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identical. The change in the TEP should be almost
entirely due to the absence of a phonon drag TEP in
the alloy. The appropriate measurements have also
been initiated.

Third, a study similar to that reported herein but
using silver as the solvent metal and impurities belong-
ing to the silver and copper rows of the periodic table
is nearing completion. If our conclusions are correct
we should 6nd that in this case the roles of copper and
silver group impurities are reversed. That is, Cd, In, Sn,
and Sb should not greatly inhuence the phonon drag
TKP, whereas Zn and Ge, as well as Ga and As, should
be eRective in eliminating phonon drag.

Fourth and last, it will be of interest to investigate
dilute ternary alloys. For example, if a dilute alloy of

copper containing Cd and In is prepared, each solute
element being present in sufhcient abundance to elimi-

nate phonon drag by itself, the additional inQuence of

the other impurity (e.g., Cd) on the TEP of the binary
alloy (e.g., CuIn) should reveal itself solely as an effect
on the electronic contribution to the TEP. Some studies
of ternary alloys have already been initiated by
Domenicali. "However, his work is not of particular
usefulness to us for two reasons. First, one of the
solutes in each of his ternary alloys is a member of the
transition group. Second, his measurements span that
temperature region (room temperature and above) in
which the phonon drag eGect in the pure metal is
already quite small. It is significant, however, that
Domenicali is able to predict with a fair degree of
reliability the thermoelectric behavior of ternary alloys
from a knowledge of the TEP of the binary alloys.

We wish to thank Professor M. Garber for his
valuable assistance particularly with the measurements
at low temperatures.
"C. A. Domenicali, Phys. Rev. 112, 1863 (1958).
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Relativistic self-consistent solutions, without exchange, have been obtained for several atoms of large
atomic number by use of a general program for a high speed computing machine. A short description of
this program and of the self-consistent calculation is given. Eigenvalues for the individual electron subshells
of the self-consistent mercury, tungsten, platinum, and uranium atoms are presented. A comparison of
the calculation with previous results for the mercury atom is also included.

I. INTRODUCTION

HE wave function for an atomic system can be
obtained by several methods. For atoms of

small atomic number one method that has met with
much success is the self-consistent 6eld calculation of
Hartree. ' In the usual self-consistent calculations,
electronic wave functions that satisfy the Schrodinger
equation make up the product wave function for the
atom. For atoms of large atomic number these calcula-
tions suRer from the neglect of relativistic eRects,
particularly in the inner shells of the atoms. In the
present calculation the method of Hartree is used to
obtain the self-consistent wave function for the atom.
The single-particle wave functions are, however,
assumed to be solutions to the relativistic Dirac
equation. Many sizeable relativistic corrections are

*This study was performed by the author as a Consultant to
The RAND Corporation and was sponsored by the U. S. Atomic
Energy Commission.

f Present address: Physics Division, Argonne National Labora-
tory, Lemont, Illinois.' Douglas R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).

therefore contained in these solutions. Exchange eRects
are, however, not included.

Because a modern high-speed computing machine
(lBM type 704) was used for the numerical calculations,
it was possible to obtain self-consistent solutions of
high accuracy. Not only were a large number of grid
points used in the calculations but the solutions were
iterated many times to assure valid self-consistency.
For reasons of flexibility the computations were carried
out without the introduction of the usual numerical
trial solution to begin the iterations. An iterative pro-
cedure was included in the machine program which
made the calculation itself entirely automatic. The pro-
gram used in these calculations may therefore be used
for the calculation of the self-consistent solution of an
atom of arbitrary electron configuration and atomic
number.

