
MUON DECAY IN NUCLEAR EMULSION AT 25 000 GAUSS 291

depolarization of muons in nuclear emulsion at 25 000
gauss.

The experimental information available at present
is still quite consistent with a value of $= —0.9. More
accurate measurements are necessary to remove this
ten percent uncertainty in the value of $. In view of
the success which the V-A theory has had, the most
likely explanation seems to be that the muons do
depolarize even at this large fieM. Those depolarization
mechanisms which have been treated adequately do
not give rise to any appreciable depolarization at 25 000
gauss. However, the nature of depolarization mechan-
isms is not understood sufficiently to rule out the
possibility that substantial depolarization occurs. In

fact, what experimental evidence exists supports this
conclusion.
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The relation between low-energy pion-nucleon scattering and pion photoproduction is examined. Correct
extrapolation to threshold of both the w+ and m photoproduction data gives agreement with theory. A
recent new method for analyzing the scattering data is applied giving uI =0.178, ug = —0.087, and reasonable
agreement with the Panofsky ratio P= 1.5 is obtained. An inner Coulomb correction to the scattering data
helps to improve this agreement. The possibility of detecting a x —2t- interaction by low-energy pion scat-
tering is examined. A new dispersion relation connects the s- and p-wave phase shifts at low energies; this
relation excludes some well-known sets of phase-shift curves.

I. INTRODUCTION AND SUMMARY

~ 'HE violation of the well-known connection
,between low-energy pion scattering and threshold

pion photoproduction via the Panofsky ratio have given
some stimulus to theoretical studies of these low-energy
phenomena.

In 1958 the situation was clarihed by Cini et al. , who
asserted that the data were in agreement with a
Panofsky ratio P=1.5 and a threshold n. /sr+ ratio
r=1.3. This agreement was achieved by two steps:

(i) Following a suggestion of Bernardini e the extra-
polation of the m+ photoproduction cross section to
threshold was improved by allowing for the retardation
term. This increased the threshold value.

(ii) It was suggested that the pion scattering crossing
relations gave a new plot for the scattering phase shifts.
This led to the very low value ar —aa ——0.24 (in units

*This work was supported in part by a grant from the U. S.
Air Force, European Office, Air Research and Development
Command.

' M. Cini, R. Gatto, E. L. Goldwasser, and M. A. Ruderman,
Nuovo cimento 10, 242 (1958).' G. Bernardini, Suppi. Nuovo cimento 1, 104 (1955).

A=c=p=1) where ar, ae are the T= ,' and T=-';-
scattering lengths.

A brief survey of the data and of these arguments is
given in Sec.II below. Comments on this scheme include
the following:

(a) Beneventano et al.' asserted that the increased
threshold value for ~+ photoproduction was now in
disagreement with the threshold photoproduction
measurements of Adamovic et al.4 (using y+D) if we
wished to retain r=1.3. We show in Sec. II that on
using the correct extrapolation for both the x+ and x
photoproduction data, and using the correct values of
Adamovik s results, this difhculty disappears. For this
extrapolation we use the dispersion relation of Chew,
Goldberger, Low, and Nambu. '

3M. Beneventano, G. Bernardini, G. Stoppini, and L. Tau,
Nuovo cimento 10, 1109 (1958).

4 See 1958 Annual Internutionul Conference on High-Energy
Physics ut CER1V, edited by B. Ferretti (CERN Scientific In-
formation Service, Geneva, 1958), p. 49.

5 G. F. Chew, M. L. Goldberger, F. I.ow, and Y. Nambu, Phys.
Rev. 104, 1345 (1956).
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(b) The value at —as ——0.24 is in disagreement with
the usual plots of the experimental scattering data.
Chiu and Lomon' get ai —a3——0.28. Another recent
analysis of the low-energy scattering data by Barnes
et al. gives s-wave phase-shift values

nt ——0.205k —0.09ks+0.018k',

a3———0.115k,
(1)

where k is the pion c.m. momentum. We estimate that
the statistical errors in the scattering lengths in this
analysis are given by

ag ——0.205+0.005, a3———0.115&0.003.

This gives ai —as=0.320&0.006 and would require a
great increase in the Panofsky ratio over the value
I'= 1.5.

We wish to emphasize that the arguments of Cini
et al.' imply that the conventional expansion of ei]her
of the s-wave phase shifts in powers of k is not a good
approximation when energies greater than 50 Mev are
involved. In Sec. VI recent values of both the phase
shifts are analyzed by the new method. This gives

ai ——0.178&0.005, a3———0.087&0.005,

so a~—a3=0.265&0.007. The value of a3 has appreci-
ably changed from the old value (—0.11).

Using these values of the scattering lengths, the
correct threshold photoproduction values and a new
Coulomb correction to the scattering lengths (see Sec.
IV), it is clear that the low-energy data are consistent
to within the experimental errors.

