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Hence of the two channels ~1) and ~2), one will have
the phase 8r+4, and the other phase will be or/2.

The application of this to the pion nucleon problem
comes when we consider channel

~
1) to be the two-body,

pion-plus-nucleon channel with the appropriate total
'quantum numbers, while (2') as shown above can
represent the inelasf. ic scattering. The third channel
represents the photon-plus-nucleon channel. If we have
a resonance of the sort discussed in the last section, the
elastic phase must increase through pr/2 on passing
through the resonance region, while the parameter X

starts at 1, decreases to 0, and then increases to 1 again.
Hence the photoproduction phase starts oB together
with the scattering phase shift and finally rejoins it,
but there is an intermediate region in which the phase
is given by one of the two forms given above. The
choice of bi+As seems to agree somewhat better with
the experiments unless the phase shift 6~ is small.
The model as outlined in the previous section would
predict a phase shift 8s of sr/2 at all energies through
the second resonance, and a phase shift increasing
through m. for the third. Perhaps further experiments

on the scattering and photoproduction will enable a
comparison to be made.
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By means of the analogy that exists between the gravitational held, in the weak, quasi-static case, and the
electromagnetic held, uncertainty relations are obtained for the average values of some of the ChristoBel
symbols measured in two domains, similar to those for the components of the quantized electromagnetic
field. Furthermore, it is shown that there exists a limitation on the accuracy to which the average value of
a single one of these Christoffel symbols can be measured. The existence of uncertainty relations provides
an argument in support of the standpoint that the gravitational held must be quantized.

~' ~I%ERE has recently been some controversy about
the necessity of quantizing the gravitational

field. ' It is therefore of interest to show that it must be
subject to some uncertainty relations. This can be done
on the basis of an analogy between the gravitational
and the electromagnetic fields.

In the case of gravitation, the motion of a test
particle is described by the equation of the geodesic':

dec /de= —I pp(N ) —2I p Q tt —F I te".

For slow motion, I'=1, 1k=0, so that the last term
can be neglected. This equation then has a form
analogous to the equation of motion of a particle of
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2 u& is the velocity four-vector of the particle. The velocity of
light is taken as unity. Latin indices run from j. to 3.

charge e and mass m acted upon by the Lorentz force
in a given electromagnetic field

dtt"/ds = —(e/rrt) (F"pttP+ 7"„tt").

Here F"p—— Et, and Ii" = —8, where E and 8—are
the electric and magnetic field vectors and (k, rt, rrt) is
a cyclic permutation of (1, 2, 3).

We see then, that there is a correspondence between
the ChristoGel symbols and the electromagnetic field
components given by

Pk ~Zk Pk ~21k

provided we also let e ~ m.
In what follows, it will be assumed that the gravi-

tational 6eld is weak and quasi-static, and that we are
using quasi-Galilean coordinates. The analogy can then
be pursued further, because —I'kpp and —2F p

(=27"p&) are produced by masses (multiplied by G,
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the gravitational constant) in the same way as E and
8 are produced by charges. '

ow, Bohr and Rosenfeld4 have made a detailed
analysis of the measurement of the electromagnetic
6eld. On the basis of the above correspondence it is
possible to carry over many of their results to the case
of the gravitational Geld.

For instance, let us assume that the measurements
of the average values of the fieMs are carried out in
two space regions I~ and I2, each having dimensions of
the order of I., during the corresponding time intervals
T& and T2, each of the order of T, and let the mean
distance between I~ and I2 be of the order of r. If we
further assume that light signals emitted during the
measurement performed in Ij during T~ will reach a
substantial part of I~ during T~, then one gets, on the
basis of the work of Bohr and Rosenfeld, a number of
uncertainty relations, e.g.,'

(DI'os) t(hl'"o„)s& Gh/r'I. T, (T«I.),
&Gh/r'T', (T))1.),

where there is no summation on the index k.
On the other hand, in some cases modifications or

new limitations are necessary. As an example, let us
consider the result obtained by Bohr and Rosenfeld,
that one can measure the average value of the electro-
magnetic 6eld, in a given region of space and during a
given interval of time, to any desired accuracy. The
procedure which they considered involved essentially
the use of a body of large charge and mass uniformly
distributed, occupying the region in question, and the
determination of the momentum acquired by it during
the given time interval. The corresponding result in
the gravitational case wouM then be: by means of
suitable measurements involving a test body of large
mass one can determine the average values of the
Christoffel symbols I'sos ("electric-type" field) and
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I'so„("magnetic-type" field), in a given space region
and time interval, to any desired accuracy.

While this is probably adequate for most cases, it
shouM be pointed out that, in principle, there exists
nevertheless a limitation in the gravitational case. This
arises from the fact that, according to the interior
Schwarzchild solution of the Einstein gravitational field
equations, a particle of mass ns has a minimum radius
of the order of magnitude Gm. Thus one can write for
the case of an "electric-type" gravitational field, de-
scribed by I"~Do,

DI"sso= EP"/mT,

where AI"~DO is the error in the measurement of the field
component, m is the particle mass, T the time interval
of the measurement, and Dp" the uncertainty in the
measurement of the momentum component. The latter
is of the order of h/Ax", so that

1

Now if the region being measured has dimensions of
the order of I., then we must have

so that we get
d I"sos& Gh/I. sT.

For the case of a "magnetic-type" gravitational Geld,
described by I'so„(noh), one readily obtains relations
of the form

tt"Al'so„& h/ttt Thx".

Proceeding as before and taking into account further
that, in order for the measuring body to remain in the
given space region, we must have

we see that

The existence of these quantum uncertainties in the
gravitational field is a strong argument for the necessity
of quantizing it. It is very likely that a quantum theory
of gravitation would then generalize these uncertainty
relations to all other ChristoGel symbols.


