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The duration of a collision is usually a rather ill-defined concept,
depending on a more or less arbitrary choice of a collision distance.
If the co/vision lifetime is de6ned as the limit, as R —+ ~, of the
diRerence between the time the particles spend within a distance R
of each other and the time they would have spent there in the
absence of the interaction, a well-defined quantity emerges which
is finite as long as the interaction vanishes rapidly enough at
large R.

In quantum mechanics, using steady-state wave- functions, the
average time of residence in a region is the integrated density
divided by the total tiux in (or out), and the lifetime is defined
as the difference between these residence times with and without
interaction. Transformation properties require construction of
the lifetime matrix, Q. If the wave functions P; are normalized
to unit total faux in and out through a sphere at R —+ ~, the
matrix elements are

r+8
Q;;= lim i/, it;*dr E(v; '8;;—+ Z. p S;svp '5;s*)

R~'- Av

where the average value is taken to eliminate oscillating terms at
large R, S;& is an element of the unitary scattering matrix, S, and
v; is the velocity in the ith channel. Q is Hermitian; a diagonal
element Q;; is the average lifetime of a collision beginning in the
ith channel. As a function of the energy Q is related to S: Q
= —AS dst/dE; 0 and S contain the same information, from
complementary points of view. When Q is diagonalized, its
proper values, g;;, are the lifetimes of metastable states if they
are large compared to 5/E; for a sharp resonance, the measured
lifetime is the average of it,;(E) over a distribution in energy. The
corresponding eigenfunctions, +;, are the proper functions to
describe these metastable states. The causality principle appears
directly from an inequality involving the integral expression for
Q;; or g;;, and it is shown how some of its consequences for inelastic
collisions can be deduced.

INTRODUCTION

'
[ T is surprising that the current mathematical

~ ~ apparatus of quantum mechanics does not include
a simple represeptation for so eminently observable a
quantity as the lifetime of metastable entities. Unlike
other dynamical observables. for which corresponding
operators are available, the lifetime is usually computed
by various indirect devices —among these are Gamow's
complex energy eigenvalue, the combination of the
Heisenberg relation with the width of an energy
resonance, and special wave-packet representations.
There seems to be a widespread misapprehension, which
I hope in this note to allay, that it is impossible in
principle to obtain a lifetime by a simple procedure
from a steady-state solution of the time-independent
Schrodinger equation for a single energy E. The lifetime
matrix, Q, which can be derived in a simple way from
steady-state wave functions, fills this theoretical
lacuna, and illuminates a connection between lifetimes
of metastable states and scattering theory.

For the analysis of collision events, a well-developed
tool is available in the scattering matrix, S. However,
when the scattering event is not simple, but involves a
metastable intermediate with a lifetime loriger than
some simple collision time (defined, for instance, by
2a/vp, where a is some collision distance and vp the
initial velocity), analysis in terms of the scattering
matrix may become dificult in practice, though it
remains unique in principle. Experimentally, it is
possible to cover an entire gamut: from simple scattering
collisions, through cases where the trajectory of a
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transistory intermediate can be deduced, to the situation
where the lifetime of a slowly decaying product is the
principal thing observed. There is a certain comple-
mentarity between observations of scattering at one
end of this range and observations of lifetime at the
other. It is gratifying to find this complementarity
reproduced in a functional relationship between the
matrices S and Q as functions of the energy E, which
shows that they both contain the same essential
information, though from very diferent points of view.

The point of view that will be taken in deriving the
matrix Q is that a lifetime, or delay-time, can be
associated with every collision. Classically, if the
interaction between two particles is known and the
initial conditions of the collision (including the energy
E1 and the angular momentum L1 in the center-of-mass
system) are specified, it is possible to compute the time
t(R; E,,Li, . ) that the particles spend within any
distance E of each other. To get a well-defined lifetime
independent of E, we may take the limit as R —+ ~
after subtracting the time tp(R;Ei, L,, ) that the
particles would have spent within E. in the absence of
the interaction. If the collision is inelastic, the time to

is the sum of two parts corresponding to an incoming
trajectory with velocity v& and angular momentum L&,
and an outgoing one with v2, L2, each of them termi-
nating at its point of closest approach to the center of
mass. The collision lifetime is then defined as

Q.i(Ei,Lii ~ ) = itm [t(Ri Ei)Lii ~ ~ )

——,'tp(R; vi, Li) —-', tp(R; vp, Lp)]

= lim [t(R; E„L,, )—R(v,—'+vs—')]. (1)
g-+oo



F EL I X T. SM I TH

This expression converges in general for interactions of
shorter range than the Coulomb one.

