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The energies of the magnetic sub-bands associated with the ¥, and V, valence bands in germanium have
been calculated as a function of ., the propagation constant parallel to the external magnetic field. Warping
of the ¥; and V. bands was neglected. Sub-bands belonging to the 1+ and 2% ladders (light holes) have
minima at k,=0 and show quantum effects consisting of a decrease in curvature as the valence band edge is
approached. Sub-bands belonging to the 2~ ladder (heavy holes) also have minima at k,=0, but the curva-
tures increase near the valence band edge. The 1~ heavy hole sub-bands show very marked quantum effects.
The sub-band minima occur at values of %, different from zero, and local maxima appear at k,=0. The
peculiar nature of the 1~ magnetic sub-bands may lead to observable effects in various magneto-optic

phenomena in germanium.

I. INTRODUCTION

N the presence of an external magnetic field the
energies of electrons or holes in semiconductors are
quantized into magnetic sub-bands or Landau levels.
During the last few years a great deal of valuable in-
formation concerning semiconductors has been obtained
through the study of optical transitions between mag-
netic sub-bands. For example, cyclotron resonance! in-
volves optical transitions between sub-bands in the same
band, while the interband magneto-optic effect? involves
optical transitions between sub-bands in different bands.
Also potentially useful is the study® of optical transitions
between bound impurity levels and the sub-bands of the
valence or conduction bands.

In each of these phenomena the most intense absorp-
tion corresponds to transitions from or to the extrema
of the sub-bands involved. This is a consequence of the
fact that the magnetic sub-bands are essentially one-
dimensional and have infinite densities of states at their
extrema. Furthermore, the peak intensities are in part
determined by the curvatures of the sub-bands at their
extrema. It is therefore clear that in order to understand
the positions and intensities of absorption in the various
magneto-optic phenomena, one should have a detailed
knowledge of the structure of the magnetic sub-bands.

In the present paper the structure of the magnetic
sub-bands in the valence band of germanium is de-
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veloped using the theory of Luttinger. It is found that
the degeneracy of the valence band leads to some rather
surprising “quantum” effects.

II. DERIVATION OF THE SECULAR EQUATION

According to Luttinger the effective mass Hamiltonian
D for holes in the Vi and V; valence bands in the
presence of a constant external magnetic field H can be
written as

D= (1/m)[ (y1+5v2) (P/2)
__72(}712]124__})“2]”2_!_})22]22)
=2vs({ PPy H{J oJ } +H{PyP:}{J J 2}
+{P.P}{J.J :})+ (e/c)cI-H+(eg/c)
X (JSH AT pH AT 3H,)], (1)

where v1,72, 73, k and ¢ are the effective mass parameters
and J,, J,, and J, are 4X4 matrices satisfying the
commutation rules for angular momentum. The quanti-
ties P4, Py, and P, are the components of the kinetic
momentum operator p+ (¢/c)A where A is the vector
potential of the external magnetic field. The symbol
{P.P,} represents the symmetrized product (PP,
+P,Ps).

For germanium it is a reasonably good approximation?
to take ys=v3=% and to take ¢=0. We adopt the
representation discussed by Luttinger in which
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Under these conditions the Hamiltonian D can be
rewritten in the form

D= D0+D1+D2, (3)

4 J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
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where
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We shall assume a constant external magnetic
field in the z direction and shall choose the gauge
A= (—Hy, 0, 0). The eigenvectors of D are then con-
veniently expressed in terms of the functions

c exp[i(kx+k.2) ] ( st
Y@Ly \aum
where t=sty— (k,/s?) and H;(f) is the Hermite poly-

nomial of degree I. The functions G; satisfy the following
relations:
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where {=k,/st.
As indicated by Luttinger the eigenvectors of D as
given in Egs. (3) can be written in the form
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where the ¢; are numerical coefficients. If one substitutes
Eq. (9) into the Schrédinger equation

Dy=¢y, (10)

and makes use of Egs. (5)-(8), one finds that the eigen-
values of D are determined by solution of the secular

equation
y6(—-1 1% 0
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=0, (11
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where the energy e is measured in units of zeH/mc. The
quantity / corresponds to the Landau magnetic quantum
number. For /= —1 there is one physically meaningful
solution to Eq. (11), for /=0 there are two solutions, for
I=1 there are three solutions and for /=2, 3, 4, - - - there
are four solutions.