Contained in this paper is a description of the
method for obtaining the relativistic self-consistent
solutions and the numerical techniques used. Also
included are results obtained for the solutions to the
ground states of several atoms. These include tungsten,
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platinum, mercury, and uranium. Because the complete
tabular results of these calculations are lengthy they
have not been included in this paper but are available
elsewhere. ' A comparison of the results of the calculation
of the mercury atom with previous calculations is given.

f,&(r,8,$)=
(J P+ 1 lt ~—

g(~) I . I v+e '(eA)

~Edited tabular results consisting of the normalized wave
functions and individual subshell potentials of each of the normal
atoms are available as Rand Corporation research memorandums.
They are identi6ed as follows: Mercury, RM-2272-AEC; Tung-
sten, RM-2404-AEC; Platinum, RM-2405-AEC; and Uranium,
RM-2372-AEC. These tables have also been deposited as Doc-
ument No. 6230 with the ADI Auxiliary Publications Project,
Photoduplication Service, Library of Congress, Washington 25,
D. C. A copy may be secured by citing the Document number and
by remitting $26.25 for photoprints or $7.50 for 35-mm micro-
fiilm. Advance payment is required. Make checks or money orders
payable to: puef, Photoduplication Service, Library of Congress.

II. DESCRIPTION OF THE CALCULATION

In. a self-consistent calculation, each of the electrons
of the atom is assumed to move in the combined
coulombic potentials of the nuclear charge and that
due to the other electrons of the atom. An approxima-
tion, the central-Geld approximation, is also used.
In this approximation all potentials are assumed to be
spherically symmetric and averages are made for all
angularly dependent effects. As a consequence of this
approximation, the electrons of the atom may be
grouped into subshells. The wave functions of the
members of a subshell have identical radial behavior
but differ in their angular dependences. These differ-
ences correspond to those electron states which dier
only in the projection of the total angular momentum
on the s axis.

Because the wave functions for the various electrons
are interrelated, a solution to a self-consistent problem
is given by presenting a set of wave functions for the
electrons of the atom. Such a set of self-consistent
wave functions constitutes a unique solution to the
problem and, in fact, can be shown to be that solution
which minimizes the energy of the atom if its wave
function is assumed to be a product of the individual
electron wave functions.

In the present treatment the individual electron
wave functions are assumed to satisfy the usua1 Dirac
equation in a central Geld. The four-component spinor
solutions may be written in the form

for j=l+~~and

P;(r,e,y) =

(j+~+&) '
—f(r) l . I V+."+'(~A)

4 2j+2 )

g()l
(i+I 't *

E 2j

(ib)

for j=l—~.
Here F~~ denotes the normalized spherical harmonics

describing the angular dependences of the wave
functions, j is the total angular momentum, and p is
the projection of this angular momentum on the s
axis. The radial dependence of the large and small
components of the wave function are given by f(r)
and g(r), respectively. These radial parts of the wave
functions are the solutions to the simultaneous diGeren-
tial equations

E'—Ea+ V;(r) dG k
F=— ——67

c dr r
(2a)

E;+ED+V;(r) dF k
F

c dr r
(2b)

V;(r) is the radial dependence of the central potential.
Equations (2a) and (2b) constitute an eigenvalue
problem in which the proper value of the energy, E;,
is that which results in solutions satisfying the appro-
priate boundary conditions. These boundary conditions
involve not only the asymptotic behaviors of the
wave function for small and large r but also the existence
of the correct number of nodes in the radial solutions.

Properly normalized solutions also satisfy the
condition

(F'+G')dr =1.
Jo

The potential distribution due to an electron in the
ith subshell is determined from its radial wave function

where F is rf(r) and G is erg(r). Here Eo is the rest
energy of the electron, mc', and k is the quantum
number associated with angular momentum, having
the properties

k)0; k= j+-,', j=1+2,
-

k&0; k= —(j+-,'), j=/ ——,',
k=+1 +2 +3 . .
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and is given by

rt;(») =e' »r ' (F'+Gs);d»sd»r.' J, (5)

and are of the form

F~sp ——Fp ssp+, hp(2Fp' —Fp sp'+2' se,'), (10)

and

From the contribution of each of the subshells and the
nuclear charge, the potential distribution for the atom
as a whole is obtained, i.e.,

V (»)= (Z—es/»)+Q; I;e;(»), (6)

where e; is the number of electrons in the ith subshell.
The eGective potential used in obtaining a wave

function is the total atomic potential less the contribu-
tion due to the particular electron being treated. Thus

