys. Rev. 106, 1296 (1957).
8 F. E. Low, Phys. Rev. 97, 1392 (1955).
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The four momenta of the initial pion, initial hyperon,
final pion, and final hyperon are denoted by the
symbols, ki=(kiw.), pi=(p,E:), k= (ksw) and g,
= (ps,E;), respectively. We write the dispersion
relations in the Breit-Lorentz system, defined as the
system in which the three momenta of the initial and
final hyperon are equal and opposite. We denote % the
three momentum-transfer by q, and the average
meson energy and three-momentum by w and k, i.e.,

q=p;=—p:=3(ki—ky),
w=}(witw), k=3k+k).
We define the quantity & by the equation
E=%(E,— E)=3[(m 4+ — (m2+ )],

where 7, and m; are the masses of the initial and final
hyperons. This energy difference vanishes, of course,
for the elastic processes. The average pion momentum
k is related to w and q by the equations®

k= quw8q2+vk,, (7a)
b= @+ S8, ()

where v is a unit vector perpendicular to q. The perpen-
dicular momentum k; is defined for nonphysical
energies by analytic continuation in the upper half
o plane. For real values of w in the unphysical region
? < (u24¢*— &)/ (1— 8%¢?), k, is imaginary, but %,
satisfies the relation k,*(—w)= —k, () for all real w.
It may be shown by well-known methods that the
amplitude for the reaction me+¥,— ms+Vs as a
function of ¢, w and v, the initial spin state {,, and the
final spin state {», may be expressed in terms of the
commutators of the meson current operators, i.e.,

M (YVymg; Vamra: 0,q,9,81,8a)
=42m2(E:E;/mam;)} J dx e—ike

X Ws(a,60) |[n(OLT 6t (39), Ja(—32)]
—6(0[]51-(%35): qsa —%x)]h(/a(“‘l, g‘a»y (8)

where kx is the four-dimensional scalar product k-x
—wt, 7(¢) is unity for £>0 and zero for <0, and ¥, and
¥s represent the Heisenberg state vectors of the initial
and final baryon. The normalization is that of reference
S. The term involving ¢ is energy independent and will
not enter into the dispersion relations if the proper
subtractions are made; hence we will consistently
disregard this term.** Equation (8) defines the “causal”
amplitude for real values of the momentum-transfer
and arbitrary values of the energy w in the upper half
complex plane. The dispersion relations result from the

9 These equations are equivalent to Eq. (2.5) of reference 6.

10 A discussion of this term is given for the analogous case of
pion nuclear scattering by M. L. Goldberger, Phys. Rev. 99,
979 (1955).
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assumption that this amplitude, divided by a suitable
polynomial in the energy, is analytic and bounded in
the upper half energy plane.

In the usual manner we define the dispersive and
absorptive parts of M (D and A) by writing the step
function 5 (¢) as a sum of an odd and an even function,
ie.,

D=1in® (E,-E//m,m/) *f d* e‘“‘”[Zn (t) - 1]
X Wo(,83) | [T6T (3%), Ja(—32) ][¥0a(—¢, £a)), (92)
tA=1in*(E.E;/mamy;)} f dx e~k

X Wo(a:50) |61 (3%), Ja(—32) ][ ¥a(— 4, £a)). (9D)

The casual amplitude may be written as a sum of
spin independent and spin dependent amplitudes in
the Breit system, i.e.,

M=Mny(w,g)14+2iM s(w,¢®)o- qXk,, (10)

where it is implied that the matrix elements in spin
space of the unit operator 1 and Pauli spin operator o
are to be taken. The form of Eq. (10) follows from the
invariance of the amplitude to three-dimensional
rotations and reflections [note from Egs. (7) that the
scalars k2 and k- q are functions of the energy and of ¢%].

A. Dispersion Relations for the Elastic
Scattering Amplitudes

In this section we treat the elastic scattering process
involved in the amplitudes M® through M®, [Eqs.
(3a) through (3d)]; the more complicated 7+A — 7+2
process M® is treated in Sec. IIB. The subscripts a and 8
in Eq. (8) are chosen to refer to pions in the states 1, 2, or
3; hence the current operators J, and Jgare Hermitian.
We derive the crossing relation by making use of the
Hermitian property of the operator i[ Jo(3x), Js(—3%)].
For any amplitude in which the initial and final
hyperons are the same, it may be shown from Eq. (8)
that the crossing relation is

M (7"13; Tat w,q,v,{a,g‘b)
=M (7g; Ta:

(11)

This equation implies that the amplitudes M™ defined
in Egs. (3a) through (3d) satisfy the simple crossing
relations,

Mm*(“’ﬁq’vy{wg-b) =aM® (_w; —q, v, fa),

where

—w, —q, v, {, g-a)'

(12)

e=1for\=1, 3, or 4,
a=—1for \=2.

