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The normal modes of a lattice of coupled dipoles are studied as a model of the collective excitations of
electrons in condensed materials. Two types of oscillations are found in which electrostatic coupling has a
dominant influence. One of them is analogous to the oscillation of an electron plasma and has a high dipole
moment. Other collective oscillations have a low net dipole moment, owing to destructive interference
between out-of-phase components. These two types of oscillation occur in systems with a sufficiently high
density of oscillator strength in space and in spectrum. A simple estimate indicates that most condensed

materials fulfill this condition.

1. INTRODUCTION

OST condensed materials are excited, by the
passage of fast electrons, to “characteristic”
energy levels. The valence electrons of distant atoms
are understood to participate in these excitations
collectively owing to the dominant influence of their
Coulomb interaction.! The collective excitations have
been treated theoretically, in the main, by means of the
plasma model of metal electrons.!:? It has been pointed
out? that the mechanism which yields collective ex-
citations in a plasma should also operate in insulators,
but it has been possible thus far to develop only
sketchily a theory that would apply equally to all types
of macroscopically homogeneous condensed materials.*
To complement the detailed results of the plasma
model, which is somewhat unrealistic (especially for
nonmetals), we consider in this paper another model,
which is many ways complementary to the plasma
model and which can also be worked out in detail. This
model consists of a tubic lattice of identical electric
dipole oscillators coupled by their electrostatic inter-
action. Whereas, in the plasma model, the Fermi gas
of uncoupled electrons has a single band of excitation
levels beginning at zero energy, we assume at each
lattice site an unspecified number of isotropic oscillators
with different proper frequencies w,.® No interaction
is assumed among the oscillators at the same lattice
site.®
Our objective will be to determine the normal modes
of the whole lattice of ceupled oscillators, i.e., its eigen-

* Supported in part by the Office of Naval Research.

1 See, e.g., L. Marton, L. B. Leder, and H. Mendlowitz, Advances
in Electronics and Electron Physics, edited by L. Marton (Aca-
demic Press, New York, 1955), Vol. 7, p. 183.

2 See, e.g., D. Pines, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, New York, 1955), Vol. 1.

3N. F. Mott, Solvay Congress, Brussels, 1954 (unpublished)
quoted in reference 2, p. 400.

4U. Fano, Phys. Rev. 103, 1202 (1956).

5 This model is quite analogous, in its main concept, to that of
W. R. Heller and A. Marcus, Phys. Rev. 84, 809 (1951), but
differs from it in its emphasis on the characteristics of many-
frequency systems. In addition, Heller and Marcus overlooked
that the polarization must obey the Eq. (13) of this paper.

8 Such interactions may be regarded as having been removed
by a previous reduction to normal modes.

frequencies and eigenvectors. It is hoped the physico-
mathematical properties of the special model considered
in this paper will occur again in the eventual theory of
the excitation of realistic types of condensed matter.

2. DESCRIPTION OF THE MODEL
AND CALCULATION

Consider a cubic lattice of identical sites, 1, 2, - -,
i, - -+, with space coordinates r;. At each site there are
a number of oscillators, each of which is identified by
an index 1, 2 ---, n, ---. Each oscillator consists of a
particle of mass m and charge ef.}, bound by an elastic
force with force constant k,=mw,* to a particle of
charge —ef,} which is fixed at the lattice site. The
number of sites in the lattice will be indicated by N,
with the understanding that we always consider the
limit N — . The coefficient f,, which serves to
express the charge of each oscillator in terms of the
electron charge e, will be called the strength of the
oscillator. We seek to determine the displacement s,;
of each oscillator particle from its equilibrium position
when the whole lattice of dipoles oscillates in a normal
mode.”