(7 (—24+8)+3(n—27)" 5k —e
—y[3I0-1)1
(1= ) (= 14+3)+3 (r1+29)+Hx—e
—7[310+1) ]

and

The solutions of Eq. (12) may be designated by e*(7)
and e~ (/) in accordance with Luttinger while the solu-
tions of Eq. (13) may be designated by e;*(?) and e~ (7).
It is convenient in calculating e;t(f) and es~(J) from
Eq. (11) or Eq. (13) to replace ! by J— 1. If this is done,
physically meaningful values of both €*(?) and e+ (J)
correspond to /=0, 1, 2, 3, - - - while meaningful values
of both e,~(J) and e;~(J) correspond to I=2, 3, 4, ---.
This notation for the magnetic levels now agrees with
that of Luttinger (except for replacing # by 7) and will
be followed in the remainder of the paper. A diagram of
the energy levels obtained by solving Eqgs. (12) and (13)
is given in Fig. 1 for germanium. The effective mass
parameters were assigned the values y;=13.20, ¥=4.92,
k= 3.30 which were calculated from data kindly supplied
by Dr. Evan O. Kane. The plus levels form two light
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Fi6. 1. Energies of the magnetic sub-bands for the valence band in
germanium measured from the band edge in units of #eH /mc.
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It may be noted that if the quantity ¢, which is a
measure of k., is set equal to zero, the secular determi-
nant factors into a product of two quadratic functions
of ¢ so that the eigenvalues of e can be obtained by
solving the two quadratic equations

—[310— D ~

(=) D et 29— hce (12)
—7[3L0+ D ~

(i) 13+ (29— e T (13)

hole “ladders” with a relatively large spacing between
adjacent levels while the minus levels form two heavy
hole “ladders” with a relatively small spacing between
adjacent levels. The quantum effects discussed by
Luttinger are manifested by the nonuniform spacing of
levels in a given ladder.

If ¢ is not zero, it is more difficult to obtain exact
analytic solutions to Eq. (11). Since exact solutions are
available for {=0, however, one can use perturbation
theory to obtain the energy levels correct to second
order in {. Such solutions are satisfactory for small ¢.
Alternatively, one can solve Eq. (11) numerically and
obtain results valid for a larger range of {. We have
carried out treatments of both types.

III. PERTURBATION THEORY FOR SMALL (

The eigenvalues of the zero order Hamiltonian Dy are
determined by the solutions of Eqgs. (12) and (13). The
corresponding zero order eigenfunctions can be written
as

c*Grs
+— 02:‘:61
‘I’l 0 ’

0

0
0
T lest G|’
c*Gy

(14a)

(14b)

The operators D; and D, may be treated as perturba-
tions, and correction terms calculated by standard
matrix perturbation theory. It may be noted that the
diagonal matrix elements of D; with respect to the
eigenfunctions of Dy lead to first order corrections to the
energy which are proportional to {2. The diagonal matrix
elements of D, vanish so that the first order energy
corrections from D, are zero. Nonvanishing matrix ele-
ments of D, exist between the following pairs of states:
1+, 2+ (0+1); 17(0), 270+1); 1-(), 2+(+1); 170,
2~(l+1). Second order energy corrections from D, are
proportional to {2

The results of the second order perturbation treat-
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ment of D; and D; can be expressed as
e(1,) = e()+ #s/2m*)*, (15)

where €() stands for e;*()) or ex*(/) as appropriate and
m* is the curvature effective mass of the magnetic sub-
band at {=0. In Table I the values of m*/m are given
for magnetic sub-bands in germanium which lie near the
valence band edge. One sees that the light hole sub-
bands (4 levels) near the band edge show quantum
effects in their curvature effective mass ratios, but far
from the edge the effective mass ratios approach the
value 0.04 given by cyclotron resonance measurements.!
The increase in effective mass near the band edge is
consistent with the decrease in separation between light
hole sub-bands at {=0 as shown in Fig. 1. The largest
quantum effect is shown by the 2+(0) level which has a
curvature characteristic of a heavy hole rather than a
light hole.

The results for the heavy hole sub-bands (— levels)
are quite surprising. The effective mass ratios are much
smaller in magnitude than the value 0.3 given by
cyclotron resonance! and show no tendency to approach
this value away from the band edge. For the 1~ levels
the effective masses are negative indicating that these
sub-bands have a curvature at {=0. opposite to that
normally expected for holes.

