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TABLE II. Variation of n's with e.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

1.1253
1.1633
1.1938
1.2203
1.2439
1.2654
1.2852
1.3036
1.3208
1.337
1.3525
1.4759
1.5676
1.6422
1.7059
1.7619
1.8120
1.8577
1.8997
1.9387

1.1510
1.0959
1.0588
1.0299
1.0059
0.9855
0.9676
0.9516
0.9372
0.9241
0.9121
0.8276
0.7752
0.7375
0.7083
0.6846
0.6646
0.6476
0.6326
0.6194

1.8602
1.7256
1.6487
1.5921
1.5469
1.5093
1.4769
1.4486
1.4233
1.4005
1.3799
1.2382
1.1531
1.0930
1.0469
1.0096
0.9786
0.9521
0.9290
0.9086

0.8886
0.8596
0.8376
0.8194
0.8038
0.7902
0.7781
0.7671
0.7571
0.7478
0.7393
0.6775
0.6379
0.6089
0.5862
0.5676
0.5518
0.5383
0.5264
0.5158

0.0652
0.0533
0.0480
0.0445
0.0418
0.0397
0.0379
0.0364
0.0351
0.0340
0.0329
0.0264
0.0229
0.0206
0.0189
0.0176
0.0165
0.0156
0.0149
0.0142

2.3490
2.3616
2.4022
2.4496
2.4993
2.5497
2.6002
2.6502
2.6997
2.7487
2.7969

. 3.2454
3.6457
4.0128
4.3555
4.6794
4.9880
5.2841
5.5696
5.8459

0.4485
0.4647
0.4701
0.4719
0.4719
0.4710.
0.4694
0.4673
0.4650
0.4625
0.4600
0.4333
0.4101
0.3905
0.3739
0.3595
0.3469
0.3358
0.3258
0.3169

0.9777
1.0614
1.1275
1.1848
1.2365
1.2841
1.3283
1.3699
1.4093
1.4469
1.4828
1.7835
2.0222
2.2266
2.4084
2.5737
2.7263
2.8688
3.0030
3.1302

0.9576
0.8888
0.8389
0.7994
0.7668
0.7391
0.7149
0.6935
0.6744
0.6571
0.6414
0.5343
0.4716
0.4285
0.3963
0.371.0
0.3503
0.3329
0.3181
0.3052

Hence NUMERICAL RESULTS

II(I/2)
where
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Plasma Oscillations of a Large Number of Electron Beams*
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Longitudinal oscillations of a large number of electron beams are investigated. The normal modes for
the beams are found. An orthogonality relation between the modes is obtained and is used to solve the
initial value problem and the problem of forced oscillations. It is demonstrated that no signal propagates
faster than the fastest beam. The problem of passing to the limit of a continuous velocity distribution is
considered in detail. It is shown that in the limit the results of Landau, Van Kampen, and others are re-
covered. The problem of Landau damping is discussed from the point of view of the beams.

I. INTRODUCTIOÃ

' "N this paper a theory for the longitudinal oscillation
~ ~ of a large number of electron beams is presented.
The term beam is used here to denote a stream of
electrons which is infinite in extent and which has a
de6nite velocity (no random motion within a beam).

*This work was supported under contract with the Atomic
Energy Commission.

This work is, of course, closely related to the many
papers which have appeared on the subject of plasma
oscillations. ' ' A large portion of this paper is devoted

' L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).' N. G. Van Kampen, Physica 21, 949-63 (1955}.
~ D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864

(1949).
4 R. W. Twiss, Phys. Rev. 88, 1392 (1952).
4 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
4 G. Ecker, Z. Physik 140, 274, 293 (1955).
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to showing that the results of Landau' and Van Kampen'
can be obtained by passing to the limit of an in6nite
number of beams in such a way as to approach a
continuous distribution function.

The method of attack used here is similar to that of
Van Kampen in that we look for normal modes.
Through the use of a discrete set of beams the problem
of the singular integrals which he encountered through
the use of a continuous distribution function is
avoided (see Van Kampen'). This method of avoiding
the trouble was proposed by Ecker. 6 We Gnd that any
number of discrete beams greater than one is unstable.
However, as one passes to the continuous distribution
function limit the growth rate of most of these insta-
bilities goes to zero. In the limit we recover all the
usual results obtained by using the technique of Landau
and Van Kampen.