Because the lattice is invariant under translation by
any lattice vector, the displacement s,; must be, in a
normal mode, a sinusoidal function of the lattice site
position r;, characterized by a wave vector k. We shall
be interested in normal modes with a long wavelength,
i.e., with a small k. All oscillators will be assumed to be
polarized in a single direction, indicated by a unit
vector p. (It will turn out that p is either parallel or
perpendicular to k, in a normal mode.) The displace-
ment 8,; will then be represented by

Sni=an(f) P cos(k-r:+ o), 1)

where ¢ is arbitrary and @,(¢) has to be determined.
The net dipole moment of the ith lattice site will then be

pi=Ynefalsni=e [ n fala.(t)]p cos(k-rito). (2)
The kinetic energy of all the lattice oscillators is
K=Y initmd,(t)? cos?(k-r;+ @)=1Nm > . d.2, (3)

7 A classical treatment is sufficient for our purpose since the
normal modes of coupled harmonic oscillators are determined by
the same procedure in classical as in quantum mechanics.
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and the potential energy of the elastic forces is
U=3in 3kna,(t)? cos?(k- 1,4+ o) =iNm > ., w.la:t. (4)

The electrostatic interaction energy between all the
dipoles at different sites is

=3 20 2w i Di—3 Pi-Pij i Pii1/7if
= %62[27; fn*an (t):lz Zi Zj;ai COS(k'l‘,'-!- go)
Xcos(k-t;4)[1=3(p-#5)*1/ri%,  (5)

where r;j=r;,—r; and 7;;=r;;/r;; is a unit vector. Con-
sider that

cos(k-r;+ o) cos(k-r;+ o)
=X{cos[k- (r;+1;)+2¢]+cosk-r;;},

that the first term in these braces averages out upon
summation over lattice sites, and that the residual
> i« has the same value for each lattice site 7. Eq. (5)
reduces, therefore, to

V=3Ne(Xn falan)? Lji €* 5[ 1=3(p-7:5) /1
~+compl. conj. (6)

The 3 ;. in (6) has been the subject of many studies,
in recent years particularly by Cohen and Keffer® and
also, for k~0, in reference 5 and by Nijboer and
De Wette.? Its limit for k=0 depends on the angle
between k and $. We shall consider only the value of
V for this limit, but reference 8 gives also data through-
out the first Brillouin zone in k space. In the limit,
Eq. (18) of reference 8 yields

V=N(xe/a®)(Zn flan)[(B-RP—3], (D)

where ¢ indicates the cell edge in the cubic lattice and
E=Kk/k. The average total energy of a lattice site is,
then,

E=(K4+U+V)/N=im 3 , d2+3im D . wala,?
+imCewp? (X n f 2taa)%,  (8)

C=(p-kby—3%, 9)
2= 4ret/ma® (10)

indicates the squared plasma frequency of a gas of a3
particles of charge e and mass 7 per unit volume.

The amplitudes a.(f), the polarization $, and the
frequency @ of each normal mode can be determined
by requiring that the time integral of the Lagrangian
L=K~—U-—YV be stationary with respect to variations
of the a,(f) and of p. (Ordinarily one would consider
the variations of all Cartesian components of the vectors
a,(¢)p as independent variables, but here the direction
D is treated separately from a,(f) because it is common
to all vectors @,(¢)$ and because L depends on it only
through the coefficient C.) Variation of the amplitudes

8 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955). The
factor p in Eq. (18) of this reference is due to a misprint and

should be deleted.
9 B. R. A. Nijboer and F. W. De Wette, Physica 24, 422 (1958).

where

and where
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a,(t) leads to the Euler-Lagrange equations

d 0L 9dL

dt ddy,

9a,

=0, (11)

that is, to the system of coupled equations of motion
Gn=—020n—Cw2fs} 2 m fmiCm. (12)
Variation of p, subject to the condition $-p=1, leads
to the eigenvalue equation
grads(C—Np-§)=2(p-B)E—2p=0.  (13)

This equation has the eigenvalues A=1 and 0 and eigen-
vectors p parallel or perpendicular to k, corresponding
to longitudinal () or transverse (t) normal modes, with

ﬁ=ﬁl=k: C=Cl=%1 (142)
or
(-B)=(p-k)=0, C=Ci=—3%.  (14b)
The solutions of (12) are of the form
an () =0 fx}/ (w*—wa?)] cos(wt+38), (15)

where b is a normalization constant and the frequency
w has to be determined by inserting (15) into (12). We
obtain thus for  the eigenvalue equation

1=Cop* 2on fo/ (@P—wi?)= —Ca(w), (16)
a(@)=wy’ Xa fo/ (0d—d?), (17

represents the polarizability of a unit volume of the
oscillator lattice, computed without regard to the dipole
interactions.