The reason for the anomalous behavior of the heavy
hole sub-bands can be segn by inspection of Fig. 1. One
notes that pairs of heavy hole levels [the 1-(?) and the
2-(14+1) levels, I=2, 3, 4, ---] are very nearly de-
generate and that the tendency toward degeneracy in-
creases away from the band edge. Furthermore, these
pairs of nearly degenerate levels are coupled by the
perturbation D, so that the second order corrections to
the energy involve energy differences in the denomi-
nators which nearly vanish. For small ¢, these interac-
tions between pairs of nearly degenerate levels give the
dominant second order corrections to the energies.
Consequently, in one ladder of levels the energies in-
crease rapidly as |{| increases from zero while in the
other ladder the energies decrease rapidly.

IV. EXACT SOLUTIONS

The strong interaction between the pairs of levels
1—-()) and 2-(J+1) leads to a breakdown of second order
perturbation theory for only moderate values of |¢|. In
order to extend the calculations to larger values of |¢],
exact solutions to Eq. (11) were obtained numerically

TasBLE 1. Curvature effective mass ratios m*/m at ¢=0.

l 1+ 2+ 1~ 2=
0 0.120 0.298

1 0.076 0.055 .

2 0.045 0.048 —0.064 0.065
3 0.043 0.046 —0.038 0.041
4 0.043 0.045 —0.027 0.030
5 —0.021 0.023
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Fi16. 2. Energies of the light hole magnetic sub-bands as func-
tions of {. The energies are measured from the band edge in units
of #eH /mc.

using the NAREC digital computer at the Naval Re-
search Laboratory. We are indebted to Dr. Benjamin
Lepson who provided us with the numerical solutions.

The results of the numerical calculations for the light

. hole magnetic sub-bands are shown in Fig. 2. These sub-

bands are nearly parabolic with curvatures correspond-
ing to the effective masses listed in Table I. The
quantum effects in the curvature effective masses and
in the energy separations at {=0 are the principal
differences from the magnetic sub-bands for non-
degenerate parabolic bands.

The results for the heavy hole magnetic sub-bands are
shown in Fig. 3. The 2~ levels approximate parabolas in
a very rough manner. The curvature of a given level is
not constant but decreases rapidly as |{| increases from
zero. The 1~ levels are characterized by local maxima
at {=0 and local minima at symmetrically located
values of ¢ away from {=0. For sub-bands near the
band edge, the energy separation between the maximum
and minimum of a given sub-band is about 209, of the
separation of adjacent sub-bands at { =0. The curvature
varies not only in magnitude but also in sign. For
|¢|>>1, the curvature is approximately that corre-
sponding to the classical heavy hole mass value of 0.3m.

The curvature effective masses at the local minima
away from {=0 are of special interest and are tabulated
in Table II together with the positions of the minima.
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F16. 3. Energies of the heavy hole magnetic sub-bands as func-
tions of {. The energies are measured from the band edge in units
of #eH [mc.

The effective mass ratios increase away from the band
edge and approach the classical value 0.3. The range of
¢ values for which the curvatures are anomalous de-
creases the farther the sub-band lies from the band
edge. The anomalous effects in the 1~ sub-bands there-
fore vanish in the limit of large ! values. This is in
accordance with the quantum nature of these effects.

The exact results for the energies of the heavy hole
sub-bands can be presented in an approximate analytic
form if one carries out an exact diagonalization of the
Hamiltonian D with respect to the states 1~(J) and
2—(l4+1) and treats the remaining interactions by second
order perturbation theory. The energies can then be
written in the approximate forms

e (L,O~A1+ B2 — 3 (R+Si2)}, (16a)
e (141, O)~A,+ B3 (R+S¢9)},  (16b)

where the quantities 41, A3, B1, Bs, R, Re, S1, S2 are
rather complicated functions of the effective mass
parameters and the magnetic quantum number /. For
very small ¢, the square roots in Egs. (16) can be ex-
panded in powers of {? yielding results equivalent to
those .given by second order perturbation theory. For
larger {, the square root terms become proportional to
|¢] and are then insignificant compared to Bi{? and
B2 if ¢ is sufficiently large.
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It is instructive to consider the forms of Eqgs. (16) if
is large, i.e., the magnetic sub-bands are far from the
band edge. The following relations are then approxi-
mately valid:

Ar=A~(y1—27)l, (17a)
B]_=B22%(‘Y]_—2’)7), (17b)
29+v1—«x)8 1
Rz_————( 1) -, (17¢)
(32,72)2 l4
9(v1—«)?
S~ (17d)
2!

