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(2l') are bounded under reasonable assumptions on The other terms in (25') give
h(E). To estimate the second. term we note
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This paper contains a critique of the Brueckner-Goldstone perturbation series for the ground-state energy
of an interacting gas of fermions. We have calculated this energy by 6rst constructing the grand partition
function at finite temperature, and then carefully taking the limit as T —+ O. In general this leads to a series
which differs from that of Brueckner and Goldstone. An exception is the case where both the unperturbed
single-particle energy as well as the interaction potential have spherical symmetry. Reasons for the break-
down of the Brueckner-Goldstone formalism are brieRy discussed.

I. INTRODUCTION

'N this brief paper we shall consider the problem of
- - calculating the ground-state energy of a collection
of many identical, interacting particles obeying Fermi-
Dirac statistics. This problem has already been investi-
gated by many authors, ' and an explicit formula as a
power series in the strength of the interaction between
the particles has been obtained. The resulting formula—
which we shall call the Brueckner-Goldstone (BG)
formula —may be obtained by doing ordinary per-
turbation theory on the ground state of the noninter-
acting fermions, as if the levels of the system were
discrete and well separated. In addition, a rearrange-
ment of the resulting series is made which expresses it
very simply in terms of so-called "linked-clusters. "

Now we reopen the question for the following reason.
In attempting to apply the BG technique to study the
eGect of interactions on the shape of the Fermi surface
in a metal, we became convinced that efkcts corre-
sponding to a distortion of the Fermi surface are not
described by this technique. Of course to discuss this
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Research.' See, for example, K. A. Brueckner and J. L. Gammel, Phys.
Rev. 109, 1023 (1958); I. Goldstone, Proc. Roy. Soc. (London)
A293, 267 (1957); N. M. Hugenholtz, Physica 23, 481 (1957);
23, 533 (1957); J. Hubbard, Proc. Roy. Soc. (London) 240, 539
(1957);243, 336 (1958).

it is necessary to know precisely what one means by
the Fermi surface of an interacting system. We do not
want to enter into this question here, but hope to
return to it in a later publication. The important thing
for our present purpose is that one is lead by such
considerations to question the validity of the HG
formula for those cases where no symmetry exists
which would require that the Fermi surface (if it
exists) to have the same shape for the unperturbed and
perturbed systems. An example of a situation where
such symmetry does exist is a gas of free fermions
interacting via a potential which is spherically syrn-
metric. In this case both the perturbed and unperturbed
Fermi surfaces must be spherical, by symmetry con-
siderations. On the other hand, if, for example, the
interaction potential is nonspherical, there is no reason
for the perturbed Fermi surface to remain spherical.
Another case of the latter type is electrons in metals.
Here the interaction is spherically symmetric (Coulomb
interaction), but the original unperturbed Fermi surface
has only the symmetry of the lattice. Again, we would
certainly expect the electron-electron interaction to
cha, nge the shape of the Fermi surface, As we shall show
below, the above conjectures about the limitations of
the BG formula have been verified up to the second
order in the perturbation by what we consider to be a
more correct treatment of the ground-state energy
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problem. The conclusion is that, except under special
circumstances, the formula for the ground-state energy
of an interacting Fermi gas is given by a power series
which differs already in the second order from the BG
expansion. The BG series is therefore in general not
correct.

of second quantization we may write H as

H=Hp+H',

Hp=gr erar ar,

H'=-,' P a„ta,ta, a;(rs~ii~r's')
r8r'S'

(2)

(3)

(4)