In Sec. III we examine whether the s-wave pion
scattering data proves the existence of a direct pion-pion
interaction. If we express the low-energy behavior of
the (T= s) s-wave phase shift nt by the efFective range
formula

k cotnt ——(1/ut)+-,'r,k'+
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Fio. 1. (a) Values of the
photoproduction coeK-

cient a0 . Q—Adamovic et
al. , reference 12. (b) Values of
the ~+ photoproduction coeK-
cient a0+. Q—Adamovic et
al. , reference 12; y—Bene-
ventano et al. , reference 14;
o —Leiss, Penner, and Ro-
binson, reference 15; g-
Lewes and Azuma, reference
16; Q—Barbaro and Gold-
wasser, reference 17. The
theoretical curves in both.g figures are calculated from
the dispersion relation of
Chew et al. , reference 5, with

l85 f'=0.08 and N =0)—0.025
and —0.05 [curves (I), (2),
and (3), respectively].

velocity dependent part in a short-range potential can
also lead to a large value of r, . Another method which
sometimes can determine the range of an interaction-
Wigner s causality condition —is also invalid in the
present case.

In Sec. IV we make small corrections to the scattering
lengths to allow for Coulomb eGects which are usually
ignored. Two facts are relevant, (i) the electrostatic
potential is not zero inside the nucleon (i.e., r~& 1) as
is usually assumed, (ii) the proton's charge is spread
over the nucleon's volume. Taking these facts into
account, the corrected scattering lengths represent the
strictly mesonic scattering. On comparing the scattering
data with photoproduction via the Panofsky ratio, the
value of (at—as) as deduced from scattering must be
reduced by 0.02. This is because the values of a& and a3
quoted above do not include these new Coulomb cro-
rections.

In earlier analyses certain Coulomb interference
terms were allowed for, and as a result, the final values
of the s-wave phase shifts varied' with an arbitrary

then by (1) above we get r,~5(A/pc) This large. value
of the effective range might be thought to imply that
the interaction between the s-wave pion and the nucleon
has a radial extent of at least A/pc= 1.4)&10 "cm. The
usual picture of the s-wave interaction being due to
virtual nucleon-pair formation necessarily gives a very
short range (a radial extent &0.2&&10 "cm). A pion-
pion interaction could give a further scattering of the
incident pion by the pion cloud which constitutes the
outer part of the nucleon. Such an interaction could
give values of r, as large as 5 units.

It is shown in Sec. III that we cannot infer the
existence of a pion-pion interaction in this way. When
the scattering length u is small, the presence of a small

H-Y Chiu and E. Lomon, Ann. Phys. (New York) 6, 50
{1959).See also the report of the 1958 CERN Conference, refer-
ence 4, for other results.

7 S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyahe,
and K. Kinsey, Phys. Rev. 117, 226 (1960); S. W. Barnes, W. H.
Winet, K. Miyahe and K. Kinsey, 117, 238 (1960).We are much
indebted to Professor Barnes for sending us the manuscripts.
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radius parameter ro. Our method removes this unde-
sirable dependence on ro.

In Sec. V we give a new dispersion theory relation
connecting the low-energy behavior of the s-wave and
p-wave phase shifts. This relation suggests that the
energy dependence of the set of s-wave and p-wave
phase shifts proposed by Chiu and Lomon, ' and of the
set proposed by Barnes et al. ,

' is inadmissable. The new
dispersion relation gives some support to the new set
of phase-shift curves which we give in Sec. VI.

II. THE LOW-ENERGY DATA

(a) Panofsky Ratio

Recent measurements of the ratio

0 X' ~7|Ãp-
o(vr

—+P ~ y+e)

for negative pions captured in hydrogen are 8=1.50
&0.15 (Cassels et al. '), 1.87+0.10 (Marshall et al.'),
and 1.46+0.10 (Koller and Sachs"). Here we shall
assume that the value is 1.5+0.1.

The theoretical curves in Fig. 1 are the results of
Chew et al. s obtained by using the 6xed momentum
transfer dispersion relation and the predominance of
the (sz, sz) Pion-nucleon interaction. X& ' is a somewhat
complicated function about which we can only say that
it is believed to be small. It will be seen in the next
section that our argument is fairly well independent of
the precise value we use for S& ).

The sharp drop in the theoretical curves above
threshold comes mainly from the interference of the
retardation term in photoproduction with the main
s-wave terms. ' The retardation term vanishes at
threshold, leaving the gauge invariant and the recoil
terms. The older extrapolations to threshold ignored
this drop and, therefore, appreciably underestimated the
threshold values of ao+. It should be emphasized that
both the @0+ and ao curves show this drop.

(c) es
—/~+ Ratio

The threshold value

o (p+P —+ a++n)

(1+(g„+g„)(p/2M)+1.15 S' 'q '

(1—(g„+g„)(p/2M)+1. 15 cV&
—&)

do kM

(os+Sr cosg+Gs cos 0).
dQ (1+re*/M)'

(2)

(b) Photoproduction Data

The cross sections for the processes p+p~z++n should, by the same theoretical argument, ' be

y+ts ~ z. +p are written in the form"

0 is the angle of the pion in the center-of-mass system,
k is its center-of-mass energy and (ce*+M) is the to/al

energy in the c.m. system (M=nucleon mass; @=pion
mass).