The first part of this paper is devoted to obtaining
the normal modes for an arbitrary number of beams
and to using them to solve the initial value problem and
the problem of forced oscillations. The last sections
will be devoted to the problem of passing to the con-
tinuous distribution function limit and to the recovering
of the results of other authors.

EQUILIBRIUM SITUATION AND BASIC
ASSUMPTIONS

The situation that we wish to investigate is the
small-amplitude longitudinal oscillations of an arbitrary
number of electron beams. The beams are taken to be
infinite in extent, and to have well-defined velocity (no
thermal motion of an individual beam). They are
assumed to pass through a uniform neutralizing back-
ground of positive ions which are taken to be infinitely
massive and thus immobile. It is assumed that the
beams can be treated as continuous charged Quids, that
collisions between individual electrons and electrons
and ions can be neglected, and that the motion may be
treated by the linearized equations.

BASIC EQUATION

In this paper we will look for plain longitudinal
oscillations which may be taken to propagate in the x
direction. Since motions in the y and s directions do
not inQuence the x motion, they may be ignored. The
linearized equations of motion for this system are
given by Eqs. (1) through (3).

Be, Bv eE
+V

R Bx m

Here n and v are the perturbations in the number
density and velocity of the 0th beam while E and V
are the corresponding unperturbed quantities. E is the
electric field and is determined from Poisson's Eq. (3).

i (oi kV—.)v.= eE/m, —

(oi—kV )n.—kN v.=0,
ikE= 4a.eg n, .

(4)

(5)

(6)

Eliminating E and v, yields

(oi—kV.)'n. = (4me'N. /tn)Q n„. (7)

Since the amplitude of the waves is arbitrary, the n,
may be normalized so that

n.=1

whence n„e„and E are given by

4s.e'N. / tn
n. (co,k) =

((v—k V,)'

4m e'/m
e.(o),k) =

(a —ke,)

(9)

(10)

8 (oi,k) = 4irei/k—

The dispersion relation which ~ and k must satisfy is
obtained by substituting (9) in (8) and is given by

=1.
m ~ (o~—kV)'

(12)

If the left- and right-hand sides of (12) are plotted as
functions of co for axed k we get a diagram like that
shown in Fig. 1.

DISPERSION RELATION

We now look for solutions of the form

A (x,f)=A e'&"'

where A is any one of the quantities n„e„or E.
Substituting this form in (1) through (3) yields

Bn Bv, Bn,
+N, +V, =0,

B3 Bx Bx
(2)

= —4meg n.,

KVf KVg KVS KVg KV5

FIG. 1. A plot of the quantity —(4re /ta)ZE, /(a& —kV, )
as a function of eu.
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The sum becomes iD6mte every time one of the
denominators goes to zero. Each of the points at which
the sum crosses one is a root of (12). These are all real
roots. There are in general also complex roots of the
dispersion relation. There are in fact twice as many
modes as beams. This may be quickly seen by writing
(12) in polynomial form. Each of these c»'s gives a
possible mode of oscillation for the beams for the given
k. The system has one longitudinal degree of freedom
per beam for fixed k. These may be thought of as the
amplitudes of the kth Fourier components of the num-
ber density of the beams. It takes two constants
Le, (k),v, (k)] per degree of freedom to specify the state
of the system. The arbitrary amplitudes of the modes
found above supply just this number of constants so
that we expect to be able to express any motion of the
beams in terms of these modes.

ORTHOGONALITY RELATION

The modes obtained from. (10), (11),and (12) satisfy
an orthogonality relation which may be obtained as
follows. Let k be fixed and let co and e' be two solutions
of the dispersion relation (12). Let n and n, ' be the
corresponding perturbations of the number densities.
Multiply (7) by the normalized perturbation number
density e,'/N, and (7') L(7) with primed quantities)
by n,/N, Subtra. cting the second of these results from
the first and summing over 0 gives

INITIAL VALUE PROBLEM

Equations .(14) and (15) may be used to solve the
general initial value problem. Since the Fourier analysis
is straight forward we will restrict ourselves to a fixed
k. Assume that at t=0 the amplitude of the kth Fourier
components of e, and v, are q, (k) and v, (k). The e, 's
and the v.'s may be expanded in terms of the normal
modes so that we have