V;(») = V(») —s;(»). (7)

Calculation of the Radial Wave Functions

Integration of the radial differential equations was
carried out numerically. In order to make ma~~urn
use of the available number of grid points, the calcula-
tions were carried out on a logarithmic scale in which
the variable of integration p was de6ned to be

p =ln (1000»/up),

If the solutions are indeed self-consistent, then for
each subshell the wave function obtained by using this
potential will, when integrated as in (5), lead to a n;(»)
identical to that used in determining the effective
potential in (7).

In practice the method used to solve a self-consistent
problem is to assume a set of trial wave functions and
potentials for each of the electrons of the atom and to
improve on these by successive iterations of the entire
solution. As a result of the variational nature of the
problem, these iterations will converge on the correct
self-consistent solution.

F(»)= (»/»p)" Qa»",

G(») = (»/»o)" 2 P:-
0

dF(»)/dp= (»/»p)" Q (X+m)a„»",
0

(12)

dG(r)//dp= (»/»p)" P (X+m)P„»".
0

The a's and P's satisfy the recursion relationships

(X+m+k)(E—u+Ep)P y Za(E u Ep)—a

F~e.'= F~sp+ (~~/5)(F~~p' +4m'+ F~s') (11)

The maximum error in an integration step by this
procedure is given by:

E=i F~—Fc)/29

Because these equations use functions at several grid
points, it is necessary to supply values for the functions
at several points to start the integration. Power-series
expressions for the wave functions for small r were used
for this purpose. These series were obtained. by assuming
that the potential for p(po is that of the nuclear charge
with an added constant contribution due to the
external-electron cloud. Kith this assumption, the
wave functions and their derivative can then be shown
to be of the form

where uo is the Bohr radius in hydrogen. In terms of
the new variable the radial de'erential equations become

and

c[(X+m)s—Vj
(13)

and

—kG,
dp

(E;+Ep)» »V;(») dF-
G= -kIi.

C tSp

(E,—Ep)» »V;(»)—p— (9a)

(9b)

(X+m+k)(E —u—Ep)a r+Za(E —u+Ep)P
P~=

c[(X+m)' —Xsj
where u is the constant potential due. to the electrons,
n is the 6ne structure constant, and X is given by

These equations were numerically integrated by the
method of Milne. ' In this procedure predicted values for
the wave functions at a new gHd point are obtained.
From the differential equations, values for the predicted
derivatives are obtained which are then used to deter-
mine corrected values for the wave functions and also
their derivatives. The equations used require the values
of the functions at the four preceding grid points

I James S. Scarborough, glmericel 3fethernahca/ Aealysis
Qohns Hopkins Press, Baltimore, 195Q), second edition, p. 293.

X=+[k'—(Za)'g&.

The constants ap and Pp are related by

(14)

ap/Pp ——Za/(X —k). (15)

By the use of these relationships, the wave furictions
and their d.erivatives at the four innermost giid points
were evaluated and used for starting the numerical
integration.

Numerical integration of the differential equations
in a cia,ssically forbidden region is inherently stable



492 STANLEY COB EN

cF(r„)LG(r —p) —G(r„+p)j
(16)

(F'+G')dr+ I (F +G')dr
4 0 rm

DE=lim
e—0- r~

This expression is obtained. by assuming that the
calculated wave function is a good approximation to
the correct one, and evaluating its expectation values
to arrive at a better approximation to the eigenvalue.
The calculation of .the wave functions was repeated
until this calculated. change in the eigenvalue was
negligible. This wave function was then used to obtain
the potentials used in the problem. The integrals for
the various potentials used in the calculation were
evaluated from the wave functions by use of Simpson's
rule. Contributions to these integrals for values of r
smaller than the innermost grid point were determined
from power-series expressions involving the parameters
of Eq. (12) and included in the calculations.