From Eq. (12) and the relation k(w)=—Fk*(—w) it is
seen that the spin-independent and spin-dependent
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amplitudes defined in Eq. (10) satisfy the relations
M%) = @My ® (),
M sV*(0,¢%) = — M 5™ (—w,g). (13)

It may be shown that the dispersive parts (D) of the
spin-independent and spin-dependent amplitudes are
real, and the absorptive parts (i4) are imaginary; the
proof of this is identical to that in reference 5 and will
not be given here.

The form of the dispersion relations depends upon
the behavior of the amplitude M x or M s as the energy
approaches infinity along the real axis. If the integral
J22| M |2dw exists, where « is any real energy, one may
derive relations of the “unsubtracted” type. For each
amplitude that satisfies the symmetry condition
M*(w)=M (—w) one integrates the function «'M (v)/
(w?—w?) around a contour including the real o’ axis
and a semicircle of infinite radius in the upper-half o’
plane; for each amplitude that satisfies the condition
M*(w)=— M (—w), one integrates the function wM (') /
(0"2—w?) around the same contour. The results of such
a procedure are

1 ® 1 &
Dy (egt) == [ ( + )
T Yo w—w ot

XAxy® (o', ¢)do’, (14a)
D™ (w, 92)_“Pf ( )
) w'-[—w
X As® (o ,g2)de’, (14b)

where the symbol P denotes the principal part of the
integral. We assume that the spin-dependent amplitudes
satisfy these unsubtracted relations. However, it is
unlikely that all the spin-independent amplitudes are
convergent enough to satisfy equations of this type, so
that some subtraction procedure must be performed in
order to derive correct dispersion relations. One
possible subtraction procedure is that used in reference
5, and results in a dispersion relation for Dy (w1,g?)
—Dn(wsz,¢%). An alternate procedure is to derive
equations for Dy(w,q:i®) —Dn(w,g2?); if this procedure
is used one may simply subtract two equations of the
type, Eq. (14a), to obtain the result. For simplicity
we will write only the unsubtracted dispersion relations
in this section; in the discussion of applications (Sec.
IIT), the modifications resulting from appropriate
subtraction procedures are described.

The contributions to the dispersion relations from
the unphysical region w < (u2+¢?)? are more complicated
than in the pion-nucleon scattering case. The unphysical
region may be investigated by expanding the products
of current operators in Eq. (9b) in terms of intermediate
states. There are two types of terms from the unphysical
region. First, there is the contribution to the dispersion
integral from intermediate continuum states; the lower

R. H. CAPPS AND M. NAUENBERG

limit w, of this contribution is determined by the
intermediate states of type A+, and is given by the
formula

We= (mf-—m3+2unu—-292)/(2Ei), (15)

where m; is the mass of the initial (or final) hyperon.
The value of the absorptive amplitude in this unphysical
continuum region must be determined by analytic
continuation in the upper half energy plane from the
physical region. The unphysical continuum vanishes
only for m—A elastic scattering when ¢2=0.

The second type contribution associated with the
unphysical region are the poles corresponding to the
single particle intermediate states = and A. The energy
wp of a pole in the w—Y; scattering amplitude corre-
sponding to the intermediate hyperon ¥, is given by
the formula

wp=|Qinl,
Qin= (m2—md—p2—2¢%)/(2E). (16)

The residues of the pole terms may be determined by
the method used in references 1, 5, and 6. These
residues depend on the Heisenberg picture matrix
elements of the pion current operator given in Eq. (6).
The symmetry properties of the meson current and of
the real baryon states under Lorentz transformations
and rotations in charge space may be used to show that
the residues may be calculated by using Born approxi-
mation and replacing the unrenormalized coupling
constants by renormalized ones.