II. GROUND-STATE ENERGY

One obtains the BG formula for the ground-state
energy by assuming that as we turn on the interaction
the unperturbed ground state goes over smoothly (or
"adiabatically" ) into the perturbed one. Rather than
make this assumption, we prefer to calculate the ground
energy as the energy of a system at temperature T, in
the limit as T approaches zero. Certainly if this limiting
procedure is done correctly, it must give the correct
ground-state energy. Actually, considerable care has
to be exercised in taking this limit —hie rara ie uglas
slbsultat —since it is not the only limiting process
involved. We also want to go to the limit of an infinitely
large system, i.e., cV and V approach infinity (N, V are
number of particles and volume of system, respectively)
such that (E/V) remains finite. We will call this second
limit the V= ~ limit. Our procedure is to take, in the
perturbation expansion of the. ground-state energy, the
V= ~ limit first, and then the T=O limit. It is not
difficult to see that the BG formula results if one
reverses the order of the limiting procedures, so that
any deviation which we may obtain from the BG
formula is due to this reversal. Of course, if we didn' t
expand in a power series in X (the strength of the
interaction) but calculated exactly, it could make no
difference. We shall postpone the justification for this
procedure till the next section. In this section we shall

simply give an outline of the calculation of the ground-
state energy to order A.

' by the procedure described

above.
The method we shall follow is essentially that of

Bloch and De Dominicis, ' who have shown how to
calculate the grand partition function for a collection
of interacting fermions by means of "linked" diagrams

completely analogous to the linked diagrams used in

the BG theory. For the details of the rules for con-

structing and evaluating these diagrams, we refer the
reader to the paper of Bloch and De Dominicis. For
our purposes the following outline will be sufFicient.

Consider the grand partition function (Za) defined by

Zg= Tr(e e&~ &~').

In (1) P=1/kT, p is the chemical potential of the

system, E is the operator giving the number of particles
and H is the Hamiltonian of the system. In the notation

then all the thermodynamic properties of the system
may be derived very simply from 0. In particular, p, is
determined by solving

(where X is the mean number of particles present), and
the mean energy (E) is given by

a(PQ)E= +Ep. (7)

Equation (7) may be rewritten as

E=Q+IJN+ TS,

where S is the entropy of the system. This form is
particularly convenient for obtaining the energy at
absolute zero (Ep), since S approaches zero as T does.
Therefore we have

Ep = lim(Q+pE).

We shall imagine 0 expanded in a power series in A.
Then we have

Q =Qp+Qi+Qp+ (10)

where 0„is proportional to X".0o is determined by the
noninteracting system

Q, = —(1/P)P, ln(1+e-e ' »),

as is well-known.
According to BDD the Q„are given by

(—1)"+' p& p"&
t

"& f"~
Q-(u) =+

p J, J, dgy' ' 'dR~

In (12)
)&(H'(ui)H'(u&) .H'(u„)), . (12)

In (3) and (4), e, is the energy of the unperturbed
single-particle state r; a„, a„t are the corresponding
destruction and creation operators, respectively, and,
finally (rs p~ r's') is the ordinary matrix element of the
two-body interaction between any pair of fermions. It
is assumed that v is proportional to some small dimen-
sionless parameter ) . If we write ZG in the form

P C. illoch and C. De Dominicip, Nuclear Phys. 7, 459 (1958).
(We shall refer to this paper as BDD from now on. ) See also,
E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).

H'(u) = e"~pH'e ~~p,

(A)=Tr(eel"«» ~'+I'~'A).

(13)

(14)
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The subscript c on the average means that in evaluating
this trace we are only to take contributions which
correspond to connected diagrams in the graphical
representation of the trace. Equation (12) is exact, and
corresponds to the "linked-cluster" expansion aspect
of the BG formula.

Now if we consider the diagrams which represent
(12), we find they fall into two classes: (a) Diagrams
which are ideeHca/ in structure to those used in BG,
the only difference being that here they are evaluated
at finite (instead of zero) temperature T, and at
chemical potential p (instead of po). We shall call these
BG diagrams. (b) Diagrams which do not occur in the
BG set, and which are naturally introduced by the
finiteness of the temperature. They have, however, a
finite value if we let V= ~ and then put 7=0. We shall
call these "anomalous" diagrams. Examples of BG

diagrams are given in Fig. 1, examples of anomalous
diagrams are given in Fig. 2.