Iterative Scheme

The calculations of individual subshell contributions
to the total atomic potential were carried out by
making each subshell internally self-consistent in the
potential of the nuclear charge and that of the other
subshells. At the completion of the calculation for a
subshell the total atomic potential was altered to
include the change in the total atomic potential intro-
duced by the changes in that subshell. The subshells
of the atom were treated successively starting with the
innermost one. At the completion of each iteration of
the entire atom, each subshell was. tested for agreement
with the results of the previous iteration. If signilcant

about the solution with increasing magnitude. If the
integration is attempted for the monotonically decreas-
ing solution, propagated errors will eventually dominate
over the true solution. It is therefore necessary to
perform the integration in a manner that will eliminate
this difFiculty. For this reason a second inward integra-
tion of the differential equation was performed for the
region outside the outermost classical turning point.
As starting values for this set of solutions, it was assumed
that the ratio of the large to the small components was
—(Ep+E)i/(Ep E)' an—d that the wave functions of
the form cP" where b is given by —(Ep' E')'/c-.

The two sets of solutions were matched at a point,
r, near the outermost classical turning point. Because
the solutions contain an arbitrary multiplicative factor
this was done by multiplying the outer solution by
that factor which results in identical values for the
large components at the match point. In general,
because the eigenvalue used is not the correct one, the
small components will not be identical. This discrepancy
in the values of the small components was in fact used
to determine the correction to the eigenvalue for the
next calculation. The change in the eigenvalue was
assumed to be

changes had occurred in any of the subshells the iter-
ative process was continued.

Tests for self-consistency both within the subshells
and for the entire solution involved an investigation
of the potentials at the origin. Because the potential
distributions are all monotonic, it was assumed that
any significant changes in a wave function would be
manifested by changes in the value of its contribution
to the potential at the origin.

In a calculation of the self-consistency of a subshell
three successive iterations of that subshell were
required to agree before the subshell was considered
self-consistent. For the atom as a whole, agreement
between all of the individual subshell contributions for
two successive iterations was required.

Computation

Because the self-consistent calculations were carried
out on a modern high-speed computer (IBM-704), it
was decided to make the calculation as Aexible as
possible. Therefore no attempt to supply a trial set of
wave functions was made. Instead, a rather crude
6rst approximation for the solution was computed by
starting with the totally ionized atom and adding one
subshell of electrons at a time. During this process the
individual subshells were made self-consistent in the
potential of the nuclear charge and that of the other
subshells already included. In this manner the required
information for the starting a self-consistent calculation
was minimized and consisted only of the desired
configuration of the atom.

Although the calculations varied, seven or eight
iterations of the solutions were generally sufhcient to
obtain self-consistent results that were limited in
accuracy only by roundoG errors in the numerical
calculations.

When the final self-consistent solutions were obtained,
the results were stored on magnetic tape suitable for
use on an IBM-704 computer. These results include
the wave functions for each of the subshells of the atom
and also the potentials due to each of the subshells.

IIL RESULTS FOR MERCURY

In this calculation 541 grid points were used for the
numerical integrations. The grid spacing was chosen as
dp=1/36 with an innermost value of p= —4.00000.
The range in values of r is therefore from r; = 1.83156
)&10 'ao to r =59.874iuo. For this particular calcula-
tion iterations were carried out until successive values
of the individual subshell contributions at the origin
were constant to at least 2 parts in 10'. Six-6gure accu-
racy on all of the eigenvalues was obtained as indicated
by the values in successive iterations.

In order to obtain estimates of the accuracy of the
wave functions, the hydrogenlike wave function for
the 1S electron in an ionized mercury atom was
computed. This wave function was accurate to at
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TABLE I. Comparative results for the energy-term
values in the normal mercury atom, in rydbergs.