(16)n, (k,x,t)=QC(c», k)e, (c»,k)ec& ' ~*&

C(c»,k) (c»—k V,)
v. (k,x,t) =P e (c» k)e'&"'-'*& (1'/)

Xk

where the sums are over all roots of the dispersion. rela-
tion for the given k and the e (k,c») are given by (10).
If (16) for t=0 is multiplied by L(c»' —kV,)n, (c»,k)]/N,
and (1/) for t=O is multiplied by ke, (c»',k) and the
results subtracted one finds, with the aid of the orthog-
onality conditions (14) and (15),

C(c»', k) = [1/H(c»', k)]P($(c»'—k V.)g.(k)n. (c»',k)/N. ]
+kn (c»',k) c,(k)). (18)

Thus the C's are determined and we have found the
motion in terms of the normal modes.

The electric field may be found in terms of the C's by
making use of (11).It is given by

EI, (krei/k)QC(c», ——k)e'&"'—~*&.

(c»—c»')+Pc»+c»' —2k V,]
d

4n-e'

P(e 'e„—e„'e )=0. (13)

The last equality follows from interchange of 0 and p, .
Now if

then

( +c»' c»2k V,)n—.n. '/N, =O, (14)

while if or=co' this sum is in general not zero. For
notational convenience we will let

2+(c»—kV,)e,'/N =H(c» k). (15)
0

Equations (14) and (15) demonstrate an orthogonality
between modes with the same k; but difFerent co's.

Modes with difFerent k's are orthogonal in the usual
Fourier sense.

The only c»'s for which H(c», k) is zero are those for
which (12) has a double root. This is readily seen if it
is noted that H(c», k) is proportional to the derivative
of (12) with respect to c». In the case that (12) has a
double root we must employ a slightly difFerent pro-
cedure. A short discussion of this is given in Appendix
i. Here, however, it will be assumed that B is not zero.

LANDAU DAMPING FOR THE BEAMS

On the basis of the previous sections we may form
the following physical picture of how the motion of the
beams will develop in time. In general an initial pertur-
bation of the beams will contain all possible modes to
a greater or lesser degree. The amplitude of each mode
will depend on the details of the initial perturbation.
These modes will start out more or less in phase. If we
confine ourselves to a fixed k we see that the various
modes have difFerent frequencies. As time goes on, they
will get out of phase with each other and so their
coherent sects will die out. All macroscopic quantities
such as the electric field which depends on the coherence
of the various waves will thus die out and the initial
perturbation will appear damped. This damping is the
result of phase mixing of the various modes. It is not
due to the damping of individual modes. This apparent
damping is just Iandae dancping Van Kam. pen's treat-
ment of plasma oscillations yields a similar physical
picture.

One might expect that any finite number of beams
would return to their original state after a suKciently
long time. This would indeed be true, but for the fact
that the beams are in general unstable. For a large
number of beams, the growth rate of the instabilities is
in general very small as will be shown later. Thus, the
instabilities will not be suKciently strong to over



384 JOHN M. DA WSON

shadow the phase mixing or Landau damping, described
above, but they are strong enough to prevent return to
the initial state. For any finite number of beams the
instabilities will get the upper hand on the Landau
damping sooner or later provided some other process
such as collisional damping does not prevent this. At
such a time the most unstable mode will start to
dominate the picture.

Trapping of electrons in the wave troughs is not
allowed in this treatment since this introduced non-
linear eGects. Thus, Landau damping cannot be
attributed to trapped electrons. When trapping occurs,
the linearized treatment breaks down. More discussion
of this is given in the sections on the continuous
distribution function limit and the discussion of the
limits of the linearized theory.

n. (0)=g.(0)e- sink~,

v, (0)= v, (0)e"sinks,

e.(0)—=0,

v, (0)=—0,

x&0
x&0
x&0.

Here e is to be small and the term e' is added only to
give convergence at -x= —00. The Fourier components
of n, and e, are given by

e, (k) =q.(0)ko/I (k ie)' —kp'j, —
(2o)

v. (k) =v.(0)kp/$(k ie)' —ko'j—
The C(~,k)'s will have poles at k=&ko+ie and will
have no other poles. We assume that H(&o,k) WO for all
cv which are excited; H(co, k) is zero only when co is
a double root of the dispersion relation. These modes
require the slightly different treatment outlined in Ap-
pendix 1. Now n, is given by

MAXIMUM SPEED OF PROPAGATION
OF A DISTURBANCE

Let us assume that at t=0 the beams are disturbed
as follows:

with
ru(k) ~kV, as k —+ ~

V.)x/t.