Quantally, if we use a steady-state wave function to
describe the scattering, a lifetime might be related to
the time spent, on the average, near a scattering center,
as determined by dividing the number of particles in
some central region by the rate at which they are
Qowing in or out. When the boundary of the scattering
region is sharply delimited, this gives an unambiguous
de6nition, and elementary cases have sometimes been
analyzed in this way, ' A much more satisfactory
general procedure, however, is to consider only the
excess number of particles near the center, after sub-
tracting the number that would have been present in
the absence of the interaction; this excess will remain
6nite even if the integration is taken to in6nity,
provided the interaction vanishes rapidly enough at
large distances. This excess, divided by the total Qux
in (or out) through a closed surface at large distance
from the center of interaction, gives the lifetime we
desire. (It will be remarked that the definition of the
lifetime in terms of the ratio of particles trapped to
flux in or out is reminiscent of the definition of the Q
of an oscillating system in electromagnetic theory. It
is this analogy which motivates the symbolism chosen. )

When multiple solutions of the Schrodinger equation
exist for a single energy E, transformation require-
ments lead to the matrix Q, the diagonal elements,

Q,;, of which are the lifetimes associated with the
particular solutions lt; defined by an incoming wave
in the ith channel.

What is apparently a very diferent de6nition of a
delay-time associated with a collision has been deduced
by Bohm, ' Eisenbud, ' and Wigner4 from a wave-packet
analysis. In the case of elastic scattering, which can be
described by a simple phase-shift, q, they show that a
suitable de6nition of a delay-time involves the energy-
derivative of the phase-shift,

At =Mr)/dE.

It is gratifying to be able to prove that the delay-time
defined in this way and the lifetime Q;; are in fact
identical. This proof provides the clue to a general
relationship between the scattering matrix S and the
lifetime matrix Q.

It should occasion no surprise that the collision
lifetimes Q;, as defined here may have negative values.
These arise physically either from reQection of the
incident particle before it penetrates into a central
region, or from its acceleration and swift passage
through a region of negative potential; in either case,
the density of particles in the central region is lower

' See, for instance, V. Rojansky, E/emerItary Quantum Mechanics
(Prentice-Hall, New York, 1938), p. 125; or G. Gamow, Z.
Physik. 51, 204 (1928).

s D. Bohm, QNaatlm Theory (Prentice-Hall, New York, 1951),
pp. 257-261.

L. Eisenbud, dissertation, Princeton, June, 1948 (unpublished).
4 E. P. Wigner, Phys. Rev. 98, 145 (1955).

than it would be without the interaction, and the
collision is over sooner. H the interaction has a 6nite
range, it is possible to establish a simple lower bound
for Q... leading to an elementary proof of a theorem,
established in a diferent way by Wigner, ' related to the
principle of causality. When the Q;; s are positive a.nd
large with respect to Ii/E, we have a criterion for the
existence of metastable states; in this case, separate
metastable states are best de6ned by diagonalizing the
matrix Q, and the eigenvalues g;; are the lifetimes of the
separate states.