The eigenvalues of (16) will be indicated by Q, and
subscripts 7, or f, will be added when necessary to
specify the eigenvalue of the nth longitudinal or trans-
verse mode. The normalization constant & may be
expressed in terms of the mean energy per site E by
substituting (15) into (8). This yields

where

272 fo 1 o da
=gmaw’b an—zmbzw—}m, (18)
that is
4Fw,?
( ) (19)
mw*do/d(w?)

Utilizing this result and the eigenvalue equation (16),
we may express the dipole moment (2) of the ith lattice
site, for a normal mode oscillation of frequency @, and
average site energy E, in the form

4Ewp2 3 fn'
()
me?da/d(w?) W —war
X cos (wt+5)] P cos(k-r;+ o)
w=0Qpn

=eF (4E/mQ,.0) P cos(k -1+ ¢) cos(R.i+8), (20)
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where

-1

el ]
d(w/w?)Jo=2,

f n’ ]—1
(ﬂn2 - wn’2)2 ‘

The same dipole moment would arise if there were at
the 7th site a single oscillating particle with mass m,

~| et £ (21)

charge eF,}, force constant mQ,2 and energy
2E cos?(k-r;+8). Notice that
Zn Fn=Zn fn, (22)

for longitudinal or transverse modes, as shown in
Appendix A.

3. DISCUSSION

A macroscopic medium, whose electric properties
are characterized by a dielectric constant e(w), can be
the seat of longitudinal or transverse polarization waves
whose proper frequencies lie at the zeros'® or at the
poles of e(w), respectively. Therefore, the roots of the
eigenvalue equation (16), with C=% or —3, identify,
respectively, the zeros or poles of the dielectric constant
of our lattice. This information, combined with the
information that ¢(w) is analytic and e()=1, shows
that e(w) is related to the lattice site polarizability
a(w)a@?/4r, defined by (17), by the Lorentz-Lorenz

formula
( )=1+§a(w) e(w)—1
1—%&((,0), e(w)+2

The Lorentz derivation of this formula treats macro-
scopically the mass of dielectric in a condenser with the
exception of a small volume within which the interaction
of microscopic dipoles is considered in detail. In the
derivation by Nijboer and de Wette,® the microscopic
treatment is extended to all dipoles in a mass of di-
electric and the existerice of boundaries of the medium
influences only the geometrical procedure for summing
over the dipole interactions. In this paper, as in an
earlier one by the present author,® the macroscopic
dielectric properties of an unbounded aggregate of
atomic systems are defined in terms of its eigenstates
of excitation, and the wave vectors of these eigenstates
play a geometrical role somewhat analogous to that of
boundary conditions.

Notice, however, that the theory of reference 4
treated the electrostatic interactions only approxi-
mately (in accordance with the “random phase ap-
proximation” of the plasma theory) and led to the
Sellmeyer-Drude formula e(w)=14a(w). Thereby it
yielded eigenfrequencies of longitudinal or transverse
oscillations which are roots of a=—1 or a= instead
of a=—1/C=—3$ or 3. Apart from this difference, some

(lg’sgf):e, e.g., J. Hubbard, Proc. Phys. Soc. (London) A68, 441

or (23)

=1la(w).

LATTICE OF OSCILLATORS

453

of the following discussion is analogous to the discussion
on pp. 1208-1209 of reference 4, and the remainder
stresses essential features of the polarization waves that
were overlooked in that earlier study.!!