Since we may associate the curve co(k) which goes as
kV for large k with the 0'th beam we see that in a very
real sense the disturbance is carried on the beams.

FORCED OSCILLATIONS

The problem of forced oscillations may be solved in
a manner similar to that used for the initial value
problem. We must add a forcing term Il to the right-
hand side of (1) so that it reads

(Bv, Bv,)
ml +V, [=—eg+P..

(at gg )
(24)

F, is the external force per particle applied to the 0.th
beam. Such a force might be supplied by a grid inserted
in the beams. It would then arise from an electric field
which is not self-consistent with the beam motion and
which thus has its sources in charges not belonging to
the beams. Here, however, it will be thought of simply
as an external mechanical force.

The Ii may be Fourier analyzed in space and time
so that we need only solve the problem for a single
driving frequency Q and for a single k. The motion of
the beams may be expanded in terms of the normal
modes so that n, (x,t) and v, (x,t) may be written in the
form

where V, is the maximum beam velocity, the inte-
grals may be closed in the same manner as for t=0,
x&0. The integrals are thus zero since there are no
poles inside the contour. Thus no signal travels faster
than the fastest beam.

For positions x which do not satisfy (22) some of the
integrals must be closed on a large semicircle with

Im(k)) 0.

These are the integrals for which

(21)
N, (k,x,Q, t) =P C(Q,cv,k)n (~,k)e""' "*& (25)

x—V „.t&0, (22)

A similar expression gives v, . If each root co(k) of the
dispersion relation is thought of as a continuous function
of k then the summation and integration may be
interchanged. We thus obtain a sum of integrals, one
integral being obtained for each curve co(k). Now for
very large k, the roots of (12) approach co(k)=kV,
where the V 's are the beam velocities. Thus, for t=0
and x&0 the k contours may be closed by a large
semicircle with

Im(k) &0,

while for x(0 they may be closed by a semicircle with

Im(k)) 0.
For all x such that

C(Q,a,k) (a)—k V,)
v. (k,x,Q, t) =Q N, (u),k) e'&"' '*&. (26)

ik F.(k,Q)N. (ra, k)
C(Q,(o,k) =-

4v e (Q—a))H(k, s))
(27)

Solutions to the free equations may, of course, be added
to (25) and (26) so as to satisfy arbitrary initial

Here as in the case of the free oscillations the sums are
over all the roots of the dispersion relation (12) for the
given k, and the e, (au, k) are the corresponding number
density perturbations given by (9). Substituting in (24)
and making use of the orthogonal relations (14) and
(15) yields
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conditions. Resonant solutions may be treated as limits where use has been made of the relations (see Knoppr)
of the nonresonant cases.

42re' t. N(v)dV

222 ~ (co—kV)'
(28)

However, the integrand in (28) is singular and one
does not know how to treat it c2 priori. One may get
around the difhculty by treating the problem by means
of Laplace transform theory as Landau does or by
allowing delta functions in the perturbed distribution
function as Van K.ampen does. However, it shouM be
possible to handle the trouble by taking the limit of

(12) in the proper way. By this means we will be led
to results which closely resemble those of Van Kampen
and from which the results of previous authors can be
obtained.

In order to carry out the limiting process we will take
the electrons to be distributed among a large number of
beams which are equally spaced in velocity. This
spacing will be taken to be b. The number density will

be a function of the beam velocity. Equation (12) now

becomes

CONTINUOUS DISTRIBUTION FUNCTION AS THE
LIMIT OF AN INFINITE NUMBER OF BEAMS

Consider now the problem of letting the number of
beams go to infinity- in such a way as to approach a
continuous distribution function. One might expect
that the dispersion relation (12) would go over into

(32)

te 2x
2r cot2rs= ——+P

X —~ X~—02
(33)

The term inside the summation in (31) has no poles so
that the sum passes smoothly to an integral as 8 goes
to zero.

Equation (31) may therefore be closely approxi-
mated by

42re' 2r N(co/k) 2rN'(co/k)

222 k'b sin'(n co/kb) k'
cot-

kb

N'(V) 2N'(co/k)ca/k )
dV! + ! =1, (34)

&k(co—kV) (ca2—k'V') )

4n.e' r" N'(V)
1+ d V=O.