The experimental values for the above coeScients
as+ (which refer to the 7r+ cases) are plotted in Fig. 1.
The ao values are due to Adamovic et al." and are
deduced from the photoproduction in deuterium using
the theoretical corrections of Baldin" to give the
equivalent free nucleon values. The ao+ values are due
to various workers as indicated u, i4—iv

' J. Cassels et al. , Proc. Phys. Soc. (London) A70, 405 (1957).
' J. Fischer, R. March, and L. Marshall, Phys. Rev. 109, 533

(1958).
'0 E. L. Koller and A. M. Sachs, Bull. Arn. Phys. Soc. 4, 24

(1958).See also A. W. Merrison et. al. , Proc. Phys. Soc. (London)
73, 545 (1959)."See A. J.Lazarus, W. K. H. Panofsky, and F. R. Tangherlini,
Phys. Rev. 113, 1330 (1959). Our definition of a&, ai, a2 agrees
at theshold with that of M. Beneventano, G. Bernardini, D.
Carlson-Lee, and L. Tau, Nuovo cimento 4, 323 (1956). For
photon energies, up to 220 Mev the two phase space factors
diBer by no more than a few percent.

"M. Adamovic et al. , Dubna, 1959 (to be published). We are
indebted to Professor Adamovic for a copy of their paper.

"A. M. Baldin, Nuovo cimento 8, 569 (1958).
"M. Beneventano et al. , Nuovo cimento 4, 323 (1956).
~~ J. E. Leiss, S. Penner, and C. S. Robinson, Ninth Interna-

tional Conference on High-Energy Physics, Kiev, 1959 (un-
published).

"Lewis and Azuma, reference 15.' G. Barbaro and E. L. Goldwasser, references 4 and 15.

where g„=2.79, g„=—1.91 are the nucleon magnetic
moments in nuclear magnetons. Putting E& ~=0 gives
r=1.30. Changing S& ' to 0.2 would give r=1.25, but
it would also increase the absolute value of as+ by 45%.
Therefore the best procedure is to use the experimental
points in Fig. 1 to suggest a range of values for E& &,

and then use (3) to give the ratio r, which is com-
paratively insensitive to S& ~.

At the energies we consider, the values of ao+ are
proportional to the pion-nucleon coupling constant.
For simplicity, and to give reasonable agreement with
pion scattering we choose f'=0.08. Theoretical curves
for ao+ and ao with E& )=0, —0.025 and —0.05 are
shown in Fig. 1. The experimental points for p-ray
energies below 190 Mev are consistent with something
lying between the S' ~ =0 and E& ~ = —0.05 curve. This
suggests that suitable threshold values are

as+= (20.2&1.5) 10 "cm'/sr,

as ——(26.9&2.0) 10 "cm'/sr.

This also gives the threshold ratio r=as /as+=1. 33.
We do not discuss why the x+ experimental points

at 200 Mev and above deviate from the dispersion
relation values.

"This was pointed out by G. Bernardini, Suppl. Nuovo
cimento 1, 104 (1955).
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(d) Charge Exchange Scattering

Using the threshold value for y+e~or +p given
by this value of ao, and following the usual argument
via detailed balancing, and the Panofsky ratio P=1.5,
we deduce the cross section for charge exchange scat-
tering 7r +p —+m'+e for zero energy m . Assuming
charge independence this requires'

ai —a,=0.245+0.01 (in units A =c=p= 1), (5)

where a~ and a3 are the T= —,
' and T=~ pion-nucleon

s-wave scattering lengths.
It shouM be noted that in this way we have obtained

a value for the zero energy charge exchange cross
section which is consistent with all the low-energy
photoproduction data; it is also consistent with the
ratio r= 1.3.Further, the analysis is almost independent
of the value we assume for f'

(e) Pion Scattering

Recent values of the scattering lengths deduced from
low-energy ~+ scattering by protons are"

as ———0.110&0.004 ai ——0.173+0.011. (6)

This gives ai —c,s——0.283. Thus for consistency with (c)
above it would be necessary to increase the product ao P
Lwhich is proportional to (ai —as)'j by 40%. We could
either require 8=2.1 or require as ——37.10 " cm'/sr,
or we could make some combination of these changes.
We believe that such a 40'Po increase in the value of
Pap is definitely ruled out by the experimental results
given in (a) and (c) above.

Also, recent scattering results appear further to
increase the discrepancy. A detailed analysis by Barnes
et al. ' of the scattering data below 150 Mev, including

results at 30 Mev and 40 Mev, suggests the values
(1) above. The resulting value of (at—as) is quite
inconsistent with the photoproduction data (5).