Since a(w) rises monotonically from — e to c in the
interval between any two successive oscillator fre-
quencies w, and way1, there lies in such an interval one
eigenvalue of (16) for longitudinal waves (C=%) and
one for transverse waves (C=—3%). These two eigen-
values will be indicated by @, and @; .41, respectively.
In addition, there is one longitudinal eigenfrequency
above the highest oscillator frequency, and one trans-
verse eigenfrequency . below the frequency w;, pro-
vided a(0) <3. The eigenfrequencies Q;, or @i, can thus
be determined graphically, if necessary, after which
they can be entered in (21), (20), and (15) to examine
the characteristics of the normal modes of oscillation
of the lattice.

Three different typical situations occur, depending
on whether the value of a(w)=2» wpfs/ (Wn—w?) in
the proximity of a particular eigenfrequency is deter-
mined primarily: (a) by a single term of the 3., (b) by
two terms (or groups of terms) with opposite signs, or
(c) by one group of terms with the same sign.

(a) When the oscillators of frequency w, are per-
turbed only weakly by the electrostatic interaction, as
it happens in gases, the polarizability a(w) varies
sharply very near to w, but slowly for somewhat larger
values of w—w,. It is then represented approximately
throughout a range of w in the form a(w)={a(w))s
Fwplfo/ (Wa2—w?), where the mean value {(a(w))n is
often negligible. A necessary condition for the validity
of this representation is

@p? fn/ |n—wnar?| K1 (24)

The eigenvalue equation (16) has now the approximate
solutions
zw Zf" _1_0) 2fn
an2~wn2+£~——, sz,\,wuz__"i__’ (25)
1+%<a(w)),. 1—Ha(w)n
and one finds, from (15) and (21)
0wKan, for #n's#n, Fa~fo/[1+Cla(w)). . (26)

(b) A tight electrostatic coupling between oscillators
of different frequencies occurs under the condition
opposite to (24), namely when

wpzfn/lwnz-wni12l>>1. (27)

The polarizability a(w) varies then rapidly throughout
the interval between successive oscillator frequencies

1 Each of the transverse normal modes considered in this paper
is coupled to oscillations of the electromagnetic field with equal
polarization and wave vector. This coupling is to be taken into
account separately by the method of reference 4. No such further
coupling is to be considered for the longitudinal modes, because
the longitudinal components of the electromagnetic field are
merely an alternative representation of the electrostatic inter-
action which has already been taken into account in the calcu-
lation of the normal modes.
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wn and wny1, and the eigenvalues of (16) lie rather in
the middle of such an interval.? The normal mode is
characterized here by the fact that two terms, or groups
of terms, in the 3 . of contributions to the dipole
moment (20) have comparable magnitude and opposite
sign. That is, the net dipole moment of the normal mode
is reduced by the destructive interference between the
contributions of oscillators that are out of phase
because their own proper frequencies would be, re-
. spectively, somewhat larger and somewhat smaller than
the eigenfrequency @, of the normal mode. One can
also see directly that the effective oscillator strength
F,, of the normal mode must be small, when (27) holds,
owing to the large value of the slope da/d(w?) in (21),
that is, owing to inequalities

fr )
=(cp s>, ———
Fn (C (-lv'p Zn (9"2_‘0"'2)2)
wp4fn2 -1

<<f"(C2(sz,.2—wn2)2) K (28)

(c) When a number of oscillators, say, from z=r to
n=s, have frequencies in a range where (27) holds,
their contribution to the polarizability

ol (@) =2 ner® w5 fr/ (Wa— o),

remains 21 (in absolute value) for a considerable
spectral interval above w, and below w,. This contri-
bution resembles that of a single ‘‘effective’ oscillator
whose frequency wess lies somewhere between w, and w,
and whose oscillator strength fess~> ner® fu. For
purpose of orientation we may set

a (@)~ @y fers/ (wet — o). (29)

If (24) holds, instead of (27), for w>w, or w<w,, we
have in these spectral ranges a(w)~a("®(w), except in
the immediate proximity of oscillator frequencies wy.
We can then determine here the eigenfrequencies and
normal modes by the approximation method of case
(a) and find, in analogy with (25) and (26), normal
modes characterized by

Qleff2'\’weif2+§‘wp2feify Qteff2~weff2— %wpzfeff; (30)

(W' <r<n<s),
Fets~ fott, an<a, for { (31)
(nW'>s>n>r).