LIFETIME FOR A ONE-DIMENSIONAL
ELASTIC COLLISION

To make this definition precise, consider a one-
dimensional problem in the region 0(x(~, repre-
sented by a Schrodinger equation with a potential
function that vanishes at large x and becomes in6nite
at x=0. The wave function satisfying the equation for
a positive energy E is P(x); at x=O, it must satisfy
the condition lt (0) =0. At large x, p may be written in
the asymptotic form,

P(g) —A (e
—isa eigeikz)

where k'= (2nz/k')E, and rt is the phase shift, which
vanishes when there is no interaction (V=O for all
x)0). The probability density is then p(x) =p*(x)lt (x),
while the average density in the absence of the potential
is p(x) = („P*„lt)=limr (1/I) Jp~„g„ltdx=2AA*. The
integrated excess density in the central region is

If the potential vanishes rapidly enough at large x, this
integral remains 6nite as E~ ~, but it includes an
oscillating term, —AA*k ' sin(2kR+rt). The oscillation
can be eliminated by taking the average value of I(R)
as g increases.

(I) is the excess number of particles in the central
region. Its absolute magnitude depends on the normali-
zation of lt, but so does the magnitude of the inward or
outward Qux with which we wish to compare it. The
inward Qow, in particles per second, across a boundary
at large x, is found by applying the Qux operation to the
incoming part of it or „lt,4 =Ae s, and

( dC dC

~

C*——C'

2'& dx dx)

The outward Qux Ii is similarly de6ned in terms of
C*e'&=A*e'&~ f'. If we write
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v
—)Le—ik z e ice ik z] (9)

Using Eq. (9), p=2/v, and the lifetime is expressed
simply by

we can define the average delay-time as

Q= (I)/F
It is usually convenient to normalize the wave

function to unit inward and outward Aux. This can be
done by replacing (3) by the form

particle by a time

Dt= v 'dg/dk=hdg/dE (15)

This delay-time is identical with Q. From the
Schrodinger equation,

(II E)P—= (X+V E)$—=0,

and its first derivative with respect to E,
(JI E) (—BP/BE) P=—0,

R

Q= lim ~ (P~P —2/v)dx
Z~m

we find
(10)

BP BP

BE BELA slightly different formulation for the collision
lifetime that might be considered in place of Eq. (10) is A' 8 t' BQ 8$ BP*)

(18)
2m Bx E BxBE BE Bx 3

Q'= (~V-.~*.~)d'

Q' differs from Q by a term which is important at low

energy,
Q' —Q= —iAE ' sing. (12)

CONNECTION BETWEEN Q AND THE
PHASE SHIFT

Kisenbud, ' Bohm, ' and Wigner4 have pointed out
that a simple wave-packet description of a collision
implies a delay-time of the magnitude

at =5 (dg/dE) (2)

It is worth while repeating the argument briefly in the
form given by Wigner, before proving the identity
between Dt and Q in the one-dimensional case.

To discuss the motion of a wave packet, a time-
dependent wave function is needed, composed of a
sum of terms behaving asymptotically as „f(x,t)
=„ip(x)e '"'. It suffices to take a packet composed of
two such terms, with frequencies v~Av, wave numbers
k~Ak, and phase-shift q~hq. The wave packet is then
represented, in the asymptotic region of large x where
„P(x)has the form (9), by

„P„., (x,t) =2v—l$e '&"*+"'&cos(xAk+tAv)
—e'&'*—"'+» cos(xAk —

trav+

kg)]. (13)

The first term in the brackets has a maximum whenx, = t (dv/dk) = —vt, and repr—esents a particle
moving inward at times t(0; the second term represents
the particle moving outward at a later time, with

x,„=vt dg/dk—
Since g=0 and dg/dk=0 when there is no interaction,
Eq. (14) shows that the interaction has delayed the

The identity between Q and the lifetime expressed by
Eq. (2), which will be proven below, and convergence
difficulties with Q' in higher angular momentum
states, suggest a preference for Q rather than Q'.j

Since P* and 8$/BE vanish at x=0, integration from
0 to g gives

~B gz2 ( g2P

(19)
2 I, a.aE aEa. ).

The right-hand side is to be evaluated at large E,
where P=„Pcan be represented by (9), so

A' t'8„$8„$* O'„P)
2m&aE ax axaE) ~

2
+ R sin(2—kE—+g). (20)

BE v 2E

Comparing with (10), and noting that —,'AE '
X sin(2kE+g) is just the term eliminated by the
averaging of Eq. (5), we find, finally,

R

Mg/dE= )t (P*P—2/v)dx
0

+i~AE ' sin(2kE+g) =Q. (21)

Before proceeding, it is convenient here to point
out a corollary that will be suggestive later. If we write
S=e'&, we obtain the identity

Q = Mg/dE= ~7iS*dS/dE. (—22)

This expression is the proper one for generalization
when S is the scattering matrix for inelastic collisions
and Q the lifetime matrix.