These values (1) and (6) are obtained by fitting the
s-wave phase shifts n& and ns by formulas of the type

oti/k=a, +b,k'+c,k4+ ~ (i=1, 3) (7)

where a; are the scattering lengths and b; and c; are
constants (k is the pion c.m. momentum). Cini et al. '
by using the crossing relation are led to conjecture that
the extrapolation formula should be

k cotct=(1/a) +'r, 'k+ (9)

where r, is a measure of the range of the potential and
a is the scattering length. Also

It is, however, clear that this suggestion of Cini et al.
necessitates an appreciable change from the accepted
values of both o.q and n3. As an example we take the
phase shifts at 35.75 Mev and 98 Mev based on the
analysis of recent accurate experiments. "The values
are cti ——0.114 (35.75 Mev), vi=0.134 (98 Mev), and"
as= —0.114 k (at 35.75 Mev and 98 Mev). Fitting (8)
to these gives at —as=0.29. (&0.02).

This is unacceptable and we must in fact re-examine
the energy dependence of both phase shifts. In Sec. VI
below we discuss briefly a phase-shift analysis of the
new type using the best recent data. It gives a&—a3
=0.265+0.007. A further correction to the scattering
lengths, which is discussed in Sec. IV, reduces this
value by 0.02. The agreement with the photoproduction
results is now satisfactory.

III. PION-PION INTERACTION

The data of Barnes et al. v can be fitted with the
curves (1) above. We now consider whether on the
basis of these values, any simple deductions can be
made about the nature of the interaction between the
pion and the real nucleon at low energies. The real
nucleon is thought of as a core where many-pion and
nucleon-pair processes can occur, and around the core
is a pion cloud. We might expect that if the s-wave
pion-nucleon interaction is entirely due to the nucleon-
pair process then it is a short-range interaction. If,
however, a pion-pion interaction exists, the s-wave pion
could. interact with a pion in the nucleon cloud, and
this interaction could have a radial extent of the order
(h/pc).

Effective Range Theory

First, we consider a simple model in which the pion
scattering (with given isotopic spin T) at very low
energies is described by a Schrodinger equation in which
we insert an effective potential having the appropriate
range and depth. If we assume also that the potential
is velocity independent, the usual effective range
expansion is valid at low energies, i.e., the phase shifts
o, obey

(a'a&*+b'(o*'),
1+toe/M

where a', b' are constants and (&8+M) is the total c.m.
energy. They determined a' and b' from charge exchange
scattering data by putting (ni ns)/k equal —to 0.27 at
30 Mev and again at 150 Mev. This gave a~ —a3=0.24
which is within the range of values required in (d)
above.

"See the 1958 CERN Conference (reference 4).

(10)

where u(r) is the actual s-wave solution, and

N(r) = 1+r/a.
~ The values at 98 Mev are due to D. N. Edwards, S. G. F.

Frank, and J.R. Holt LProc. Phys. Soc. (London) 73, 856 (1959)g.
They are included in Sarnes et al. analysis.

2' This value of u3 is used by Barnes et al. (reference 7}.See
also the 1958 CERN Conference Report, reference 4, p. 42, where
a similar value is accepted.
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The solution N(r) is normalized so that u ~ I as r —& oo.
At low energies (9) gives

ot/k=a 'a'r—k—'+ (for ~a~&&1). (11)

Thus, from (1) we might deduce that the effective
range in the isotopic state T=-,' is of the order r,~5
units. If this argument were valid, it would prove that
a pion-pion force was present. "It can be seen from (10)
that a potential which spreads over a radius of the
order of unity could indeed give r, 5.

Similar deductions could be made for x scattering
without using charge independence. In this case our
model has a potential V(r) which includes an imaginary
part to produce the inelastic scattering. The new scat-
tering length a is complex, the imaginary part giving
a measure of the total absorption of the m mesons by
the proton. The imaginary and real parts of the potential
are (at zero energy) related in much the same way. The
same effective range formulas (9) and (10) can be
deduced, but now e, a, and r, are complex. Again this
analysis of the data of Barnes et al. would show (if it
were valid) that a a —7r force is present.

Velocity Dependent Forces

The difhculty of using the above method to detect
effects of a m~ interaction is that simple short-range
velocity dependent interactions also may produce a
strong dependence of n/k on k'. This effect is particu-
larly important when the scattering length is small (in
terms of the natural unit of length).

From Schrodinger's equation we deduce that if the
potential varies with the kinetic energy, the effective
range formula becomes

term in (12) is approximately

For low energies this becomes (k'/2p') (a/b') (1+5/a)'.
For a short-range force we put k a giving 2ks/ap, '.
On account of the small value of a this is a large term,
therefore, unless we are sure that the potential is
independent of velocity, we cannot deduce from the n&

phase-shift values in (1) above that the range of the
s-wave pion-nucleon interaction is large.

(For nucleon-nucleon scattering any velocity de-
pendence of the potential does not have such a notice-
able eGect on the effective range formula because the
scattering lengths in that case are large. )

Causality Condition

The range of the s-wave pion nucleon interaction has
also been determined" by using the causality condition.
For nonrelativistic potential scattering it is easy to
deduce that the s-wave phase shift obeys'4

where the potential vanishes outside a sphere of radius
R. By extending this method to relativistic potential
scattering, Goebel, Karplus, and Ruderman" deduce
from the old data that for low-energy s-wave pion
scattering R)0.11(A/lac).