It is easy to see' that the BG formula for the ground-
state energy is given by

S
](

(o) (b)

FIG. 2. Typical anomalous diagrams.

n, =(a'). (19)

We imagine for simplicity that v has no diagonal ele-
ments, i.e., that (rstv~rs)=0, then (19) gives

The calculation of Q»G is extremely simple. From
. BDD we have at once that

EBB (~o+~BG+Np)p= po, &=op "»o= —l P(r'lol-) f f,
r, s

(20)

where QBG is the contribution to Q of the BG diagrams.
Therefore the difference between the ground-state
energy as calculated by the statistical mechanical
method and by the BG method (call this difference E')
is given by

E'= lim(t-Qo(p)+&so(p)+&'(p)+Np7

—L"o(u )+~ (uo)+%oh), (16)

where Q~ is the contribution of the anomalous diagrams
to Q. In this paper, we shall limit ourselves to a calcu-
lation to the second order in X. This is the lowest order
to which one Ands deviations from the BG formula.
The chemical potential will be given by a power series
in 'A

y= yo+ui+uo+

p „being proportional to X". The p,„are obtained by
solving (6) iteratively. If we do this, we see that E'
vanishes identically to the first order in X (since the
first nonvanishing anomalous graph is of order X'), and
we obtain

1 (~+iso(po)/~go)
Eo' ——hm Qo&(yo) —— (18)

2 (O'Do(I" o)/BI"o')

where

ee('r y)+1- (21)

is just the Fermi function.
In order to calculate Q2g we must evaluate diagrams

of the type found in Fig. 2. There are actually four such
diagrams, all of which give the same contribution if we
assume that the potential v has a center of symmetry.
We shall do this for economy of writing. Using the rules
of BDD we obtain

where

"'"=——:&&f'f LZ f (-I'I-)5

f.+=1 f— (22)

(23)

In terms of this result we can give a more precise
characterization of the anomalous terms. Consider the
expression

(24)

If we imagine the energy e, fixed and not precisely equal
to p, then as T~ 0 (or p ~ ~) this function vanishes
exponentially, since either the f,+ or the f, factor is
exponentially small, while the other approaches unity.
Therefore if we keep the levels o, discrete (which is the
same as not going to the limit V= ") and let T=O,
the anomalous terms vanish. On the other hand, if we
imagine e, to be a continuous variable, we may write
(24) as

{0)

8
~(")= — f.

~&s
(25)

FIG. 1.Typical BG diagrams. However, as T~ 0 f, becomes a step function and its
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derivative the negative of a 6 function, i.e.,

lim A(p, ) =b(p, —p). (26)

The anomalous terms are characterized in general by
this property: they give zero in the case of a discrete
spectrum and give contributions in the V= ~ limit.
(The anomalous diagram of Fig. 2(b) together with
another similar diagram gives rise to a contribution
proportional to 8'(p, —p), and so forth. ) In more pic-
torial language the anomalous diagrams are those for
which momentum conservation forces some hole and
electron lines to represent the same state. These
diagrams are of course never considered in the BG
theory, since we start at 7=0 where that is impossible.

Using (26), (22) becomes

(27)

where

q.,=P,(rs~~~sr), p, &pp. (28)

LIn (27) and all subsequent sums, we must think of the
sums as replaced by integrals. j

From (11) and (20) we have

8 Qp(P, p)
llm

BPp

= —2 ~(p.—uo),

lim
T—+0

~fliso(po) 2 ~(ps po)qs.

(29)

Therefore we may write (18) as

1 (LZ. ~("—w)q.7 Z. ~("—~o)q. )

2 & EE.~(p.—w)g' Z, &(p,—po) &

XLZ. ~( .—po) j (3o)

This expression may be put in more transparent form

by introducing a probability E, defined by

p.=
Z. ~("—uo)

(31)

P, satisfies
P,&0, Q, P,=1, (32)

where

Eo'= ,'P. &(p.—uo) (q ——q)-'

A=+, A,P, . (34)

so that it is a probability distribution function. In
terms of this we may write

Therefore we see that, the ground-state energy as
computed by the above method is always less than or
equal to the energy as given by BG.

