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An easier derivation of Chew-Mandelstam’s effective-range formula for pion-pion scattering is given using
the conventional Feynman method with the interaction Hamiltonian H;=4x\¢*in an approximation where
only the chain diagrams are included. Furthermore, we have calculated a correction term to this formula due
to the cross-diagram, both for .S waves as well as for P waves. The method has been applied to pion-kaon

scattering.

(I) INTRODUCTION

ECENTLY, Chew and Mandelstam! investigated

the pion-pion scattering problem by using the
Mandelstam representation.? They obtained simul-
taneous integral equations for the pion-pion scattering
amplitudes corresponding to the wvarious angular
momentum and isotopic spin states. However, their
equations turn out to be quite complicated and conse-
quently in order to solve them they made several
approximations; in particular, they neglected the
cross-diagram (see the next section, Fig. 2) in the
two-meson approximation. In this way, they- obtained
effective-range formulae for the S-wave phase-shifts
corresponding to pion-pion scattering. On the other
hand, the calculation of the P-wave phase-shifts seems
to be rather difficult with this method.

We propose in this note to do the following: first, we
shall show that we can derive exactly the same formulas
in a much simpler manner by using the conventional
covariant calculation of chain-diagrams (see the next
section, Fig. 1). Furthermore, we shall calculate the
correction due to the ladder diagram (cross-diagram)
as a perturbation. We shall also derive the correspond-
ing formulas for the P-wave phase-shifts. These
calculations indicate that the cross diagrams are too
important to be neglected ; consequently, the previous
calculations by Chew and Mandelstam may not
suffice.

The same method is applied to pion-kaon scattering,
although in this case there is an ambiguity in the
definition of the coupling constant; calculation is given
in Sec. 3.

(2) PION-PION SCATTERING

Let us consider the S-matrix element for pion-pion
scattering, where two incoming pions with four mo-
menta p and ¢ and isospins a and B, respectively, are
scattered into a final state with four momenta p’ and
¢’ and isospins e’ and 8/, respectively.
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Let us define the G’s by
S(PﬂoQﬁ - ?ﬂ’,)Qﬂ’,)
= (2i/m)6®@ (p+q—1p'—¢) (1/*) Gaparpr, (1)
Gaparpr= (aB| Po|a’B")Go
+(aB] P1]a’B)Git (aB| Pe|B)G2,  (2)

where w is the energy of either pion in the bary-centric
system and

(aB| Po| ') = $0arprBapy
(aB| P1|a/B") =% (BacrOpp — BapBper), (3)
(aB| P2|0/B") =% (8aarOss +BaprBpar — 3 8apbars’)

are the projection operators for the isotopic spin states
I=0, 1 and 2, respectively. Then G is simply connected
with the phase-shift §;” by the formula

v+1\?
s=(=-) £ @
v =0
X exp(26;0) sind; D Py(cosh), (4)
where

r=w?—1 (5)

is the square of the magnitude of the pion-momentum
in the bary-centric system and we have put the pion
mass equal to unity. '
Now, the pion-pion interaction Hamiltonian is given
by
H,= 4\ (¢a . ¢a)2' (6)

First, let us consider a sum only of chain-diagrams (Fig.
1). These diagrams only contribute to the S waves. We
shall show shortly that this approximation gives exactly
the same result obtained by Chew and Mandelstam.!

In our approximation, Gug..s defined by Eq. (1)
satisfies the following algebraic equation:

Ga = —N{8apBarp' +0ap'0par+0acr3ss }
+ N/7) T {8apbar grr—tOaprrOgarstBacr Opprr}
X Gargrr gy (7)

F16. 1. Chain diagrams.
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where

1
J= (_;)ffd,;pnd,;q// 5(P//+QII_P_Q)
™
1 1

X .
P g i

(8)

Actually, J is logarithmically divergent and we must
subtract the divergence according to the usual pro-
cedure. We do this subtraction according to the
prescription given by Chew and Mandelstam.! Namely,
we subtract from J the value of J at the point

(p+9?=@p—¢)>=(@p—p)=—4%. ©)

It may be worthwhile to point out that this subtraction
of divergences from the diagrams in Fig. (1) does not
by itself give the desired form —4mwdA¢*. This is due to
the fact that we have not included the cross-diagrams.?
However, this does not lead to any difficulties, since
according to the renormalization procedure,® we may
consistently drop all divergences in every diagram under
consideration provided we use the physical masses.
If we were to consider e/l diagrams, this renormalization
subtraction is equivalent to a counter term —4no\g?. If
we now consider the approximation of picking up only
the chain diagrams of Fig. (1) we may simply drop the
divergences in these diagrams; and this is precisely
what is done here. Using Egs. (2) and (3), we can solve
Eq. (7) to obtain the formula:

1 1 2 1 v \?}
———— - (=)

91 ar m \/Z V+1
v b
xuloi+ G0} -i( =), 0
v+1
where
(10:—5}\,
11
(12:—2)\. ( )

In view of Eq. (4) and noting that we have only S
waves here, we get:

v \? 1 2 1
( ) cot&s(’)=————[\/§ tan—1—
v+1 V2

ar w

~ (H”_l)% [ (DY L (12)

>©<+>M+ecos

Frc. 2. Cross diagrams.
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This is exactly the same result obtained by Chew and
Mandelstam.!