If the Born approximation terms (real hyperon
terms) are evaluated in Eq. (14), and the absorption
integrals are cut off at the lower limit of the continuum,
the dispersion relations for the eight elastic amplitudes
may be written in the form

Dy®(w,¢) =By (o, q2)+~P f ( - )
o' —w w'+w

XAN®(o',g))de’,  (17a)
Da ) =B f (——-2)
o' —w w'—}-w

XA4s™(o,¢?)de’.  (17b)

The Born approximation terms By™ and Bg®™ are
given by the expressions,

Qss Qza
ByW=3Gs? (———)sz+ Gy ( )QEA,
w?—Qss? w?—Qsp2

w ®
BgW=1Gs? (“—)Rzz‘l'%GAz( )REA,
w?—Qs5? w2 — Qa2

w
By®= —1622(-“‘—)Q22_1GA ( )QEA
? w?—Qz3? : w?—Qzp2 ’
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Q33

Qza
)Rzz—%GAz( )RzA,
w?—Qzs? o —Qsy?
(18)
Qss

By®= Gzz( )sz,
0 —Qs5?
12
Bs® =G'22( )Rzz,
w2—9222
Qps
Bpr®=G)? )QAE,
w2~QA22

w
Bs®W= GA2( )RAE-
w2 — 2

where the Qi, are given by Eq. (16). The quantities Q
and R are the following functions of momentum
transfer and the particle masses,

Ei+m1
Qin= [miEi'_ Tint
2m.?

Bg®=— %Gzz(

2

q
- ’LE'L Pin )
st )]

T M

Ruumt/2m2, (19)

I‘in=%(mi2+mn2_/"2)-

If only terms of lowest order in w/mi; ¢/m: and
(mn—m:)/m; are considered, the expressions for Q
and R are simplified to the following forms,

QinZ%[_ (mi—mn)2+ﬂ2+2q2]/m'2:
Rin= 1/ (Zmzz)'

We shall make no attempt to prove these relations,
or to determine for what range of momentum transfer
the relations are valid. Only small values of ¢? are
considered in deriving the S- and P-wave equations
of Sec. IIL.

(20)

B. Dispersion Relations for the Inelastic
Amplitude M®

The derivation of the crossing relation is more
complicated in the case of the inelastic amplitude M®.
If one follows the procedure used to derive the crossing
relation, Eq. (11) of Sec. A, the result for the inelastic
amplitude M (m:2°; A% is
M*(miZ0; wol : w,q,v,55,80)

=M(7I'1A;7I'2202 —w, —q,", rA; .{‘E) (21)

Since the order of the hyperons in this equation is

reversed, it is convenient to define the amplitude MG

which is the reversed amplitude to that of Eq. (3e), i.e.,
MOD=L M (xtA; 72— M (7=A; 7~ 2% ]
=1i[M (1A ; me2%) — M (mA 5 7,2°) .

The spin-independent and spin-dependent amplitudes
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for M® and M are defined by Eq. (10). The crossing
relation of Eq. (21), together with the relation k:*(w)
=—ky(—w) implies that Mx® and Ms® satisfy the
equations

My®*(w,¢) =—My®" (—w, ¢, (22a)

M s®*(w,09) = M 557 (—w, ¢). (22b)

Because M® and M7 refer to different processes,
a further symmetry property of the amplitude is
needed. We will derive the needed symmetry property
by investigating the behavior of the causal amplitude
under Wigner time reversal, working in a representation
in which the pions are in states of definite charge (4
or —) rather than in the linear combinations of these
states denoted by the indices 1 and 2. The behavior of
the pion field operators under time reversal is given by
the equation,

T (DT =n¢s(—1); T ()T =n*p_(—1),

where 7 is a complex number of unit magnitude, and T
is the Wigner time reversal operator that does not
take a particle into its antiparticle or reflect the space
axes.! Since the operators [ |? and u? are invariant
under time reversal, the time-reversal properties of the
current operators Ji(x) are the same as those of
¢.(x). These relations, together with the property
Ji(x)=[J-(x)]f, imply that the matrix elements of
J. satisfy the relation

(e T+ () [ By=n*r| T-(—1)|a),

where ¢” and &" are the time-reversed states to ¢ and b.
If this equation is applied to the current operators in
Eq. (8), it may be shown that the causal amplitude
satisfies the following time-reversal property,

M(T:I:EO; wEA w,q,\’,ﬁ;?A)

=M(7riA; LEDRH @, 4, =, {1, g-zr), (23)

where the upper signs go together, and the lower signs
go together. Equation (23) implies that Myx® and
Mg® are identical to the corresponding reversed
amplitudes, i.e., ,

My®=MyEn  Mg® =60, (24)

Finally we combine Egs. (22) and (24) to deduce the
following symmetry of the inelastic amplitudes:

MO o) == Mx® (—e, ),
M5O (0,69 = Ms®(=a, ). (25)

The procedure of reference 5 may be used to show that
Dx® and Dg® are real, and 14Ax® and 74 5® are
imaginary.