Under what conditions can E2' vanish? We consider
the case where the unperturbed Fermi surface is a
sphere, i.e., where the energy e, is a function of the
magnitude of the momentum of the state s. Then E2'
will vanish if, and only if, q, is a function of the mag-
nitude of the momentum of the state s. This is true if
the potential e is spherically symmetric but not in
general if e has an angular dependence. Similarly, if
e, depends on the direction of the momentum but q,
does not, E2' will not vanish. Therefore the BG formula
is correct only in the very special "spherical case";
that is, when the unperturbed energies used the inter-
action potential are both spherically symmetric. A
similar calculation shows that for spin--, fermions with
a tensor force interaction (which possesses over-all
rotational invariance, but the spacial part of which
has an angular dependence) the BG formula is again
valid to second order at least as long as e, depends only
on the magnitude of the momentum.

Ep P,(p„+p, '), p,+p,'&p,
—— (36)

III. DISCUSSION

Except for the nature of the limiting process which
we have used, the calculation of the previous section is
completely straightforward and unambiguous. It re-
mains to justify this procedure.

First, we remark that the V= ~ limit taken before
the T=O limit is the only consistent way of calculating
the chemical potential from (6). The reason for this
is that in every term of 0 apart from Qp, the chemical
potential only occurs inside an f+ or f function. When
these are differentiated with respect to p and the limit
T=O is taken, we get all these terms proportional to
8 functions like 8(p, —p). Since we' ve assumed that the
~, are discrete and none happens to coincide with p, ,
these terms are identically zero. This is exactly the same
reasoning that would lead us to drop the anomalous
contributions to Q for this order of limiting processes.
Therefore this limiting procedure would give us for p,

the same equation as we use to determine pp, i.e., it
would give us p, =pp. This is clearly absurd, since the
chemical potential for an interacting system divers in
general from its unperturbed value.

Second, let us consider the following trivial example.
Suppose instead of the interaction (4), the perturbation
was of the simple form

(35)

where e„' was some nonspherical function of the
momentum of the state r. This problem is easy to solve
exactly; the ground-state energy is given by

This is just the average of a quantity A, over the
unperturbed Fermi surface.

where p, is determined by

X=+p 1) pq+ pq (37)
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Suppose on the other hand we tried to solve this
problem by expanding in a power series in ~,'. At 6nite
temperature we have

1
0= ——P 1nL1+e-s&"+"'-»$

j.= ——P 1n/1+a-s&"-»)+P f„e„'-

1 8f„1 r)'f
+—Q e,"+—Q e,"+ . (38)

2t r gg„3~ r

All the terms of (38) except the first two are anomalous
terms since in the T=O limit they are proportional to
8 functions and derivatives of 6 functions. Therefore if
we take the BG prescription )T=O then V= ~, which
is equivalent to dropping anomalous terms and taking
fi=fip) we get

+BG=+r(sr+sr )~ er(pp& (39)

which is not the same as (36).
In this special example it is very easy to see what

went wrong. Since the perturbation has no off-diagonal
elements, levels of the many-body system can and
(except in the case of spherical symmetry) do cross the
original ground-state level as X is increased (see Fig. 3).
Therefore for finite X the state which grows smoothly
out of the original ground state (i.e., the BG state) is
no longer the lowest.

In the real problem of interacting particles we

suspect that the BG formula breaks down for the
following reasons: As long as V is large but finite the
true energy levels of the system regarded as functions
of X have. sharp bends (so as not to cross each other).
Therefore one would suspect that the BG series has a
very small radius of convergence, this radius tending to

Pro. 3. Many-particle energy levels in the soluble
example (schematic).

zero as V approaches infinity. In fact, we have isolated
a sub-sequence of terms in E&G which has precisely this
property. In the limit V= the terms assuring the
noncrossing and leading to a small radius of convergence
are lost (since they are of order V '). The resulting
series, which is the BG formula with all sums replaced
by integrals, shows no signs of a small radius of con-
vergence. In general, however, it will represent an
energy lying higher than the true ground-state energy.

In conclusion, we may mention that, although it
seems very probable, we have not as yet been able to
prove that the BG formula is correct to all order, in
the spherical case.'
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