Unfortunately, the method which is used is based on
a form of the scattering matrix S(k) which has not been
shown to be valid when the effective scattering potential
is velocity dependent. Therefore, we cannot regard as
firm any conclusion which is drawn by applying the
causality condition argument to the data in Kq. (1).

k cotn= (1/a)+k') I (Nup —Nlp)dr

2p
+— (V—Vo)N~odr, (12)

where a is the scattering length. V(r) and Vp(r) are the
scattering potentials at energies E=A'k'/2p and E=O,
respectively. e(r), up(r) are the corresponding solutions
of the Schrodinger equation. Also 8=sin(kr+n)/sinn,
Np= 1+r/a.

Ke obtain a general idea of the contribution of the
last term in (12) by considering a square well potential
Vp. The radius of the well b and its depth (—Vp) are
related by (—Vp) 3A'a/2pb' provided ~a~/b is not
large. I et U be a square well of the same radius b,
having depth (—V) = (—Vp) (co/p) where co is the pion's
energy.

The e8ect will be most marked for an attractive
potential. Considering the T=—', state and remembering
that 0&a«1, a rough calculation shows that the last

2' Notice that the nucleon core radius is —0.2 unit.

IV. COULOMB CORRECTIONS

The phase shifts for x+ scattering are obtained by
6rst removing the pure Coulomb scattering from the
observed differential cross sections. This is done by the
method of van Hove" on incorporating the relativistic
and magnetic moment corrections of Solmitz. From
the remaining differential cross section we deduce the
"observed" phase shifts n'. These phase shifts give the
nuclear scattering phase shifts n~ plus a small correction
term. "van Hove" deduces the nuclear phase shift o.~
from the observed phase shift o.' by assuming that
there is a sphere of radius ro, such that for r &ro the
Coulomb interaction can be ignored, and for r) ro the
nuclear interaction can be ignored. He joins the nuclear
wave function, which is valid for r&ro, to the Coulomb
wave function which is valid for r&ro. The small cor-
rection (n~ —np) arises from the interference between

2' C. J. Goebel, R. Karplus, and M. A. Ruderman, Phys. Rev.
100, 240 (1955).

24 E. P. Wigner, Phys. Rev. 98, 145 (1955).
t'5 L. van Hove, Phys. Rev. SS, 1358 (1952).

F. T. Solmitz, Phys. Rev. 94, 1799 (1954).
sr For example, at 41.5 Mev& nP —nso= —0.005 radian (using

rp=1).
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the Coulomb scattering in the region r&ro and the
nuclear scattering. We could call it an outer Coulomb
correction.

It is customary to take rp ——5/pc, (i.e., re=1), on the
grounds that this is roughly the size of the nucleon.
However, at low energies (e.g., 30 or 40 Mev) the
nuclear phase shifts n& obtained in this way7 vary by
small but appreciable amounts as ro is changed from 1.0
to 0.5. Ke, therefore, examine the Coulomb correction
at low energies in more detail. Our results show how the
greater part of this variation with ro can be removed;
they also lead to a further correction to the scattering

~ lengths.

Inner Coulomb Correction

For r&ro the Coulomb field does not vanish. At
r= r p the Coulomb potential in the 2r++ p case is 1 Mev,
and it rises as r decreases. If the proton's charge were
concentrated at r=0, the potential would be 2 Mev at
r= ~. As the proton's charge is spread out, "the poten-
tial is less than 2 Mev at r= —'„and it reaches a finite
value" of a few Mev at r=0. (We ignore the structure
of the pion. )

In van Hove's method this inner Coulomb potential
is lumped together with the purely nuclear interaction.
For 2r++p it gives a small extra repulsion and for
or +p a small extra attraction. Thus, in each case it
enhances slightly the magnitude of the scattering
length over that due to the pure pion-nucleon inter-
action alone. These latter values —which we may call
the strictly elclear valles —are those which obey the
charge independence relations.

We now estimate the size of these effects. Consider
first 2r++p scattering. We only require the scattering

length, so it is sufficient to work at low energies, where

the scattering can be described by a Schrodinger equa-
tion (van Hove's analysis also uses the Schrodinger

equation),

where Rp=A'/2pe2 70 units and

ro dQ
0

N(rp) dr r=rp

(C=0.57 . is Euler's constant. ) A small change d, V(r)
in the potential in the region r (ro gives rise to a change

Afp 111 fp
2'o 2li

Afo= — AV(rp)u2(r)dr.I (&o) Ii "o
(14)

For weak scattering fp 1, and the related change in
the scattering length is ha= —rpAfp. When fp 1, a
fairly good approximation to (14) is

2p
ha ——' hV (r)r'dr. (15)

Corrected Scattering Lengths

Using (15) we evaluate the inner Coulomb correction
for 2r++ p by giving AV (r) the constant value
A V=+1.5 Mev. This gives a contribution to the scat-
tering length Aa+. = —0.007 unit. The value we have
used for AV seems reasonable, bearing in mind that
(a) the Coulomb potential stays finite as r —+0, (b) the
large values of r are heavily weighted in (15).