2N ~ „k(ca—kV)
(35)

Then sin 2(2rca/kb) is exponentially small in 1/b for this
co and so is the expression

for small 8. This form closely resembles Van Kampen's
dispersion relation. The sin ' and cot terms give us the
freedom which he obtained by allowing his perturbed
distribution functions to contain delta functions.

Consider now the roots of (34). First suppose that
there exists an ~ with finite imaginaxy part for which

4 e' =" N(~b)b
lim =1.

(ca kob)'— (29)
N'(co/k) ( 2rco I

"2N'(ca/k)cod V )
! 2r cot—+ !. (36)

k E kb & „(ca2—k2V2)

!

4n.e' ( 2r N(co/k)

222 (k'b sin2(2rco/kb)

2rN'(co/k) 2rco )
cot—!, (30)

N'(co/k) =dN (co/k)/d (co/k),

is added to and subtracted from the left-hand side of
(29) we Qnd

4n e' 2r'N (co/k)

222 .k'b Sinn(2rco/kb)

2rN'(co/k) 2rco 2rN'(co/k)b
cot——

k' kb co

~ (LN(ab) —N(co/k))b 2N'(co/k)cab/k)
Z! + I

=1, (31)
(co—okb)2 (~2 a2k2b2) j

Here ob and N(o.b)b are the velocity and number

density of the o th beam. N (v) is the velocity distribution
function and is assumed to be a continuous function of v.

If the quantity

Thus this co is a solution of (34) in the limit of zero b

and hence the roots of (35) give all modes with finite
imaginary part. This is not surprising since for such
modes no trouble arises from the integrand in (28) and
we may obtain (35) by a straight forward limiting
process plus an integration by parts.

The complex roots of (35) cannot be all the roots of
(34) since it was shown previously that there are two
modes per beam for a given k and (35) can at best
yield a small fraction of this number. The large number
of modes which we have missed must have imaginary
parts which go to zero with 8. We will therefore write
co in the form

co= ac+iP, (37)

where P must go to zero with b. Now

4n e' t
" ( N'(v) 2N'(co/k)co/k)

1+ ' dV
I

+
2I " &k(co—kV) (co'—k'V') )

~ Konrad Knopp, Theory of Functions (Dover Book Publishers,
Inc. , New York, 1957).
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limP/kb ~a ~ .

is in general finite so that [8 sin'(iree/k8)$ ' and This qualitative knowledge of the behavior of P tells
cot(i'~/kb) must be finite. Therefore, sin'(mpi/kb) must us that
be of the o~'der of 1/8 and hence P must go as

&8 lnb.

With this behavior for P, cot(iraqi/kb) will approach +i
as 8 goes to zero. Here & has the opposite sign from P.

Making use of this fact and writing a as Nkb+ai (I an
integer) with ai of the order of 8 so that we obtain the
roots in the vicinity of ap (where ap ——ekb), (34) becomes

4nre' (—ir'E(ap/k) cosj2ir(ap+ai)/k8)&i sinI 2~r(ap+ai)/k8j imE'(ap/k) ) 47re' i" 1P(V)dV
I
=1+ P . (38)

m k' cosf2prP/k8$ k' ) m " k(ap —kV)

Here use has been made of the fact that sinh8 &cosh8 for I8I large. As before & has the opposite sign from P.
Solving (38) for ai, and P gives

tan
2irai (4rep) 1P (ap) ( 4ire p" 1P(e)dV )

I
1+

kb & km ) k ( k ) E m & „k( —kV))

( k~ '| ( 4ne' t."E'(e)dVq ' ( mk q
' E'(ap/k)

I+» I 1+ P
I I I +

2ir (prE(ap/k) J ( mk ~ (ap —kv) ) (4ir e ) k

(39)

(40)

Equation (39) yields roots

2~a/kb =8am~,
ol

a = (kb/2Ã)8& (Nkb/2}, (42)

where 8 is the principal solution of (39) for 2mai/k8
and lies between 0 and x. However, only half these
roots satisfy (38) since cos(2prai/M) must have the
opposite sign to

4pre' t" E'(V)dV
1+ I'

m & k(ap —kV)

f4ire') ' ( E(pi/k)H cos(prp~/kb)