ELASTIC COLLISIONS IN SPACE

In three-dimensional space, it is convenient to treat
collisions with a well-defined angular momentum. If
there are no inelastic collisions, one then obtains a
separate lifetime, Q~i, associated with each value of
the angular momentum quantum number, /. It will be
shown subsequently how these can be combined to give
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where
„yt(r)=tt—&[It(kr) —e'ptIt*(kr)], (24)

It(kr) = (kr) t [(kr)-tIt t(kr)$,
d(kr)

(25)

Ip(kr) = e—""

These functions are normalized to unit inward and
outward flux through the surface of a sphere at large r.
For any /, at sufficiently large r the average density
falls off as (2/ttr'). The simplest expression for the
lifetime integral, analogous to Eq. (10), is therefore

the lifetime appropriate to some mixed quantum state
which is not well-defined as to angular momentum.

In the usual way, the wave function is written in
spherical coordinates about the center of mass of the
colliding system, lt t(r, B,&). At large r, where the scatter-
ing interaction vanishes, this can be written as

(23)

where the angular functions gt(B,&) are orthogonal and
normalized to .unity over a sphere. The functions
„Pt(r) can be expressed in terms of complex radial
eigenfunctions for the angular momentum quantum
number /, (It is not the Bessel function!)

to preserve the normalization of fr to unit fiux, we
must have

Zt ttrtttrt = l. (31)

=Zt ttrÃrt Qn (32)

With inelastic collisions, where the wave functions may
not be orthogonal„ this kind of transformation will
lead us to introduce o6-diagonal elements of the form

LOWER BOUND FOR Q

Wigner has shown' how to establish a lower bound
for the energy derivative of the phase shift. He gives a
simple proof depending on a property of the derivative
matrix, R. The integral expression used here for Qtt, and
its identity with A(drtt/dE), lead to another, particularly
simple, demonstration of this lower bound. ' With
Wigner, we suppose that the interaction has a finite
radius, tt. The wave function, Pt, will differ from „Pt
only for z~&tt, so we can write Qtt in the form

If we now define the lifetime for the collision I' by an
equation like (26), and substitute the expansion (30),
we find

Qrr =," (Pr*Pr 2/~r')—dr

tr[(z
Qtt = lim ~ (ft*Pt 2/ttrP)dr-

@—+oo - Av

r(a 2a
(26) Q«= ' @*Ad

v)
where dv is a volume element.

The lifetime, Qtt, as thus defined, is equal to
ttt(drtt/dE). From the Schrodinger equations for P* and
BP/BE,

+ lim („yt*yt —2/tt)dr . (33)
Q~QO

a —Av

ttt' f BP BP )
2m ! BE BE)

The 6rst integral is positive definite, and the second

(2y) can be expressed in terms of the function It(kr) =It(p),
so

so

ttt' (B @t B @t~ B' @t
4't Ad&= ] ~At

2m \ BE Br BrBZ) p

=A,(drtt/dE) + (2R/tt) —(5/2E)

)&sin(2kR+ttt+-', l~)+Gt/R, (28)

t'dttt) I 2tt f' 'k

l=Q &-I —+I(dE) & t E2E&

—[e '"'It'( )+e'"'It*'(p)])dp (34)

Qt t h(drtt/dE) = iA——St*(dSt/dE—),

where Gt/R is a remainder that vanishes with R '.
When this is evaluated, the result is identical with
Wigner's; for f =0, for instance,

where
5)——e'&~.