Now, we will calculate the contribution from the
cross-diagram (ladder-graph), which are pictured in
Fig. (2). This graph contains a contribution to the
P-wave phase-shifts. Evaluation of these diagrams is
obtained most simply by changing ¢<= —p’ and
B2d (or g2 —¢' and =2 4') in the Gup,wgr of Fig. 1
already given. However, the partial wave expansions
are quite complicated so that we calculate them by
perturbation theory. The formula (12) now becomes:

v t 1 2 1
( ) cotdg@D =——————{\/§ tan—l—
v+1 ar T V2

( v
v+1

)ilnwu+<y+1>ﬂ]

1 1
—I——bI[K(v) —VZ tan—l—], (13)
x vz

where
bo=12/5, (14)
b2=9,
and K (v) is given by
) M lame samey T
1 2
o DD+ 0
14
—3(»+2). (15)
For small values v, K(v) behaves as
K()~1+1+002). (16)

As we can see from Egs. (13) and (14), the correction
from the cross-diagram is opposite in sign and quite
large for the 7=2 state (about 509 correction) but
not so large for the =0 state (about 209, correction).
Thus, the argument concerning the unliklihood of a
resonance! in the S state will be maintained. However,
because of the rather large corrections, especially for
the I=2 state, it is desirable to investigate the cross-
diagrams more carefully, not by perturbation theory
as we have done.

In a similar approximation, we obtain the corre-
sponding formula for the P wave:

¥\ } 1
( ) cotép= -,
V+1 ay

a1= (10/97)\2M (v),

(13

where
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and M (v) is given by
18 ot X
M@y)=—— X
V2 0 (1—x2)2
24+v(1—2a?)
X{Z——————-——

v(1—a?

In[14+»(1—2a?)] }

v—1 2041 \ )
=9{ > — o In?[\/v+ (v+1)¥]

v(»+1)]¢
+[( )]

4

[ (r+1)1] } (14)

For small », M (v) behaves as
M (v)~1—2v4+0(1?).

Unfortunately, this value of @; at zero-kinetic energy
»=0 is too small by a factor 50, compared to the value
used by Rodberg® to give a good fit of the double pion
production data. However, we must bear in mind the
possibility of a P-wave resonance! and the resulting
enhancement of the P-wave amplitude. To find a
resonance it would be necessary to calculate the cross-
diagrams nonperturbatively so that we can make no
statement. On the other hand, a P-wave resonance,
if any, may not be so favorable as far as the explanation
of the second resonance of pion-nucleon scattering is
concerned,® since it will not give a dominant /=%
state compared to the I=3% state. On the basis of
Peierls’ model,” Schnitzer and Goebel® investigated the
- possible explanation of this second resonance. If we
take S-wave pion-pion scattering to be dominant, the
I=1% state for two pions and one nucleon system is
automatically favored on kinematical grounds. How-
ever, it is rather difficult to explain a sharp rise of the
double pion production cross section by means of this
model. One possible way out of the difficulty is to
assume an S-wave resonance® in the two-pion state
with I=0, although this seems somewhat unlikely.!

(3) PION-KAON SCATTERING

The same technique given in the previous section
can be applied equally well for pion-kaon scattering.
However, the main ambiguity here is that we do not
have a convenient unique subtraction prescription such
as Eq. (9), due to the lack of exchange symmetry
between pion and kaon.

Now consider the scattering of a pion with momentum
$ and isospin @ by a kaon with momentum ¢ into a
corresponding final state with momenta p’ and ¢’ and

5 L. S. Rodberg, Phys. Rev. Letters 3, 58 (1959).
S ‘;{ The author owes this remark to Mr. Schnitzer and Dr.
akita.
7R. F. Peierls, Phys. Rev. 111, 1373 (1958).
8 H. Schnitzer and C. J. Goebel (private communication).