We must snbrract Aa~ from the usually quoted values
of ap [such as (6) above] to get the strictly nuclear
(or mesonic) scattering length. Reducing ro will reduce
the magnitude of Au+. In fact, the variation of Aa+.

with ro will cancel out the variation of van Hove's
correction with rp. He gets, to the first order in e'/k,
(using units A=c=li=1)

g2

np' —np" =—[C+1n(2krp) —Ci(2kro) cos(2np~)

+si(2krp) sin(2nP)]. (16)
Here

(d2N/dr2) + [Q2 (2li/@2) V (r)]I 0 (13) Ci(x) =—I
" COSS

dx, si(x) =—I" sin@
dx.

We assume. that at very low energies a potential can

adequately represent the nuclear scattering.
The solution of (13) for r&r p can be joined on to the

Coulomb solution for r&ro by using the method of
Landau and Smorodinsky. "This gives

1 1 /t'p ) fo (1 1)-=—in( —~+2C + I

—+—I,
«o& 1 fp &ro Eo—)

28 See, for example, W. H. K. Panofsky's report in the 1958
CERN Conference, reference 4. An exponential charge distribution
with a rms radius of 0.8X10 "cm 6ts the electron scattering data.

'1' If the charge e were spread uniformly over a sphere of radius
rp, the central potential would be 3e/2rp For the act. ual charge
distribution the central potential is greater.

~ See J. M. Blatt and J. D. Jackson, Revs. Modern Phys. 22,
77 (1950) for an account of this method. It has been modified
slightly here to deal with weak scattering (i.e., fp —1).

In the range 0.5(krp(~1, Eq. (16) gives approxi-
mately

(1/k) (ap —np )~epro' ——0 007Xro . (17)

Hence the two Coulomb corrections happen to cancel"
for ro 1. Using (14) or (15)——and the above rough
method of estimating ha+, it is clear that the variation
of Au~ with ro will almost cancel the variation with ro

of van Hove's correction.
The inner Coulomb correction for 2r +p scattering

is made by using a complex potential V(r) in (13) to
describe the nuclear scattering. This gives a complex

"We could choose other (arti6cial) radial distributions of the
proton's charge which would give Aa+ a different magnitude from
van Hove's correction. However, the variations with r0 will
remain equal.
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scattering length u . Re a is then the scattering length
for the elastic scattering. Im a gives the s-wave reac-
tion cross section (i.e., the charge exchange cross
section) 0„=(4ir/k) Irn a . ReV(r) can be a short-
range velocity independent potential, but Im V(r)
must be proportional to vo the velocity of the neutral
pion in charge exchange scattering. Re V(r) and
Im V(r) can then be chosen to give the correct behavior
of the x wave function in low-energy scattering.

The inner Coulomb potential gives a real AV which
is opposite in sign to that used for m+ scattering. By
(15) the inner Coulomb correction for elastic scattering
is ha ~0.007. Equation (15) gives zero inner Coulomb
correction for charge exchange scattering (because 6V
is real). A more careful examination of the correction
for charge exchange scattering can be made with the
aid of Eq. (14). If we assume that the charge exchange
process is of short range (for example, if it only occurs
for r(0.3) then the ratio Im [u(r)]'/Re Lu(r)]' is
almost constant for those values of r for which the
integrand is appreciable. Therefore, to a good first
approximation, the inner Coulomb correction to charge
exchange scattering is zero. van Hove finds that the
observed s-wave charge exchange amplitude is

(V2/3)Lexp(2in3 )—exp(2inP)](1+O(e')].

Therefore, his (outer) Coulomb correction is also
negligible for charge exchange scattering.

From the scattering data and charge independence
we infer the charge exchange cross section using
(ai—aa)=-,'(Re a —a~). From this value we should
subtract 6(ai—ag) =

2 (ha —ha+) =0.02, before com-
paring with the value of (ai—a3) deduced from the
photoproduction data and the Panofsky ratio. (At
present this order of magnitude is just greater than the
limits imposed by the experimental errors. )

V. DISPERSION RELATION FOR LOW-ENERGY
PHASE SHIFTS

We derive two dispersion relations which relate the
s and p-wave -phase shifts at low energies; these are
of value in selecting or rejecting certain sets of phase
shifts which have been proposed.

The pion-nucleon forward scattering dispersion rela-
tions are usually written as follows. Let D~(&uz) be the
real parts of the forward scattering amplitude in the
lab system, and a», kr, the pion (lab) energy and
momentum. Putting A=c=1 we have"

D( )—D(t)
2f'k'

=+2(u —~&)LD (p) —D+(p,)]-
(ti'/2M) W(ur,

(1+1/M)
2f'k'.

(1m 1/2M)
(19)

A change of 0.01 in f' therefore gives a contribution
which should not be ignored.

Phase-Shift Relation

f' is the coupling constant and 0~ are the total cross
sections. The right-hand side of (18) vanishes when
coL, =p and for small kz, it behaves as k~'. We shall
evaluate the coefficient of kL,'.