One sees that for sufficiently large /, the terms involving
the square roots in Egs. (16) become negligibly small
compared to the other terms. The sub-band energies can
then be written in the form

e ()= e (D> (v1—27)I4-5 (11— 298,

corresponding to simple parabolic magnetic sub-bands
with a mass ratio (m*/m)= (v1—2%)1=0.298. We thus
have a confirmation of the statement that the quantum
effects vanish far from the band edge.

(18)

V. DISCUSSION

The quantum effects investigated in this paper may
lead to observable phenomena in magneto-optic studies
of germanium and similar semiconductors. This is par-
ticularly true of optical transitions from or to the 1~
magnetic sub-bands. These sub-bands have infinite
densities of states at the local maxima at {=0 and at the
minima away from {=0. It has been recognized previ-
ously? that the infinite effective densities of states for
vertical transitions at {=0 lead to sharply peaked ab-
sorption lines in the interband magneto-optic (IMO)
effect corresponding to transitions from the 1~ levels in
the valence band to the magnetic sub-bands associated
with the conduction band minimum at 2=0. From the
present work it may be seen that the shapes of the 1~
sub-bands are such that the effective density of states
for optical transitions to other magnetic sub-bands may
be infinite for vertical transitions at certain { values not
equal to zero. These infinite effective densities of states
for optical transitions away from {=0 may be expected
to lead to new absorption peaks in the IMO effect.

TasLE II. Curvature effective mass ratios m*/m for heavy hole
minima not at {=0.

! m*/m $min
2 0.198 0.74
3 0.223 0.74
4 0.245 0.70
5 0.259 0.65
6 0.269 0.61
7 0.276 0.57
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Similar phenomena should occur in the cyclotron
resonance of holes in germanium. In his discussion of the
quantum theory of cyclotron resonance Goodman® has
recognized that the absorption line shapes may be
modified by {0 effects. New absorption lines may
arise due to transitions involving the 1~ levels and
having infinite effective densities of states for {#0.

New peaks may also be expected in the photo-
ionization absorption spectrum of acceptor impurities in
germanium in an external magnetic field.® Investiga-
tions are currently underway on the various topics just
discussed.

The calculations presented in this paper have been
based on the assumption that ys=+s3. This is equivalent
to neglecting the warping of the valence band. The
question arises whether lifting the restriction y,=+3 has
any important effect on the results presented. A partial
answer may be obtained by considering the effect of
27473 on the sub-band energies at {=0. Goodman’ has
made calculations of these energies with v, and vs
chosen to fit the cyclotron resonance data of Fletcher,
Yager, and Merritt® and with the magnetic field in the
(100), (110), and (111) directions. For the (100) and
(110) directions the sub-band energies are shifted only
slightly compared to the case in which y. and s are
replaced by %(v2=+13). In particular, the energies e;~(f)
and e;(l4-1) are again very nearly equal. Since these
levels are still coupled by the { perturbation, one should

5R. R. Goodman, Ph.D. dissertation, University of Michigan,
Ann Arbor, Michigan, 1958 (unpublished).
( “SR.) F. Wallis and H. J. Bowlden, J. Phys. Chem. Solids 8, 318
1959).
7R. R. Goodman (private communication).
8 R. C. Fletcher, W. A. Yager, and F. R. Merritt, Phys. Rev.
100, 747 (1955).
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again find large quantum effects in the dependence of
the heavy hole sub-bands on {. For the (111) direction
the energies are shifted somewhat more than in the (100)
and (110) directions, but the near degeneracy of the
1~()) and 2-(l+1) levels is not greatly affected. Large
quantum effects in the heavy hole sub-bands may
therefore be expected in the (111) direction also.

A comment may be made concerning the relationship
between the negative mass holes of the 1~ sub-bands
near {=0 and the negative mass holes studied by
Dousmanis et al.? through cyclotron resonance. In the
latter case the negative mass holes are a consequence of
the warping of the valence band. The negative masses
for holes discussed in the present paper do not arise from
the warping of the valence band and apply only to
motion of the holes parallel to the magnetic field. It,
therefore, appears that the two types of negative
effective masses are different manifestations of the com-
plexity of the valence band in germanium.
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