Subshell

Experimental
energy-term

value

Previous
non- Previous

relativistic relativistic This
results results calculation

1S
2S
2P1/2
2P3/2
3S
3P1/2
3P3/2
3D3/2
3D5/2
4S
4P1/2
4P3/2
4Da/2
4DS/2
4FS 2

4FT/2
5S
SP1/2
SP3/2
SD3/2
SDf/2
6S1/2

6115.9
1093.3
1046.9
905.0
262.5
241.7
209.8
176.0
169.3
59.3
50.2
42.7
28.3
26.7
7.8
6.9
9.2

~ ~ ~

1.1
~ ~ ~

0.7682~

5553
925

892

216.9
200.6

170.5

46.07

38.89

25.79

8.39
6.93

4.60

0.920

0.471

8.01
5.58
4.92
1.021
0.981
0.536

6145.7
1081.8
1041.7
897.9
255.7
236.1
204.7
173.2
166.4
55.86
47.42
39.81
26.19
24.78
7.44
7.13
8.806
5.997
4.626
0.858
0.712
0.5665

The value was obtained from the first ionization potential.

least six figures inside the classical turning point and
to at least one part in 10' of the value of the functions
at the turning point for points outside. In addition in
order to obtain estimates of the accuracy of the self-
consistent calculations as a whole the entire calculation
was repeated with half the number of grid points and
a grid spacing of hp= 1/18. The results of this calcula-
tion were found to be in excellent agreement with the
previous calculation. The energy eigenvalues for the
individual subshells agreed to at least six figures for
E, L, and M shells and deviated by less than 0.0002 Ey
for the other electrons. At least four figure agreement
was found in all the potential functions and wave
functions for the individual subshells.

The eigenvalues obtained for the normal mercury
atom are given in Table I. Also included in this table

T~LE II. Energy-term values for Hg++, in rydbergs.

Subshell

Previous
nonrelativistic

results

Previous
relativistic

results
This

calculation

1S
2S
2P1/2
2P3/2
3S
3P1/2
3P3/2
3D3/2
3D5/2
4S
4P1/2
4PB/2
4D3/2
4D5/2
4F5/2
4F7/2
SS
SP1/2
SP3/2
5D3/2
SD5/2

8.115

5.77

2.095

6181
1102
1061
917
263.8
244.4
212.5
181.2
175.5
57.73
50.08
42.47
28.68
27.36
9.63
9.40

10.36
7.50
5.97
2.18
2.03

6147.00
1083.08
1042.98
899.17
257.02
237.41
206.00
174.47
167.70
57.13
48.70
41.09
27.47
26.06
8.72
8.41

10.08
7.27
5.90
2.14
2.00

TABLE III. Comparison of energy eigenvalues with experimentally
determined term values for tungsten, in rydbergs.

Subshell

Number Experimental
of energy-term

electrons value
Calculated
eigenvalue

hp=1/36 with an innermost value of p= pe= —4. The
range of values of r is therefore from r;„=rp=1.83156
&10 up to r, =59.8741 ap. The iterations of the
calculation were repeated until successive values of
the individual subshell contributions to the potential at
the origin were constant to at least 1 part in 106.
Six-figure accuracy for all energy eigenvalues was
obtained as indicated by their values in successive
iterations. The energy eigenvalues obtained from this
calculation are given in Table III. Also included in
this table are experimental energy-term values for
each of the subshells of the atom. '

are previous nonrelativistic results, ' a previous relati-
vistic calculation' and experimental energy terms for
this atom. As expected, the relativistic results are in
considerably better agreement for the inner electrons.
It is apparent that some improvement is also present
for the outer electrons. Table II contains similar
information for the Hg++ ion.

IV. RESULTS FOR TUNGSTEN

In this calculation 541 grid points were used for the
numerical integrations. The grid spacing chosen was

'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).

5 D. F. Mayers, Proc. Roy. Soc. (London) A241, 93 (1957).
6 H. H. Landolt and R. Bornstein, Zehlelmerte Nwd FNektioeee,

(Springer-Verlag, Berlin, 1950), 6th ed. , VoL 1, p. 228.