PION-KAON SCATTERING
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with pion-isospin 8. Defining the G’s by
S(pat-g— p5'+9)

i 1
— _— 6 + S S A VR By 15/
(2)@ q—p ﬂ&ﬁﬁ (15")

™
Sap= | P1]B)S1+ (| Ps]8)Gs,

where w and E are the energies of pion and kaon in the
bary-centric system, respectively, and

(a| P1|B)="37ars,
<05lP3[l8>:6&ﬁ—%TaTﬂr

are the projection operators into the total isospic spin
I=% and I=4% at the pion-kaon system, respectively.
Then, Gy is connected with the phase-shifts §;” by

G+ D (rhm)t =

(16)

an

Gr= 7 g (2041) exp(26;0)
Xsing; D - Pi(cosf), (18)
where
w=(+1)} E=(@t+m)} (19)

and m is the rest mass of the kaon. Now, the pion-kaon
interaction is given by

H =41\ (¢ade) (Pr7Dr).- (20)

The procedure is almost the same as-in the previous
section and so we do not give any details. In the chain-
approximation, in which we sum up the diagrams given
in Fig. 3, we obtain the following formula for the S-wave
phase-shift.

v t5D
D bt
1 +1{1 ( (v+m?)? a?+m?— 1)
VA R VT WA I S
v/
- +1)l+: puey ln[[\/v+(v+1)ﬂ
14 2 14 )

(e ()

"}-tan“l(fj—%ﬁ) ] }, (21)

where o? is the subtraction parameter; we subtract the
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F16. 3. Chain diagrams for pion-kaon scattering.
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F16. 4(a) Cross diagram contributing to Eq. (24);
(b) Cross diagram neglected in Eq. (24).

divergence at the point

(p+9r= (p—¢)?=—0?,
(p—p)=4+v=2(a>—1—m?).

When m=1 the natural choice would be a?=—~2=-%
as in the pion-pion scattering case [see Eq. (9)].
However, in general, there is no unique reasonable
choice for o2 8 in Eq. (21) is defined by

g=L(mt1—aTat— (m—1)7],

and we chose 82>0.

It should be noted that the formula Eq. (21) is the
same for both isotopic spin /=% and I=3$. This equiv-
alence of phase-shifts for the 7=2% and I=$ states is
always true independent of any approximation, as long
as we use only the interaction Eq. (20). We may also
add the pion-pion interaction term Eq. (6) without
changing this conclusion. This follows because both
interactions Eq. (20) and Eq. (6) do not contain the
isotopic spin matrices 7,.

Now let us proceed to the cross-diagrams. In this
case, we have two types of diagrams: Figs. 4(a) and
Fig. 4(b). Actually, the calculation of Fig. 4(b) is
rather complicated. However, since the kaon is heavy
compared to the pion, Fig. 4(b) is unfavorable, com-
pared to Fig. 4(a). Moreover, we may hope that the
pion-pion interaction is much stronger than the pion-
kaon interaction, and accordingly, we neglect the
contribution from Fig. 4(b). Then, the correction to the
formula Eq. (21) from Fig. 4(a) is obtained by adding
to the right-hand side of Eq. (21) the term

(10/m) W N)LK (v) = To J,

where A is the renormalized pion-pion interaction
constant defined in the previous section [Eq. (6)],
K () is given by Eq. (16) of the previous section, and
Jo is defined by
Jo=01n[ (20+1)/(20—1)] i @¢=1—1/4*>0,
Jo=20tan"1(1/26) if 6= (1/4%)—%>0.

(22)

(23)

(24)

(25)
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In the above, 42 is the subtraction parameter defined
by Eq. (22).
Similarly, for the P wave, we find
()} 9« 1

top(D=—ae—0n. ,
GO )t 5 W M 0)

(26)

where M (v) is given by Eq. (14) and in this case, also,
the phase-shifts are the same for both the I=% and
I=3% states.

(4) CONCLUDING REMARKS

As we have shown in the previous sections, the result
of Chew and Mandelstam for pion-pion scattering can
quite easily be obtained by means of Feynman’s
graphical method. We see also that the approximation
employed by these authors is nothing but the chain
approximation. Furthermore, with our method, we can
evaluate corrections from the cross-diagrams more
easily.

Of course, in principle, the method used by Chew
and Mandelstam is much more general than that given
in the previous sections, since their assumptions are
less restrictive than ours, e.g., they do not assume the
consistency at the Hamiltonian formalism which we
have used. In fact, the use of any Hamiltonian is
completely unnecessary in their formalism. In addition,
the question whether the pion is an elementary or a
bound particle is completely irrelevant in their formal-
ism, whereas this is not the case in our method. How-
ever, from the point of view of calculation, there seems
to be little difference between their method and ours.
Indeed, it appears that our rather old-fashioned method
(in the sense that we do not use dispersion theory) can
more easily yield numerical answers.
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