L, m ) & k'8P sin' mpi k8( /)
E'(pi/k)pr 1P'(pp/k)ir cot(carpi/k8) )

(45)
kP8 sinP(~~/k8)

These terms may also be written in the form of sums
by making use of (32), (33), and (46)

Here as was the case with the dispersion relation the
function inside the sum is singular and we handled the
limit in a manner similar to that employed there. To
the left-hand side of (44) we add and subtract

Thus the roots are spaced kb apart in 0,~. The natural
frequencies of the beams

(43)

c os'x
pr

sin'm-x (x—w)'
(46)

also have this spacing. Thus the o, 's we obtain have
real parts between the n's associated with the beams.
There are two roots for each a since P can be either
positive or negative. Thus we obtain two modes for
each beam as required.

INITIAL VALUE PROBLEM FOR AN INFINITE
NUMBER OF BEAMS

We may now solve the initial value problem for an
infinite set of beams. We must find the limit of (18) as
8 goes to zero. The only ~'s which give trouble are those
whose imaginary part goes to zero with b. These ~'s
will be considered in detail. The C(pp, k)'s for complex pi

may be obtained by taking a straight forward limit of
(18).

First consider the limit of H(pi, k). This is given by

In this way we again obtain an expression inside the
summation which has no poles and which, hence, passes
over into a well-dined integral in the limit. If we now
make use of the solutions for pp (a and P) which were
found in the previous section we Gnd that the first
term in (45) is dominant and gives the limiting value
of H(pp, k). The limit of this term is

2iri 4re' ( 4n-e'

»mP(pi, k) =a
I

1+ wArE'(a/k)
jg

t
"1P(ii)d V i

+I&
(a—kV)

pi=a&iP, & has the sign of P. We shall let H(pp, k)
=hp(a, k)/kB (subscript has the opposite sign to P).
Equation (47) may also be written in the form

(4ire'q ' E(o8)8.
lim+

I I
=limP(pi, k).~ ~ 0 m ) (pp okb)'— (44)

/4ire' p" 1P(ii)d V
h (,k)=+2iriI ~ +1 I, (48)

m & (ap —kV) )
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As before, we have a singular function inside the
summation and we handle it as we did H(cn, k). Adding
and subtracting the appropriate terms so as to eliminate
the poles inside the sum and making use of the solutions
for co found in the previous section, (49) reduces to

4ne' t "N(v, k)dV

m " (cc~—kV)

I'" d VLN'(V) v(v, k)+v'(v, k)N(v) j
(otp kV)—
4ne' I" N'(v)dV &

+kv(n /k, k)! 1+
~ ! =g~(cn, k), {50)

m ~ „(ctp—kV)J

& has sign of p, W sign on cc has same meaning as given
above.

The development of the electric held in time is given
by (19) for fixed k.

En(x, t) = —(4nie/k)P C(co,k)e'("' ")—
The limiting form of this equation is

~oo g (& k)ei(zt toz)—
h (co,k)J~

co (real -ie)

g (~ k)ei(zt toz)—
dct)+ de

h+(co, k)
co(real+is)

g(~ k)eo(zt nz)—
+Z., (51)

h(co, k)

where the integrals are taken over or for co real —an
infinitesimal imaginary part and for co real + an
in6nitesimal imaginary part. In the summation, the
subscript cr indicates the sum is over all complex roots
of Eq. 12. Here the sums over the roots cn&ip (real co

in limit} have been replaced by the integrals along the

~ CONPLFP' I?POTS

where the W sign on o, means that n is to be given an
in6nitesimal negative or positive imaginary part so that
for the —sign the integration contour for the velocity
(the real axis) passes above the pole of the integrand
and for the + sign it passes below the pole.

Returning to the numerator of (18) we must find

4)re' (t)(ob,k)b kbN(ob)v(ob, k) )
lim P! + !. (49)~ m ((co—okb) (co—okb)n i

1 (4ne'). '
I

"N'(V)dV
h(co,k) =—

!
kE m ~" „(co—kV)'

4n.e' f t
~" t)(V,k)N(V)d V

g(co, k) =
m E" „(co—kV)

(52)

I
"dk[N'(V) v(v, k)+N(v) v(v, k) i

(53)
(co—k V)

Examination of Eqs. (52), (53), and (48), (50) shows
that the modes with complex co's may be included in
the integral expressions in the following way. If we let
au take on any complex value in the upper half plane
then the expressions for g+ and h+ yield analytic
functions of co in the upper half plane. This follows
from the fact that as we allow ~ to move around in the
upper half plane the singularity in the integrands in
(48) and (50) does not cross the contour of integration.
Likewise if co is allowed to take on any complex
value in the lower half plane the expressions for

g and h yield analytic functions in the lower
half plane. If we wish to give analytic de6nitions to h~
and g+ in the lower half plane and to h and g in the
upper half plane we must analytically continue these
functions.