It is desirable to express our results in terms of the
center-of-mass scattering amplitudes D~~, and the
center-of-mass momentum k. To order k' (with ted=1)

D &((g) =Dy(~~) $(1+1/ilII)
—i—k2/2~]

Equation (18) gives an expansion of the form

Dg (a&) =Dg (ti)+C+k'+

where we have to find the constants C+.
First we notice that the right-hand side of (18) is

not very sensitive to the values we use for the scattering
lengths ai and a3. The first term contributes& 6 (ai—a3)
X(1+1/M)'k'. Hence changing (ai—as) by as much
as 0.03 will only alter C+ by 0.005. The scattering
lengths also enter the dispersion integrals in (18) via
the values we assume for 0~(cv) at very low pion ener-
gies. For example, in this way, a change of 0.03 in aa
will change C+ by 0.003 and C by a lesser amount.
Below, we give the results for two sets of scattering
lengths; they are almost identical.

We have estimated the contribution to the dispersion
integral arising from the fact that ka(a&) ~ const as
k -+ 0. This singularity in 0 (~) at threshold is due to
the inelastic processes m +p~m'+e, m +P~y+ri.
For charge exchange scattering ko. (a&) must be continued
into the unphysical region as far as the pion energy
p, —Am where And=3. 3 Mev. For the radiative process
the continuation into the unphysical region extends
down to the neutron pole." In the resulting integrals
we assume a smooth continuation of ko. (&u) into the
unphysical region, and then take the principal value at
co=p. This has the consequence that a negligible error"
is introduced if we neglect the rise in 0. (cv) with (1/k)
as a& ~ p and take 0 (a&) —+ constant as co ~ tj,, provided
we also neglect the extra contributions to the dispersion
integral coming from the unphysical region ~(p, (i.e.,
the neutron pole is the only unphysical region term
included).

The coupling constant f' appears explicitly in (18)
and contributes to C+k' in the form

ki, f A0 (0'y((0 ) 0 (M ) )+,4'' ~& k ~(d Wcor, Q7 &cgz, )
(18)

Using f'= 0.08 D+ (tj) = —0.105 D (p) =0.078
(which with charge independence are equivalent to

32 For details and references see J. Hamilton, Phys. Rev. 110,
1134 (1958).

33 This calculation is more readily done with the unsubtracted
dispersion relation.
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Drear's values'4 at ——0.165, as ———0.105) we get

D+n= as+0.317k'+

D ~=Dis (fi)—0.020k'+

Assuming charge independence this gives for T= —,
'

(20)

with relation (22) than those of Chiu and Lomon. "
Neither set is consistent with the straight line plot for
ns (i.e., cs= 0).The phase-shift curves derived in Sec. VI
are in reasonable agreement with relation (22).

VI. S-WAVE PHASE-SHIFT CURVES

D+~ ——as+0.322k'+

DP= at —0.197k'+ . . (21)

For low energies we write the phase shifts in the form

rrr/k= Gt+ctk &
ixs= Gs+csk

&

Q11 C11k y Q13 C18k )

Q31 C8lk ~ Q88 C88k

Working" to the nearest 0.005 we find (21) gives (with
f'=0.08)

Dr ~=ai —0.188k'+ (20a)

Alternatively with f'=0.08, at ——0.178, as ———0.087,
we get (assuming charge independence)

sin2nt —sin2ns 1+o&*/M
M*2

sin2nt+2 sin2ns 1+a&*/M
=g(~*')

2k 1+@/M

(24)

lo-

Chew, Low, Goldberger, and Nambu by using the
finite momentum transfer dispersion relations, ex-
panding in terms of p/M and keeping only terms up to
order p/M find that the s-wave phase shifts obey the
relations

ci+cii+ 2cis ———0.195,

cs+csl+ 2css =0.32.

(in units A=p=c=1).
(22)

As an example of the use of (22) we apply it to the
phase-shift values of Barnes et al. ' First we note that
these authors have used f'=0 087 (in th. eir Chew-Low
plot for ass, etc.). We adjust (22) to this value of f',
giving

I I I I l I I I I
/

I I I

D~s =as+0.34ks D n = a —0.23k' (23)

The p-wave phase shifts which fit the low-energy scat-
tering data are given by" C11=—0.02, c18= —0.07,
c81———0.04. Also

(ks/oi*) sf' cotirss ——1—oi*/2. 17 so css——0.22.

Relation (23) now predicts ci= —0.07, cs= —0.06. If we
use f'=0.08 and keep the same values of cii, cis, csi, we
require c1= 0.04, C8= —0.06.

We deduce that (i) the p-wave phase shifts erst, nss
of Barnes et al. ' are noticeably inconsistent with their
straight line plot for us (crs/k= —0.114). (ii) their
values of Q11, Q18 are somewhat inconsistent with their
suggested value for cr, (rr,/k=0. 205—0.09k'+ . ).

Another example is provided by the Chiu-Lomon
phase shifts. ' These authors suggest c11=—0.014,
cts——+0.018, cst ———0.018, css ——0.200 with f =0.08.
Inserting in (22) gives ct= —0.22, cs= —0.06. This
large value of ~ci

~

is in disagreement with the values
these authors use for Q1. The value of c8 is inconsistent
with their straight line plot for Q8.