Qpp
——A (dt)p/dE) & —2tttt '+-,'AE ' sin(2ktt+rtp). (35)

We are now in a position to extend the definition of
the lifetime to a mixed state, I', which is not well-
defined as to angular momentum. The wave function
for this state, fr, may be expanded in terms of the
orthogonal functions lt t,

The integral expression for the lifetime, Q, is thus
seen to be naturally adapted. to expressing the causality
principle in quantum mechanics. It will be shown
subsequently how this principle can be applied, to
inelastic collisions.

itr=Z«r4t;
'A related proof has been given by K. Corinaldesi and S.

(30 Zienan, Proc. Cambridge Phil. Soc. 52, 599 (1956).
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where k '= 2m'. '(E—E;), and the single label, j,
represents a set of quantum numbers including the
angular momentum of the collision. The complete wave
function, f;, includes outgoing portions in a number of
states, described by C»*, with amplitudes and phases
given by the matrix $:

Pj=C'j—Zl SjÃa* (37)

The functions Pj are then normalized so that the total
inward and outward Aux through a spherical surface
at large 8 is unity; they are also Aux-orthogonal, in the
sense that the cross-terms in the total inward or outward
Qux matrix vanish, so that Qux-normalization is retained
under a unitary transformation.

The lifetime matrix can now be dehned by the
(jr+3) dimensional volume integral,

[r[&8 [s/&B

Q,;= lim I ~ gyes, dr, dr, Ra;;—
g-moo

-Av

where Eo-;, represents the average behavior of the
integral at large E, beyond the range of interaction:

~ ]rf ( JS[&11

0 jj= 11111R ~ ~lp& (zlpjdrt, z
+~00

=1' '&';++1 S'~r~ 'Sja* (39)

If the collision includes the possibility of a reaction with
exchange of partners, 2+8 ~ C+D, the same expres-
sion holds, but the integral in (38) includes portions
in the channels corresponding to 3+8,with coordinates
r and 8, and portions in channels corresponding to
C+D, with coordinates r' and s'. These coordinates
must then be normalized in such a way as to be con-
nected by an orthogonal transformation. '

The integral formulation of Q@ is not limited to any
specific asymptotic form of the wave functions, and
only slight modification is required if the normalization
to unit Aux is abandoned. In that case, the right-hand
side of (38) must be multiplied by (F;,F,,) &, where
F;, is the total Qux of the incoming or outgoing part

' See, for instance, G. Breit, Huedbnch der Physik, edited by S-
Pliigge (Springer-Verlag, Berlin, 1959), Vol. 41, Part 1, p. 41.

INELASTIC COLLISIONS

When we come to inelastic collisions, the analysis
in terms of the phase shift must give way to the more
general scattering matrix, S, which is unitary if P is
normalized asymptotically to unit Qux in and out.
(Often, S is symmetric as well, but we shall not need to
depend on this. ) If we denote the product wave function
involving the internal coordinates of the colliding
partners in the jth state by &vj(s) and their internal
energy by E;, we can describe the asymptotic behavior
of the approach phase of a collision beginning in that
state by

g yPj*dydx
0 +-ao

O' „I"8$;*8/; O'Pj*
dy. (41)

2m „BZBx BxBZ

The right-hand side of (41), evaluated at large R,
becomes

R~g+i7i Qp S,1,(dS;I,*/dE) (if'/2jjj, )[e—, 'S, ,*e ""a-
v, 'S;,e""j—~j+G,;/R. (42)

Averaging over the oscillating terms as E.~ ~, we
find

Q,;=ih Q„S;„(dS;„*/dE). (43)

Using matrix notation and the fact that S is unitary
(Sst=1), we see that

Q=iksdst/dE= iA(ds/dE—)st= Qt, (44)

showing that Q is Hermitian. In view of the conjugate
relation between time and energy, we can identify
the time operator f= i7iB/BE, an—d write (44) in the
illuminating form~

Q= —sfst= (fs)st.

Formally, it is possible to invert (44) and compute
S from Q as a function of E; the boundary condition
is obtained from the facts that S —+ I and Q —+ 0 as
E—+ ~. S then satisfies the integral equation

00

S=1—
I Q(E')S(E')dE', (46)

which leads to an iterative expression for S in terms
of Q.