Since the amplitude M y® satisfies the odd symmetry
condition, the unsubtracted dispersion relations for this
amplitude are those of Eqgs. (14) with e=—1. The
lower limit of the unphysical continuum is again

11 These equations are equivalent to Eq. (1) of T. D. Lee,
R. Oehme, and C. N. Yang, Phys. Rev. 106, 340 (1957).
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determined by intermediate states of the type A+,
and corresponds to the energy value

o= (map— Ex8—¢?)/E. (26)

We use here the symbols E; and Es to represent the
hyperon energies, rather than E; and Ey, so that the
formulas are valid for the amplitude M©®" as well as
for M®. The symbol E denotes the average of E; and
Es.

Only the real = state contributes to the Born approxi-
mation term. The energy at which the Born approxima-
tion pole occurs is given by

=2,
= (Es6—3u*—¢")/E. 27
The calculation of the Born term is done in the same

manner as that discussed in Sec. IT A. The resulting
dispersion relations for the wA 5 #2 process are

Dy® (w,g") = — GGz w/ (=) JQ’
2w Av®(o',¢%)do’
+—P| ————, (28a)

T Jog  (02—w?)

Ds® (w,g?)= ——GAGZ[Q'/ (®—Q?) R’
o' 459 (v ,¢?)de’
+- f are oA

If only terms of lowest order in w/m, ¢/m, and
(mz—ma)/m are considered [where m=%(mz+m,)],
the expressions for Q' and R’ are quite simple, i.e.,

Q'=3[wt—3 (mz—mr)*+2¢*)/m?,
R'=1/(2m?). (29)

Only this no-recoil limit is used in the applications. For
completeness we write down the general expressions
for Q' and R’, however:

, 1 (-—2Z[(l—g2)(l—q2+2EzE)+q2E2]
myt+1+mzE
¢(m2+1+m3E) ) . G0)
27

(28b)

(w2—w?)

B ZEMzmA

ny

R'=%(m~+E)/msmZ,
where / and Z are defined by the equations,
=&— %/"23
2Z= (Ez+Mz)'}(EA+mA) *.

III. APPROXIMATE EQUATIONS FOR
S AND P WAVES

A. The Static Approximation

The relations between the Breit system and center-of-
mass system values of the particle momenta may be
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obtained easily by evaluating the two scalars, (p;— py)?
and — (k:+ks) (pi+py) in the two systems. The resulting
relations are

qz—g?‘:%(_‘ll?‘l‘wi, cf, c_ki.c'kf.c), (31)
doE=2W 2—ml—mP—2u>—4(*— &), (32)

where the index ¢ denotes a center-of-mass system
variable, and W . is the total energy in the center-of-mass
system. The separation of the center-of-mass amplitude
into spin-independent and spin-dependent parts is of
the form

M.=Muy, (wc, cosfe)+io-k; . XKs, M g,.(w, cosfe). (33)

In general the relation between My, . and Mg, . and the
corresponding Breit system amplitudes, [Eq. (10)], is
quite complicated.® For similicity, however, we will
make the no-recoil approximation by assuming that
m=2%(mpy+msz) is large compared with w, ¢ and
(mz—ma). The relationship between ¢? and 8., Eq. (31),
is not changed in this approximation, but the other
relations between the Breit system and center-of-mass
system quantities are given by the following simple
equations:

W=w, ;.=wc+8, wy.=w,—8E, (34a)
" qXk=1(k; .Xks o), (34b)
My®=My, (34¢)
Ms®=Mg » (34d)

Furthermore, the quantity & is now given simply by

=21(my—m,). The center-of-mass differential cross
section for unpolarized initial hyperons is related to
the scattering amplitude by the equation

|K.c|
| Ki.c|

do=

(| My,c|*+sin®| Mg, |?).

In the no-recoil approximation, as is seen from Egs.
(20) and (29), the Born approximation term in the
spin independent amplitude is linear in ¢2 (or in cosé,),
while the spin-dependent Born term is independent of
¢%. Thus the Born term contributes only to the .S and
P waves. We make the further approximation of
considering only S and P waves in all terms of the
dispersion relations. This approximation, together with
the no-recoil approximation, will be termed the static
approximation. Inelastic processes, such as the process
7+Y — K+ N, are not neglected in this approximation.