Now g+/h+ has poles at the complex roots of (35)
which lie in the upper half plane and g /h has poles
at the roots of (35) which lie in the lower half plane
when g+/h+ and g /h are given as described above.
Further g/h for the complex modes is —2ni times the
residue of g+/hi. at the roots in the upper half plane
and 2ni times the residue of g /h at the roots in the
lower half plane. It therefore follows that EI, is given by

En(x, t) =
tooo g (~ k)ei(zt toz)—

Ao
h (co,k)

-contour 1

(ooo g (co k)ei(zt —kz)

dco, (54)
h+(co, k)4~

contour 2

real axis by making the substitution

(gl&)~~= (g/&)» = (glh),

since there is one root with P)0 and one with P (0 in
each interval tItco= kb. The quantities h(co, k) and g(co, k)
for the complex co may be obtained by taking a straight
forward limit of Eqs. (15) and (18). Performing one
integration by parts on these limits leads to (52) and (53).

COt(tlPI. FX f?OOTg fQ~

where the contours 1 and 2 are those shown in Fig. 2.
Contour 1 passes below all the poles of h and contour
2 passes above all poles of h+.

Now for t &0 both integrals may be closed on a large
semicircle with

I'?G. 2. Integration contours. !Im(co)! (0, (55)
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and for t&0 both may be closed on a semicircle with

~Im(~) i)0, (56)

if the definitions of g+ and h+ are extended by analytic
continuation into the lower half plane, and those of g
and h are similarly extended into the upper half plane.
In both cases the integral along the semicircle vanishes.
For t(0 the first integral vanishes while for t&0 the
second integral vanishes.

The integral along contour 1 gives an expression for
F equivalent to the expression obtained. by Landau.
It may be treated in the manner that Landau' uses and
for the case of no complex roots of the dispersion relation
(unstable modes) it yields the usual Landau damping.
The integral along contour 2 is similar to Landau's
expression except that it gives the electric field for
negative time. It can also be handled in a manner
similar to that used by Landau and it yields damping
in the negative t direction if there are no complex
modes. Thus, the wave dies out in both the positive
and negative t directions so that we have symmetry
between the future and past.

Expression (54) is very similar to the expressions
obtained by Landau and Van Kampen. There is, how-
ever, a slight diGerence which is due to the diGerence
in the method of attack. Both Landau and Van Kampen
solve the problem by means of the Boltzmann equation
and do not attempt to follow the motion of a single
stream of particles in detail. Here, however, the motion
of each stream is followed and so more information is
contained in the solutions given here than in those
given by them. This is why the g functions which
appear in this paper are somewhat more complex than
the corresponding expressions which appear in the
works of these authors.

LIMITATIONS TO THE LINEARIZED THEORY

The theory that has been presented here is a linear-
ized theory like that of most other treatments of plasma
oscillations. Because of this, it breaks down if the
amplitude of the oscillations becomes too large. For
unstable situations this break down will always occur
sooner or later. If we confine ourselves to the limiting
situations for which the distribution is stable (all P ~ 0)
the beam instabilities will give trouble only after times
of the order of logarithm of the beam spacing. Never-
theless, an examination of density perturbations given
by (9), plus the fact that t8 goes to zero as b inly, shows
that the larger the number of beams the smaller the
amplitude of the wave must be so that the theory does
not break down for those beams for which (td oltl) is- .

smallest. This restricts the amplitude to be of the order
of Sly. However, this restriction is what is required
so that the theory will hold for times of the order of
the beam instability growth times (ltinb)

—'. If, in fact,
the beams were not unstable, choosing the amplitude
to be of this order would insure that the solutions
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APPENDIX 1

Double Roots of the Dispersion Relation

If Eq. (12) has a double root, co, we must proceed in
a slightly diRer'ent way from that used in the text.
Instead of looking for solutions of the form

g ~i(co t—kz) (60)

we look for one solution of this form and one solution
of the form

(g +gott) et(ar t—k t ) (61)

where, as before, these are the wave forms for any of
8 J. R. Pierce and J. A. Morrison, Proc. Inst. Radio Engrs.