LIFETIME MATRIX ANB THE BELAY
TIME MATRIX

In his thesis, ' Kisenbud extended the wave-packet
analysis of collision delay-times to inelastic collisions,

~ I am indebted to Dr. B. A. Lippmann for this observation.

of g, through an (e—2)-dimensional surface as R —+ ~,
and the integral expression must be used for Og in
Eq. (39).

The relationship between Q and the scattering
matrix, S, can now be established. It, suffices to discuss
a two-dimensional case, with x~&0 the collision co-
ordinate and y the coordinate of internal motion;
generalization to other cases is straightforward. The
asymptotic form of the wave functions at large x is
given by (37) with

$e ~7c g .—s~ .(y)

where the or s are orthogonal and normalized to unity.
Hy an application of the earlier argument involving
Green's theorem and the Schrodinger equations for
P; and 8$,*/cjE, it is easy to see that
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dining what may be called the delay-time matrix At.
A typical element of it, ht;;, is the delay in the appear-
ance of the peak outgoing signal in the jth channel, after
the injection of a pulse in the ith. By a wave-packet
analysis like that of Eq. (13), it can be shown that

At. ;,= Re [ jA—(,5';,.) 'd.P—;;/d I,"j . (47)

This involves the imaginary part of the logarithmic
derivative of a single element of S, whereas Q, by
Eq. (44), involves what is in a sense a logarithmic
derivative of the matrix S as a whole (since St= S ').

The average delay experienced by a particle injected
in the ith channel is easily computed using the wave-
packet model. Since the particle has a probability
i5;, i

of emerging in the jth channel, it is delayed
on the average

gt, ).,= p;s;;*8;;at,;
= Re $—i7i, P; 5;;*d5;,/«] = Q, ;, (48)

where the last equality depends on (44) and the fact
that Q, ; is real. The particle description by wave-
packets thus leads to the same average delay as our
previous steady-state model.

Under such a transformation, the integral formulation
for Q, (38), is invariant, provided e is replaced by
s'=AeA&. On the other hand, the simple connection
(44) between Q and S is lost if the transformation A is
dependent on the energy. Instead, we get. the equation

R=ih LT (dTt/dE)+TA'(dAt*/«) Tt

A(—dAt/dE) j. (52)

A particularly important transformation is the one
t.hat diagonalizes Q. To the eigenvalues of Q,
correspond a set of eigenfunctions +;. It is an obvious
step to identify the q;;, when large, with the exponential
decay times of long-lived metastable states, which are
described by the wave functions 4;. From this point of
view, other methods of computing such lifetimes may be
considered as ways of approximating the q, ;. This
description is equally applicable to a case where q, ; has
a sharp resonance as a function of energy, or to one
where g;;(E) may be a slowly varying function.

The eigenfunctions, 4,(E), which diagonalize Q(E),
may be used to construct wave packets to give a more
detailed description of any collision or decay process.
A general time-dependent wave function f(r, t) can be
written in the form

TRANSFORMATION PROPERTIES AND
THE EIGENVALUES OF Q

Q, like S, contains nonzero elements only when the
corresponding transition is permitted by the dynamical
conservation laws. The conservation of total angular
momentum, for instance, means that Q commutes with
the matrix I . Likewise, if the interaction is such as to
conserve some symmetry of the system, the nonzero
off-diagonal elements of Q connect only states with
the same symmetry, and Q may be said to commute
with the symmetry operator.

A diagonal element of Q, say Q;;, is to be interpreted
as the average delay time in a collision described by
the wave function f;. The off-diagonal elements are
required if a transformation is made from the functions
P, to another description, say,

(53)

If this represents a decaying system, in general the
states 4; with short lifetimes q;; will decay rapidly, and
ultimately the wave function near the center of obser-
vation will be composed predominantly of the longest-
lived term +p, which will thereafter decay with its
proper lifetime happ.