B. Static P-Wave Equations

In this section all quantities will refer to the center-
of-mass system, so the index ¢ will be dropped. If only
S and P waves are present, Eq. (33) may be written

M=To(w)+ki-kT1n(w)+io-kiXk/T1s(w), (35)

where Ty, T1n, and T are the amplitudes for .S wave,
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spin-independent P wave, and spin-dependent P wave.
If we denote by T'; the P-wave amplitudes correspond-
ing to states of total angular momentum j, the T; are
given by

Ti=3(Tw+T1s); Ty=3(Tw—2T1s).  (36)

In order to exhibit the normalization of the amplitudes,
we define the matrix R=(S—1)/24, where S is the
unitary scattering matrix [i.e., Rooe=exp(id) sind, .

The relation between the amplitudes 7; and the.

corresponding matrix elements R; of R are
Ty=Rj| k| =¥ k| A, 37

It is seen from comparing Egs. (33), (34d), and (35)
that
T1s(w)=Ms(w),

so that in the no-recoil approximation, the spin-
dependent equations are the equations for T';s. Further-
more, as seen from Egs. (31), (33), (34c) and (393),
the spin-independent P amplitude is given by,

T1v(w)=—%(8/9¢) M n (w,¢").

Since a derivative with respect to ¢ is taken, one
effectively uses a dispersion relation for the difference
My (w,g:2) — M n(w,g2%). This subtraction improves the
convergence at high energy, and we assume no further
subtraction is necessary. Hence we may simply differen-
tiate the equations [Eqs. (17a) and (28a)] for the
spin-independent amplitudes with respect to ¢* and
make the static approximation in order to derive the
static equations for Ty.

The Born approximation terms and the unphysical
continuum contributions are simplified in the no-recoil
limit. The limits of integration in Egs. (17) and (28)
become w,=p (for 7—A scattering), we=u—A (for
w—2 scattering), and ws’=u—3A, where A is the mass
difference A=m3z—mas. The quantities @ of Egs. (16)
and (27) are Qxx—QAA 0 92A=—-A QAz A and
Q'=%A. The no-recoil forms of the quantities Q and R
are given in Egs. (20) and (29).

The equations that result from the procedure
described above are the static P-wave equations for
x—Y scattering. These equations may also be derived
fron Chew-Low theory.®* We shall write the equations
in terms of the amplitudes corresponding to fixed
values of the total isotopic spin, rather than the
amplitudes with simple symmetry properties that were
used in Sec. I1. The amplitudes T'; are those of Egs. (36)
and (37), where now 7 indicates both total angular
momentum, isotopic spin, and whether Z’s or A’s are
involved There are ten P-wave amplitudes, correspond-
ing to (2y2 ’ (2:% ’ (12:2 ’ (12)2 ) (0;2 b (0)%)1
(1A,%) (1A,2) (1ZA,3) and (1ZA,3), where the second
index denotes the angular momentum, and the first
index refers to the appropriate one of the five processes
discussed at the beginning of Sec. IL. In order that the
equations for the processes Z— 2, A— A, and A—2
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TasLE I. Values of X;.

7 Xt X X X
(2,3) 2fp2 2fs? 0 0
(27%) —fAz —f22 0 0
(12,3) —2fp? 2152 0 0
(1=,3) fa? —Tf? 0 0
0,%) 2fp2 —4f5? 0 0
0,3) —fa? 2f5? —9fa? 0
(1A,3) 0 0 0 2fa?
(1A,3) 0 —3fx 0 —fa?
(12A,3) 0 0 2VIfafs 0
(1zA3 0 3V2fafz —V2fafz 0

may easily be combined, we write all the equations in
terms of the energy variable ws, i.e., the center-of-mass
energy of the pion accompanying a Z particle. The
center-of-mass energy of the pion in the process
7+A — w+A is related to wz by the equation wy=ws
+A, and the average pion energy w in the process
7+A — 742 is given by w=3%(ws+ws)=wz+3A. The
static P-wave equations are:

X X 43 XjIII XV
ReT; (wz) = 8
ws—A w3z wz—l-A ws+2A
1 ® ImT;(ws’)
Lip f dwz/[___f_i
T Jya wz' —wz
A 'iI ImTi(wz’) A ',;H ImT,-(wz’)
> ( j : 4 j
¢ ws' tws ws'tws+A
A,‘,‘HI ImTi(w;;’)
} )] (38)
wy' +ws4-2A