The eigenfrequency Q.. exists only if a9 (0)<3. On
the other hand a normal mode of longitudinal oscil-
lation of the type considered here—or, at least, some-
thing akin to it—is expected to occur whenever (27)
holds in some spectral range, because this range would
not extend to w=w and would be followed by a range
where (24) holds.

The polarization properties of the plasma model of

12 A contrary surmise given at the end of p. 1208 of reference 4
was erroneous.
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metal electrons are equivalent to those of a lattice of
dipoles for which (27) holds within a narrow band at
wets=0 and fesr represents the number of conduction
electrons per crystal cell. The collective excitation of
the plasma corresponds then to the longitudinal normal
mode with frequency Qess. Our study of the lattice of
dipoles has shown that: (1) A plasma-like longitudinal
excitation with many particles oscillating in phase
occurs, as expected, under conditions much more
general than those of the plasma model. (2) Normal
modes of type- (b) also occur, in which different oscil-
lators are excited collectively as in the plasma-like
mode, but with phase relations that yield a weak net
polarization and therefore prevent ready excitation by
the passage of fast charged particles.

The occurrence -of collective excitations is thus seen
to hinge on the condition (27). Therefore, it is inter-
esting to consider the physical significance of this
condition and the extent to which it should be expected
to hold in realistic systems. Having in mind the defini-
tion (10) of w,?, the expression w,2fn/|wnt—wnyi?| is
seen to be a density of oscillator strength in space and in
spectrum, namely, to be the density f./63|w.2—wnyt?|
expressed in the atomic unit m/4re?=4.0X1071° cm—3
(radian/sec)2. (Notice that the frequency squared
serves here as a coordinate for the spectral distribution
of oscillators.) The relevancy of the spectral density is
most apparent in the limiting case of a continuous
spectrum of oscillators, which is treated in Appendix B.

The concept of spatial and spectral density of
oscillator strength applies to any material system whose
internal charges may be polarized. For any given
material one may consider the density of atoms and
the number of electrons in each atom for which the
frequencies of dipole oscillation lie within a given
spectral range. In particular, the valence electrons of
any atom yield the highest spectral density because
their levels of dipole excitation are concentrated mainly
in a narrow energy range, say, up to 10 or 20 ev. For
purpose of orientation, we may evaluate a mean spectral
density of oscillator strength (df/d(w?)) for an atom by
allocating its number of valence electrons Z,. to a
spectral band width equal to the ionization potential
of the hydrogen atom. For a material of density p
(in g/cm?®) and mean atomic weight 4 we find thus the
mean spatial and spectral density of oscillator strength

wXdf/d(@*))~4.5(p/ A) Zvar. (32)

The ratio p/A lies between ¥ and ¥ for most condensed
materials, so that our density index is likely to be 21
on the average over a broad spectral range, and proba-
bly considerably larger than 1 in more limited ranges
Therefore we are led to surmise that collective excita-
tions of the types (b) and (c) described above occur
quite generally in condensed matter. ‘