The transformation B that diagonalizes Q is itself a
function of the energy, and q is related to the transform
of S by an equation like (52). But if the Hamiltonian is
real (neglecting spins and magnetic fields), the wave
functions 4; that diagonalize Q can be taken as real,
and they are symmetric in their incoming and outgoing
parts:

X,=Z~ &pgi (49) A"=Zi (~'ic'I+&'~*4'a*). (54)

In that case, if A is a unitary matrix normalization is
preserved, and Q transforms to

(5o)

and the diagonal elements of R are the collision-lifetimes
of the X;.

In the transformation (49), the asymptotic form of
the wave function X; becomes

&t=c't' —Qi &;A'a'*,
where

(51)

p@=Re LQ B, e 'B,J. (56)

In this case, T= —I simply, and Eq. (52) reduces to

if=Re (BfBt).

CAUSALITY RELATIONS FOR INELASTIC
COLLISIONS

(57)

If B is known, S is fixed by

S= -BtB*,

and the transform of 0 is the real matrix g= SaS~ with
elements

and
7=ASAt*.

The causality relation (34) can be generalized to
inelastic collisions by using the eigenfunctions +; and
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the diagonalizing transformation B. Again, it will be
assumed that the interaction vanishes outside the
distance u. Kith the definitions

p(E) = r/m[(E0 —E)'+r2$. (67)

The line shape formula gives the probability of finding
the state with any given energy E near Eo, it is

and

I r I &a
~

I S I &m

M;i= ~
~

+;%&*dr,dr„ (59) Clearly, we may expect observation of the decay to
give an average value of the lifetime,

»' =&A(-A/~s2') [IJ*(p)IJ(p) 1jdp-
fc~'a

F00

+2 ~.~~.*(A/ ')
~

LI *(p)I (p) —13dp
"ma

—lim S i, (A/rmvi, ') Ii,~'(p)dp
z ' J, ,

~kgR

+5 -*(A/ ') i I'(p)dp, (60)
- Av

the proper lifetimes q;; become

g;;=M;,—ap;;+ (BNBt);;,

and wheniA j,
M;;=a(BoBt);;—(BNBt);;.

(61)

(62)

A lower bound for each q;; follows from the fact that
M;; is positive definite. Similar inequalities applying
to the diagonal elements of Q can be obtained from the
integral (38), and others result from (61) and (62). As
a result, a set of inequalities involving the elements of
S and dS/dE can be established.

so
q= 28= 26 +2 tan '[r/(Eo —E)3, (63)

Q(E) =Au&/dE=Ar[(E, —E)'+r2j-i. (64)

The half-life for decay is known to be

r=A/2r,

and it is seen that the value of Q at the resonance is
twice this,

Q(EO) =A/r=2r (66)

However, the lifetime that is observed in a decaying
system cannot be characterized by the exact energy Eo,
because the decaying state itself is not so well defined.

PROPER LIFETIME AND OBSERVABLE
DECAY LIFETIME

Up to now I have asserted that the proper lifetimes
obtained by diagonalizing the matrix Q are to be
identified with the exponential decay half-lives of
metastable systems. This can be tested by a comparison
with the well established formulas for a single sharp
long-lived resonance in a simple quantum mechanical
system.

If the resonance is centered at Eo and the hall-width
of the level is I', the phase shift is given by

Q= ' P(E)Q(E)&E
~0

Khen this is evaluated, our expectation is con6rmed:

Q=A/2r = .. (69)

Equation (68) can be taken as a general expression
for the expectation value of Q in a measurement of the
decay lifetime. It applies not only to a sharply defined
resonant state, but also to regions where the spectrum
Q(E) may be fairly smooth, and P(E) may be deter-
mined by the conditions under which the metastable
particles were formed.

It must not be thought that Q(E) is experimentally
meaningless for energies more sharply defined than
DE=2?'. Finer detail can be measured experimentally
by a steady scattering experiment lasting much longer
than 7-. The decay experiment is only one way of
measuring the collision lifetime.