The values of Barnes et al. are less in disagreement

"J.Orear, Nuovo cimento 4, 856 (1956).
35 Terms —-', a1 km' 363'k are negligible to the order of accuracy

used in Eq. (22).
"These are satisfactory for the 35-Mev phase shifts.

FIG. 2. A plot of the s-wave phase shifts n1 and n3 against c.m.
momentum. o—Fischer and Jenkins, reference 38; a—from data
computed by garnes et al. , reference 7; )(—Bodansky, Sachs,
and Steinberger, reference 40; Q —Chiu and Lomon, reference 6;
g—Edwards et al. , reference 41. (The bar through the 35-Mev nI
point is the new mean value of n1 which is consistent with the
broken line for ns. The corresponding value at 98 Mev is shown
by the bar above the point; it is close to the n1 broken line. )

"A. Kanazawa, T. Sakuma, and S. Furui, Progr. Theoret.
Phys. (Kyoto) 21, 856 (1959), have also found that the set of
Chiu and Lomon do not agree with a dispersion relation. They use
an integrated dispersion relation whereas (22) comes from a dif-
ferentiated dispersion relation. Note added irI, proof. —It has been
brought to our notice that D. A. Geffen, Phys. Rev. 112, 1370
(f958), has used a relation like ours to show that n1 and n3 can-
not both be straight lines.
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f and g are functions to be determined and (~*+35) is
the total energy in the c.m. system. It is hoped that, at
least for low energies, f and g can be expressed in con-
vergent power series about co*=1, so that

f(toes) (gl gs) h (toss 1)+d((o+s—1)s+
(25)

g(toes) (gl+2gs) g(toss 1)+e(toss 1)s+.. .

where b, c, d, e, are constants.
In Fig. 2 we show the results of two solutions of this

type. The experimental points used in making the first
fit are, for n.+: up to 24 Mev, Fischer and Jenkins";
24.8 Mev, Miller and Ring"; 31.5 and 41.5 Mev,
Barnes et al.~; 58 Mev, Bodansky, Sachs, and Stein-
berger. 4' For m . 35.75 Mev, Barnes et al.~; 98 Mev,
Edwards, Frank, and Holt. 4'

For the second solution we have in addition used
other points at higher energies (the 98-Mev value of
Edwards et al. ,

"plus results from the analysis of Chiu .
and Lomon' and the data of Ashkin et a1.4s at 150, 1/0,
and 220 Mev). For convenience and ease of comparison
with other authors, the phase-shift values we have used
contain van Hove's Coulomb correction, but they do
not as yet contain the inner Coulomb correction of
Sec. IV. We can make that correction at the end of the
analysis.

We assumed Barnes et al. ' values for the p-wave

phase shifts and then found solutions of the type (24),
(25) which gave the best 6t to the scattering data. LAs

's G. E. Fischer and E. W. Jenkins, Phys. Rev. 116, 749 (1959)."Miller and Ring, Rochester University (to be published).
'0 D. Sodansky, A. M. Sachs, and J. Steinberger, Phys. Rev.

93, 1367 (1954).
4~ We are indebted to these authors for permission to quote

this result. It was not available when the first solution was found.
~ J. Ashkin, J. P. Blaser, F. Feiner, and M. O. Stern, Phys.

Rev. 101, 1149 (1956).

Barnes values of nj were computed using o.3———0.115k,
we have adjusted the rrt values so as to keep (2tr&+trs)
constant while using our solid curve for o,3. Changing
to the dashed curve for 0.3 improves the agreement
between the nt values and the curve. $

Our first solution —shown by the solid curves —is
obtained by using four constants: g&—gs ——0.255,
gt+2gs ——0, b=0.05, c=0.095. The rrs curve is also a
fairly good fit to the results above 58 Mev; the n& curve
obviously goes wrong above 98 Mev.

Our second solution —shown by the broken curves-
is a fit to all the accurate data up to 1'70 Mev. Its uses
six constants: gt —as=0.265, gt+2gs=0. 005, b=0.065,
c=0.120, d=0.008, e=0.010. This solution clearly gives
somewhat better agreement with the data than the
first solution. Using the second solution, the scattering
lengths and their estimated errors are

gt= 0.178&0.005 as= —0.087+0.005. (26)

Also, for small k' we have

~,/k=0. 178—0.01hs ~,/h= —0.087—0.07hs (27)

In (27) the coefficients (ct and cs) of the terms in hs

are in tolerably good agreement with the values,
—0.04 and —0.06, respectively, which we deduced
from the dispersion relation in Sec. V. This is further
evidence in favor of our phase-shift solution.

Finally, we notice that (26) gives gt —gs ——0.265
&0.007. Now subtracting the inner Coulomb con-
tribution 0.02 (see Sec. IV) we deduce from the scattering
data that the strictly mesonic interaction gives a&—a3
=0.245&0.007. This is the quantity which should be
compared with the value (5) above (gt —gs ——0.245
&0.01) deduced from the photoproductiort, threshold data.
All the low-energy pion data are, therefore, in good
agreement with the charge independence hypothesis.