1S
2S
2P1/2
2Pg/2
3S
3P1/2
3P3/2
3DR/2
3Ds/7
4S
4PI/2
4P3/2
4DS/2
4D5/2
4FI,/2
4F7/2
SS
5P1/2
SP3/2
SD3/2
6S

5120.3
890.64
849.75
751.25
207.17
189.20
167.58
137.36
132.76
43.38
35.70
30.79
18.57
17.58

5.19
2.96
2.20

5139.0
880.90
845.74
745.82
202.21
185.21
163.93
136.10
131.44
41.47
34.39
29.40
17.91
17.00
2.701
2.529
5.889
3.785
3.058
0.411
0.492
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TABLE IV. Comparison of energy eigenvalues with experimentally
determined term values for platinum, in rydbergs.

Subshell

1S
2S
2P1/P
2Ps/2
3S
2P1/2
3Ps/2
3Dsia
3Dsn
4S
4Pua
4Ps/r.
4Ds/s
4'/2
4ps/2
4~7/2
5S
5P1/s
5Ps/2
5Ds/2
5Ds/s
6S

Number
of

electrons

2
2
2

2
, 2

4
6
2
2
4

6
6
8
2
2

5

Experimental
energy-term

value

5773.8
1021.92
977.41
851.47
242.60
222.46
194.73
162.01
156.01
53.06
44.51
37.82
24.24
22.84

5.15

7.29
4.51
3.51

Calculated
eigenvalue

5796.7
1011.44
973.04
845.37
236.76
218.05
190.38
160.11
154.11
50.59
42.63
36.01.
23.11
21.89
5.57
5.32
7.666
5.102
3.980
0.599
0.486
0.502

V. RESULTS FOR PLATINUM

In this calculation 613 grid points were used for-the
numerical integrations. The grid spacing chosen was
hp=i/36 with an innermost value of p=po= —4. The
range of values of r is therefore from r; =r0=1.83156
X10 'ao to ~~~=442.413 uo. Values of r larger than
59.8741 however were of no importance because the
electron cloud has an insigniicant density beyond this
value. The iterations of the calculation were repeated
until successive values of the individual subshell
contributions to the potential at the origin were
constant to at least 1 part in 10'. Six-6gure accuracy for
all energy eigenvalues was obtained as indicated by
their values in successive iterations. The energy
eigenvalues obtained from this calculation are given in
Table IV. Also included in this table are experimental
energy-term values for each of the subshells of the
atom. .'

VI. RESULTS FOR URANIUM

This calculation made use of the same parameters as
the calculation of the platinum atom. Values of r

between 1.83156)&10 ao and 442.413 ao were com-
puted. As in that case however only values of r less
than 59.8741 contained any useful information. The
iterations were continued until values of the individual
subshell contributions to the potential at the origin
were constant to 1 part in 10'. Six-6gure accuracy for
all energy eigenvalues was obtained as indicated by

TABLE V. Comparison of energy eigenvalues with experimentally
determined term values for uranium, in rydbergs.

Subshell

Number Experimental
of energy-term

electrons value
Calculated
eigenvalue

1S
2S

2Ps/s
3S
3P1/2
3Ps/2
3Ds/g
3D5/s
4S
4P1/s
4Ps/0
4Ds/s
4Ds/2
4Fg2
4F7/2
5S
5P1/s
5Ps/g
5Ds/2
5Dg2
5I"5n
65
6P1/s
6Ps/2
6Ds/2
7S

2
2
2
4
2
2
4

6
2
2
4

6
6
8
2
2

4
6
3
2
2

1
2

8515.0
1602.44
1542.73
1264.32
408.66
381.66
316.90
274.42
261.51
106.00
93.69
76.79
57.43
5436
28.5
27.6
23.94
18.86
13.59

)~ u
~ ~ ~

5.32
2.04

~ ~ ~

0.27

8562.76
1589.79
1537.77
1255.32
399.48
373.79
309.50
270.05
256.95
101.01
89,40
72.71
54.45
51.40
27.69
26.89
22.62
18.11
14.1.i
7.58
7.00
0.274
3.598
2.287
1.625
0.225
0.379

their values on successive iterations. The results are
given in Table V.
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