DISCUSSION

The lifetime matrix whose properties have just been
deduced provides the possibility of classifying collisions
in terms of the ratio of their lifetimes, Q;;, to the
quantity (A/2E) which represents a specifically
quantum resonance effect [see, for instance, Eqs. (34)
and (35)]. Rapid collisions, with 2EQ;;/A(( —1,
correspond to simple repulsion or to swift passage across
a potential well; when the interaction has a finite
range, an inequality like (34) sets a natural lower bound
for this quantity. When ~2EQ;,/A~ (1, we are in the
domain of quantal resonance effects. (Of course, there
are often additional quantum effects in the central
region of strong interaction. ) When 2EQ;;/A))1, it
becomes meaningful to discuss the event in terms of
metastable states of the compound particle, and it will
often be convenient to classify these states in terms of
the eigenfunctions 4'; which diagonalize Q, with the
corresponding proper lifetimes, q;;.

Outside the domain of peculiarly quantal e6ects, the
lifetime Q;; will be expected to approach a classical
limit as F becomes large. This limit will be just the
classical collision lifetime defined by Eq. (1).

In defining Q, we have thus far confined ourselves
to short-range interactions. The Coulomb interaction,
particularly, demands separate treatment. In this case„
the classical lifetime, Q,i, has a logarithmic divergence
as E—+ ~, and this will be expected to persist in the
quantum-mechanical treatment. Nevertheless, it is
possible to define a meaningful relative lifetime in the
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case of a Coulomb collision distorted by an additional
short-range interaction, by comparing the distorted
collision with a pure Coulomb collision.

In both nuclear theory and chemical kinetics, the
concept of a metastable compound particle as an
intermediate in collision processes has been very
fruitful. The lifetime matrix is particularly adapted to
the discussion of such states. In nuclear reactions, it is
well-known that the compound states exhibit sharp
resonances at low energies, described by Bohr's com-
pound nucleus theory, whereas at higher energies the
cross sections vary more smoothly with energy. It is
usual to describe this in terms of the overlapping of
many neighboring broad resonances, but it is also
permissible to describe this region in terms of one or
more of the metastable states described by the wave
functions%'; that diagonalize the lifetime matrix. These
functions, and their associated lifetimes q;;, are
naturally smooth functions of the energy, and may
provide a useful alternative to the description in terms
of overlapping resonances. Since they are exact solutions
of the time-independent Schrodinger equation, they
are well-defined at each energy K

In terms of the wave functions%';, a typical collision
can be described as follows: If the initial kinetic
energy and angular momentum of the collision as well
as the internal states of the colliding particles are
well-defined, the collision is described by a wave
function gq with an asymptotic form like Eq. (37).
This wave function can also be analyzed in terms of
the 4;:

(70)

If all the 4, except one, say +&, have very short proper
lifetimes, q;; and q~~, the collision will be observed to
have a probability Pq'=P, ~q aq, aq;* of leading to a
simple scattering event, and a probability Ez&= az&az&*

of yielding a metastable compound particle with a

lifetime q» and a mode of decay described by the
outgoing asymptotic form of O'I, . If a metastable
compound in the same state is formed by a diGerent
collision P» the probability of formation P, ~, =a„ka„q
will be diferent, but the lifetime and mode of decay
will be the same. If, however, there exist two or more
metastable states, %~ and 0', with long lifetimes,
diGerent modes of collision will in general form them in
diferent proportions, and the average lifetime and
mode of decay will be observed to depend on the mode
of formation of the compound state. Since the q; s
can be identified with exponential half-lives, a careful
analysis of the decay curves in such a situation should
show them to be composed of a superposition of two
pure exponential decays in each case, with lifetimes
/ha and gmm

The collision lifetime, as defined in this note, is a
characteristic property of any coHision. For long-lived
collisions, the lifetime becomes more accessible to
measurement than other scattering properties; the
lifetime matrix and its associated eigenfunctions
become a suitable theoretical framework for discussing
metastable states. As well as shedding light on some
aspects of nuclear reactions, this description is im-
mediately applicable to atomic and molecular collisions.
Unimolecular chemical reactions, dissociation and
ionization of long-lived excited states produced by
electron or photon impact, and other molecular pro-
cesses, can be described in the language of the lifetime
matrix. In a relativistic formulation„ the lifetime matrix
should be equally useful for the description of higher
energy events.
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