The X, expressed in terms of the coupling constants
fa=Guu/2m and fs=Gzu/2m, are given in Table I.
The elements of the matrix 4;! are nonzero only if
i and j refer to 2—m elastic scattering processes; the
nonzero elements are given by

239 28 1z 123 03 03

(1 2 3 6 2 4

4 -1 € -3 8§ =2

1| 5 10 3 6 —2 —4
AI-_:_

18l 20 -5 12 -3 -8 2

0 20 —6 —12 2 4

L 40 —10 —24 6 8 —2

The finite elements of 4;* and 4, correspond only
to the process 7+A — 742, and to 7—A scattering,
respectively. These elements are given by

(1ZA,3) (12A3 (14,3) (1A,3)
1 —1 -2 1 2
AT =_ AT

3\ —4 1 /7 3\4 -1



600

It should be pointed out that the integrand in Eq. (38)
was expanded to lowest order in ws’'/m, so that this
equation is valid only if the contribution of ImT’;(ws")
can be neglected for ws'/m> 1.

In the case of global symmetry (fs?= fa2=f?), if we
neglect the Z—A mass difference A, the 7— ¥ P-wave
equations for isotopic spin 2 and 0 reduce to the 7—N
P-wave equations for isotopic spin § and %, respectively,

ie.,
1 0
Re Tj((x)z = —-P dwzl
Splws T Y,
ImTi(ws’) 2o: Aj ImTs(ws’)
(D, )
wy' —ws s’ +ows
where
=X XX (39)
Xen=4/% Xep=Xop=—2f%
Xo,p=—8f% (40)
and the matrix 4 is given by,
23 23 03 (03
1 2 2 4
1 4 -1 8 -2
A==
9| 4 8§ -1 =2
16 -4 —4 1

The #—Y P-wave equations for isotopic spin 1 can
then be written as linear combinations of the isotopic
spin 2 and 0 equation of the same total angular momen-
tum, i.e.,
T15=3T2+35T,
Tu=3T2+3T,,
TIEAz\/j('l‘Tz—'l‘To).

Both the Z—A mass splitting and the presence of
additional K meson channels modify the 7— ¥ equations
relative to the #—/V equations. However, we do not
think that the static equations (with multiple meson
production neglected) contain sufficient information
to calculate the corrections to global symmetry caused
by these effects. Instead we will find an approximate
solution in the case of global symmetry, similar in
nature to the solution obte*ned for #— N scattering in
the effective range approximation of Chew and Low.12
According to our normalization, Eq. (37), the P-wave
amplitude 7';(w) can be written in the form

Ti(w) =€ sing;/ k3. 41

We consider here only #—X= scattering for which k;=k;
and w=wz; hence we have dropped the subscript = on

2 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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the energy variable and have set k;=k;=%. For the
isotopic spin 2 and O states 6;(w) is a real function of w
below the threshold for single w-meson production. If
we neglect the contribution of the KN channel as well
as m-meson production, the P-wave equation becomes
an integral equation for 8,(w). We shall seek an approxi-
mate solution by substituting

ImT;(w) =7\ (0—wj), (42)

under the integral in Eq. (38), where A; and w; are
adjustable parameters and j denotes a state in which
there may be a resonance. Note that A\; must be positive
since ImT;(w) is positive in the physical region. If we
assume that the contribution to the dispersion integrals
of the other channels (the 4;; terms) is small, we get

ReTj(w) = €j(w)/ (wj—w), (43)
o) e (o)
() _-_( o—ay T (w+A))
1
=X (44)
3u?

where X; is defined by Eq. (39). Since ImTj is zero in
this approximation for all energies satisfying the
inequality w#w;, we may write for such energies

Re(1/T;)=1/ReT;= (wj—w)/e;(w). 45)

The approximate amplitude described by Egs. (42)
and (43) does not satisfy the unitarity condition
implied by the reality of the phase shift §;. We shall
improve our approximation by finding the amplitude
that does satisfy the unitarity condition and, in
addition, satisfies Eq. (45). It is seen from Eq. (41)
that the unitary condition may be written in the form

k3
I T,-w = . 46
ROy

The amplitude defined by Egs. (45) and (46) is the
familiar resonance type amplitude, and may be ex-
pressed in the form

Eie;(w)
(00— ) —ik%;(w)

1 Rle;(w)
ImTj(w) =1me;(w) (; (w_wj)2+[k36j(w)]2). (48)

In order that Eq. (48) for ImT;(w) be consistent with
the delta function approximation which we used under
the integral, we want #%;(w) to be as small as possible.
This implies that €;(w) must be small for large w. It is
seen from Egs. (44) and (40) that this condition may
be achieved for the state j=(2,3) if we choose

Aep— (1/361) X 2, =0.