The occurrence of collective excitations of types (b)
and (c) shows a formal analogy to effects that have
been recently emphasized in nuclear physics (giant
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resonance,’® ground states of heavy nuclei) and in
superconductivity. It may, therefore, be worthwhile to
summarize its physico-mathematical origin. One con-
siders initially a set of variables, the oscillation ampli-
tudes a, in our problem, which correspond to energy
levels 7w, when a certain interaction is disregarded.
This interaction is represented by a matrix whose
elements have the form D,n=d.dm; in our equation
(12) the matrix represents a dipole-dipole interaction
and each coefficient d, is proportional to the dipole
strength f,} associated with one of the variables a,.
Owing to the interaction, the variables ¢, and energy
levels 7w, are replaced by the eigenvectors and eigen-
values of the matrix wadam==Dnm, Where the 4= sign
corresponds to repulsive or attractive interaction. The
eigenvalues are roots of Y, d.2/(w—w,)==£1, analo-
gous to our Eq. (16), and the eigenvectors have com-
ponents proportional to d./(w—w.). If the coupling
coefficients d,? are much larger than the spacings
wny1—was for a group of frequencies in a limited range
wrLwn<w, one of the matrix eigenvalues “squirts”
out of this range to a distance ~=%+3_ n-,* d»? and the
corresponding eigenvector has components ~d,/
2 m=r®dn? proportional to the d,. This eigenvector
represents a state of the system—our excitation (¢)—
in which the interaction finds maximum expression.
All the other eigenvectors that result from the super-
position of the variables ¢, with r<n<s—excitations
of type (b)—involve a destructive interference which
neutralizes the energetic effect of the interaction so that
the corresponding eigenvalues remain confined in the
range (ww,). The qualitative features outlined here
should presumably be noticeable provided only that
the condition Dpm=d.dm is verified approximately.
Notice also that these features follow automatically
when one assumes, for lack of better information, that
the interaction matrix elements are all equal (since
D,m~const is equivalent to Dpm=dndn plus d,~const).
The transition from conditions of weak interaction,
when each eigenvector nearly coincides with one of the
@., to the condition of strong interaction may well
occur rapidly as the critical ratio d.¥/(wni1—wn)
increases through the range ~1. Exploration of matrix
properties to provide a specific answer to these questions
seems worthwhile.
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APPENDIX A

The sum rule Y, F,=>_, f» follows from a com-
parison of two expansions of the function [ 14 Ca(w) 7
near w= . The roots w=%, of the eigenvalue equation
(16) are the poles of this function. Near each of these
poles, the function is represented approximately by

{Clda/d(?) Jo=n(w?—2,2)} 1= Cuw,2F o/ (0?—Qn2).
Moreover [14Ca(w) 1™ approaches 1 at w~  because

a vanishes there. It can therefore be represented in
terms of the residues at its poles by

[14+Ca(w) T t=14+Cw2 X » Fu/ (0*—Q,%). (33)
The expansion of this representation near w= o is
[1+Ca(w) T1~14+C(w2/w®) X s Fa. (34)

On the other hand we have a(w)~— (w2/W®)> 4 fn,
near w= «, and therefore

[14-Co(w) i~ 14-C(w /)2 n fa- (35)

The equivalence of the expansions (34) and (35) re-
quires that X, Fr=2_, fn.

APPENDIX B

We seek the limit of (21) when the spectrum of
oscillator frequencies is continuous. The limit will be
approached by considering first a discrete spectrum of
frequencies w,= (&*+mA?)%, distributed about a mean
frequency @ with — o <m <. To each of these fre-
quencies corresponds an oscillator strength f, with the
understanding that f/A? will be indicated by df/d(w?)
in the limit A2— 0. Eq. (17) yields now the polariza-

bility ) )
j ;o e
a(w)=w,? ), ———————=mw,>— cotanm——, (36)
P mAl—? A2 A2
and
da f 1 T
=7yt —
d(w?) A? sin?[ 7 (@2 —w?) /A] A?
f At
e ) BRC
At w2

This expression may now be entered in (21), setting
a=—1/C at w=Q as required by the eigenvalue
equation (16). We find

F=7/(147Cl,f?/ A%, (38)
and, in the limit,
dF af/d(w?) (39)

A 1+[rCordf/dAT

In this limit we need no longer consider the inequality
(28) between F, and f. since we have obtained the
explicit dependence of the ratio F/f on the density of
oscillator strength w,2df/d(w?).