KD-6, 231 (1959).

would be good for all times. If we are satisfied with
solutions which are good for finite lengths of time then
we need not put this restriction on the amplitude. The
solutions that we obtain are then good so long as
nonlinear terms are not important&to the motion of any
of the beams. The length of this time will, of course,
depend on the amplitude. We can estimate this time
for the case of a continuous distribution function to be
of the order of the period of oscillation of a particle
trapped in the trough of the wave, for this is roughly
the time in which nonlinear terms become important
for the trapped electrons. This time is of the order of

r=(m/eE . t()&, (59)

where F,„is the maximum electric field produced by
the wave. If now the Landau damping time is short
compared to this time then we may expect the waves
to damp out in accordance with the linearized theory.
If, on the other hand, the Landau damping time is long
compared to this time, we expect the linearized theory
will not give an accurate picture of the long-time
behavior of the wave.

Another place where one can expect the theory to
break down is through the representation of all streams
of particles as continuous Quids. When one goes to very
high velocities there will be very few particles per
stream. If this number is only a few particles per
wavelength then the continuous Quid picture again
breaks down. If the Landau damping is due to particles
in such a region then again one expects the long-time
behavior to be modified.

It should be emphasized that the restrictions pre-
sented. above are not confined to the beam calculation,
but apply also to treatments by the Boltzmann equa-
tion. Similar arguments to some of those presented in
this section are given in Bohm and Gross. '
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e.= ( n+n. t)e'&"'—"r (62)

the quantities e, n, or K Eliminating e, and E
between (4), (5), and (6) we find

comes simply from the fact that we may add an arbi-
trary amount of (60) to (61) and still have a solution.

We may find ir from (2), (62), (67), and (70). These
give

/8 ng Bng—2ikv. k2V2e—, (=-
& at at

4n-e'

N, P e„, (63)
t (44—kV.) in. )

(n,+n, t) —
~

e&'"' "*&. (71)
kN. kN, i

4me'N,
n.= P n„,

rn(co —kV, )' ~

2in, 4n-e N,
n.= + P e„.

(44—kV, ) er(ar —kV,)' r

We may normalize in such a way that

Pn„=1,

which leads to

Let us also take n, and v, to be the density and velocity
perturbation for the solution with form (60) for the
given co.

We may now solve the initial value problem. We need
(65) only consider the density and velocity perturbations

due to the two modes of frequency co since our previ-
ously derived orthogonality relation holds between all
other modes and these two. I et g, and v. be the density

(66) and velocity perturbations at t=0 due to these two
modes.

YVe have

(72)(67) n. (t,x) = fan. +b(n, +n.t)fe'&"' '*&

m(a) —kV )'

((co—kV,) in. )
(n.+ n.t) — I

~'i"'-" r, (73)
kN. )4n-e'N

P e.=2i P
~ et((o—k V,)' which at t=0 must equal p and v, . Placing t=0 and

summing over 0 (72) yields]4re' N.
+

I 2 l(Zn. ). (68)
E et ~ (co—kV, )'

'a(44 —k V.)
Equations (66) and (67) are consistent with the dis- &~(t,&)= ntr

persion relation (12). Substitution of (67) in (65) and
summing the result over 0. leads to

Thus (68) is satisfied automatically and so we may
choose

Pn„=o (69)

This leads to
2i4n-e'N

(70)

Now the first term on the right-hand side of (68) is
zero because or is a double root of the dispersion relation
and the last term on the right-hand side of (68) is
simply

nfl

since n, satisfies (8). Multiplying (73) by

N./((o —k V.)',
yields

N, r, fr 47re'N, (1 i)—
~ (44 —kV,)' k ~ n(co —kV, )4

Ntr vy

~ (a)—k V,)'

4ne N, (1 i)—
et(co —k V.)'

(74)

(75)

The arbitrariness which arises in the choice of The denominator of this expression can be zero only if
~ is a triple root of the dispersion relation and this can
never happen for a discrete set of beams.