(47)

€@ ging;(w) =

and
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For the other three states j=(2,3), (0,3), and (0,3),
N—(1/313) X >0,

so that the delta function approximation is not as well
justified for these states.

It has been pointed out by Chew, Goldberger, Low,
and Nambu,? in their discussion of pion-nucleon
scattering that Eq. (47) is an approximate solution of
the dispersion relation at low energies for an arbitrary
value of the resonance energy w;. The position of the
resonance is determined by the high-energy contribution
to the integral, about which nothing is known. In the
x— N P-wave equation, this contribution is summarized
by a cutoff wm.x in the integral and is related to the
position of the resonance by wmax= f*w;. Because of
the presence of the additional K-meson channels in
m—Y scattering, it is unlikely that the same cutoff
wmax €an be applied to the #— Y equations. Even if we
make such an assumption, it is not true that we can
neglect the contribution of the KN channel under the
integral. In order to illustrate this statement we assume
that the £ and A parities are the same, and that the
intrinsic K parity is odd (relative to the NY pair), so
that a P state #—Y system corresponds to a P state
K—N system. The hydrogen bubble chamber experi-
ments at Berkeley®® show that the elastic and inelastic
K—-proton cross sections at 400 Mev/c far exceed the
maximum for S waves. Assuming that the cross
sections for /=2 are small at this energy, we find that
the P-wave cross section for 7—Y production must be
greater than 13 millibarns. This energy corresponds to
about 270 Mev/c pion momentum in the center of mass
of the 7—2Z system and, by detailed balance, 13 mb
should also be the approximate minimum P-wave
cross section for the process #+¥Y — K+N. Such a
cross section leads to an appreciable modification of
the unitarity condition [Eq. (46)] and may make a
large contribution to the dispersion integral.

On the other hand, it is probable that the effect of
pion production is small. Single pion production by
pions on nucleons is only about ¥ mb at 270 Mev/c
center-of-mass momentum and is usually neglected in
the pion-nucleon dispersion relations. Hence we assume
the corresponding effect is small in the pion-hyperon
dispersion relations.

If the intrinsic K parity is even, so that the Py 7 —Y
system corresponds to the S-state K—N system, the
effect of the K—N channel on the #—Y P-wave
amplitudes is likely to be even more important than in
the odd parity case. Such an effect has been discussed
by Dalitz and Tuan.?

We have emphasized that the production of 7—V
states by P-wave K— N pairs must be large for lab K
momenta in the range 300 to 400 Mev/c. The center-of-
mass differential cross sections measured at Berkeley

13 Proceedings of the Ninth Annual Conference on High-Energy
Physics at Kiev (to be published).
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for the processes K~+p—Zt+7~ and K—+p— =~
+at at lab K momenta of about 400 Mev/c appear to
be smaller at 90° than in the forward or backward
directions.”® If we again assume that the K parity is
odd, this may be taken as crude evidence for the
presence of an appreciable Pj state, since the angular
distribution corresponding to such a state is of the
form 3 cos?¢+4-1. It is not unlikely that this P-wave
pion-hyperon production is associated with a resonance
in the pi-hyperon scattering.

C. S-Wave Equations

In this section we obtain the dispersion relations for
the S-wave amplitudes in the static limit, using a
generalization of the method applied by Oehme! to
the pion-nucleon scattering problem. The S-wave
amplitude T is defined by Eq. (35). The normalization
of the S amplitudes is different from that of the P
amplitudes, [see Eq. (37)], i.e.,

T0=Ro|ki|"élkjl*%.

As a first step in deriving the static equations for
To, we consider the relativistic amplitude M ™ (w,q?)
in the Breit-Lorentz system, where Mo™ is defined in
terms of the spin-independent amplitude by the
equation,

M® (0,¢) =[1—¢(0/0¢")+-3(*— u*+ 6)0/9¢"]
XMa®(w0,g). (49)

Since My is an analytic function of ¢? in the upper half
of the w plane for all values of ¢ it is clear that M, is
also an analytic function of w. The crossing relations for
M ™ are identical to those for My™. If M, diverges no
more rapidly than linearly at high energy, we may
derive dispersion relations of the subtracted type by
integrating the function

M® (@) [(@"+o)+alo' —o) J/[(0?—e?) (@2 —o)]

around the contour including the real w axis and a
semicircle of infinite radius in the upper half w plane.
The symbol wo represents any constant energy. The
quantities are then expressed in terms of center-of-mass
variables, and the static limit is taken. In this limit,
Egs. (31) and (34c) may be used to show that M,™
is independent of ¢ and is equal to the S-wave amplitude
T¢®. The Born approximation terms vanish if one
follows this procedure, and the results may be written
in the form,

ReT 00\) (w) — ReTo(” (wo)
2 (wz——woz)P f"" w'de’ ImT o™ (o)
B wg (02—w?) (' 2—w02),

(for A=1, 3, or 4),

(50a)

14 Reinhard Oehme, Phys. Rev. 102, 1174 (1956). See Eq. (29)
of this reference.
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or

w
ReT,™ () —— ReT® (w)

wo

2w (wz—woz)P f‘" de’ ImT'™ ()
B wa (02—w?) (w'2—w02)7

(for A=2 or 5).

T

(50b)

All quantities refer to the center-of-mass system and
the energy variable refers to the average of the initial
and final meson energies. The constant energy wo may
be chosen for convenience.

The S-wave dispersion relations may be written in
terms of the amplitudes for particular isotopic spin
states if use is made of Eqs. (2). If it is desired to
relate the different S-wave processes at the same total
energy, one may express the energies in terms of the
energy wz of a pion accompanying a 2 particle. As in
Sec. III B, the relations are: w=ws for 7—2 scattering,
w=ws+A for 7—A scattering, and w=ws+%A for the
processes m+A < w42, For all processes the lower
limit w, of the dispersion integral is that energy at
which ws is equal to p—A.

For many considerations it is convenient to choose the
reference energy wo to be equal to g or some other low
energy, so that the T'o™ (wo) are essentially the scatter-

AND M. NAUENBERG

ing lengths for S-wave scattering. These scattering
lengths cannot be determined from the subtracted type
dispersion relations, of course. If one assumes that the
odd amplitudes My® and M y® approach zero as the
energy gets large, one may derive unsubtracted relations
which, in the static approximation, express T,® ()
and T4® (u) in terms of the coupling constant terms
and S- and P-wave dispersion integrals.’® Qur present
knowledge of the low-energy m— ¥ processes is insuffi-
cient to estimate any of the scattering lengths in this
manner.

In this paper we shall not attempt to relate the
S-wave equations to any experimental data in order to
investigate the possible behaviors of the 7— ¥ ampli-
tudes. Further study is being given to this problem.
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The possibility of distinguishing the pion structure-dependent radiation from the conventional inner
bremsstrahlung radiation in the radiative decay of pions into electrons is discussed. Calculation of the
photon energy spectrum and angular correlation shows that evidence for pion structure would be obtained
if any photons of energy less that 70 Mev were detected in 180° coincidence with m-decay electrons. The
probability of such events per unit solid angle is 20.2)X1077 relative to ordinary = — u+» decay, if the
assumption of a conserved vector current is made to relate the rate of radiative decay through the weak

V-interaction to the rate of 709 — 2y decay.

I. INTRODUCTION

HE universal V-4 form of the Fermi interaction

has in recent years been suggested by the evi-
dence in B8 and u decay. The other weak interactions
are then, in principle, consequences of strong couplings
together with the universal Fermi interaction. In the
decay of 7 mesons into electrons, where the momentum
transfer is large, evidence on the decay mechanism can
be obtained,!? in principle, by observing the associated
radiative decay = — e+v-. In this paper we amplify

* This work was performed under the auspices of the U. S.

Atomic Energy Commission.
1V. G. Vaks and B. L. Toffe, Nuovo cimento 10, 342 (1958).
2 K. Huang and F. E. Low, Phys. Rev. 109, 1400 (1958).

the calculation by Vaks and Ioffe! and discuss the
possibility of distinguishing structure-dependent effects
from less interesting structure-independent effects. We
supplement the electron spectrum already presented!:3
by calculating the photon spectrum, which may be
more easily observed experimentally.

The diagrams for the radiative decay are given in
Fig. 1. Diagrams (a) and (b), when defined in a gauge-
invariant way, give rise to the inner bremsstrahlung by
a decelerated or accelerated charge or magnetic moment.
The matrix element for this is proportional to eGm/+/%,

3S. A. Bludman and M. A. Ruderman, Phys. Rev. 101, 910
(1956).



