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Sm!®? and Sm!% are 27 and 74 times larger,! respectively,
and the (#,0) cross sections on these same nuclides
exhibit the still larger deviations of 99 and 165, respec-
tively. For (n,p) reactions Brown and Muirhead'® have
calculated cross sections from a direct interaction model
which assumes that these interactions, in which no
intermediate nucleus is formed, occur by collision with
nucleons throughout the whole nuclear volume with
equal probability for all nucleons. In Table III we have
listed for certain (#,p) reactions a comparison with
these direct interaction calculations.

Although this direct interaction model gives better
agreement with experiment (Table I1I),'7 it cannot be
developed to include the (n,a) process, nor does it take
into account that surface reactions are considerably
more probable, especially in the heavier mass regions,
than are direct interactions with nucleons deep in the
nucleus.”® Wilkinson® suggests that nucleon clusters,

18 G, Brown and H. Muirhead, Phil. Mag. 2, 473 (1957).
19 G. B. Chadwick, S. A. Duranni, P. B. Jones, J. W. G. Wignall,
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e.g., alpha-particles and deuterons) tend to exist in
the region of low nuclear binding in the diffuse nuclear
surface. Such a tendency for preformed alpha-particle
clusters to exist in the surface suggests itself as a possible
explanation for the large (n,0) cross sections in the
heavy mass region. Such a model also might be a
possible explanation for the near integral multiple
decrease in (n,a) cross sections in the low Z region at
14 Mev pointed out by Levkovskii.? Since the number
of such clusters would be much lower in the low Z
region, any change in the number of clusters available
to the incoming projectile (as for example with in-
creasing 4 at constant Z) would be much more marked
in the cross sections than would be the case at high Z.
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The decay of the 2.43-Mev state of Be? is treated theoretically. Of the open two-body decay channels
all but one involve a nuclear state, the energy of which is not well defined. The usual formalisms have
been generalized to take this into account. The estimate of the decay rates is made by means of a variational
internal wave function for the Be* state, based upon the alpha-particle model. It is found that the principal
mode of decay is to He®+-Hef. Model—dependent arguments are given to show that decay to the ground
state of Be® should be inhibited. Furthermore, the momentum and angular distributions of alphas emitted
in the decay through several two-particle decay modes are computed. These latter calculations do not assume
any specific nuclear model, but depend on the weak assumption that the state is excited by a direct reaction.
Comparison with recent measurements indicates that in addition to the He’4He!* decay, approximately
7% of the decay occurs to the ground state of Be8, which is consistent with our calculations.

I. INTRODUCTION

HE decay of Be® excited by various reaction

mechanisms has been the source of several
studies in the past. For example, early investigations!
of the decay from the 2.43-Mev excited level have
indicated that it proceeds mainly by emission of a
neutron to the ground state of Be®. However, recent
coincidence measurements by Bodansky, Eccles, and

* Supported in part by the U. S. Atomic Energy Commission.

T Part of this work was done while the authors were guest
scienti;ts at Brookhaven National Laboratory during the summer
of 1957.

I Presently on leave at the Institute for Theoretical Physics,
Copenhagen, Denmark.

I'G. A. Dissanaike and J. O. Newton, Proc. Phys. Soc. (London)
A65, 675 (1952). G. M. Frye and J. H. Gammel, Phys. Rev. 103,
328 (1956).

Halpern? (hereafter referred to as BEH) have set an
upper limit of 109, on decays through this channel
and have concluded that emission occurs primarily by
means of other processes. We shall analyze the decay of
the 2.43-Mev state theoretically and compare predic-
tions with experiment. Since this decay occurs in part
through intermediate states (e.g., He®), the energy of
which is not well defined, we have had to generalize the
usual emission width relations to take this into account
explicitly.® This has been done along the lines suggested
by Watson.*

2 D. Bodansky, S. F. Eccles, and I. Halpern, Phys. Rev. 108,
1019 (1957).

3 A. C. Riviere, Nuclear Phys. 2, 81 (1956/57); T. A. Welton,
Phys. Rev. 95, 302 (1954).

4K. M. Watson, Phys. Rev. 88, 1136 (1952).
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TaBrLE I. Angular momentum states available to the residual
nucleus and the emitted nucleon.

Angular Angular
momentum momentum
Residual of residual Emitted of emitted
Mode nucleus  nucleus  particle particle
(1a) Be? 0 n 3
(1b) Be? 2 n 1,3,5,
2) Hes 1 He! 2,4
2 1,3,5
3 0,2,4,6

The principal two-body decay channels available
to the decay of the 2.43-Mev level of Be? are®

(1a) Be** — Bel4-n
Be® — He!4-He?,
(1b) Be¥ — Be¥*+n
Be®* — He*+He?,
(2) Be¥ — He’+4He*
He® — He*+#,

(3) Be¥™ — Be'+y.

The decay modes (1b) and (2) are allowed because of
the broad widths of the 2.9-Mev state of Be® and of
the ground state of He?®, respectively (see Fig. 1).
Because the absolute magnitude of the partial widths
or decay rates through the above channels cannot be
calculated without assuming a specific model to describe
the internal wave functions of Be®*, we shall first
compute the energy and angular distributions of the
alpha particles emitted in processes (1a), (1b), and (2).
These processes depend primarily on a knowledge of
the angular momentum of the initial state and the
final state wave functions. They are, therefore, more
readily believable and one might hope that the experi-
mental measurements of BEH can differentiate
between some of the processes in question. Such will
indeed turn out to be the case. It is for the above reason
that we postpone to the last section the computation
of the absolute magnitudes of the decay rates which
we base upon a variational wave function using the
alpha-particle model of Be®. There are, however, some
simple qualitative arguments which demonstrate the
decay through mode (1a) should be inhibited. These
arguments are based upon angular momentum and
parity considerations applied to current nuclear models.

II. QUALITATIVE DESCRIPTION OF DECAY

A spin and parity assignment of - for the 2.43-Mev
level is strongly suggested by both pickup® and inelastic
scattering.” This level assignment is also consistent

5 We make the usual assumption that three-body decay can
be neglected when two-body decay can occur.

S F. L. Ribe and J. D. Seagrave, Phys. Rev. 94, 934 (1954).

7 G. W. Farwell and D. D. Kerlee, Bull. Am. Phys. Soc. 1, 20
(1956); R. G. Summers-Gill, University of California Radiation
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F1c. 1. Relative energies of the states of the residual nuclei of the
decay modes, showing their relative widths and positions.

with the predictions of the alpha-particle model,® and
the intermediate coupling shell model,® and we shall
assume it to be correct. The lowest orbital angular
momentum combinations are given in Table I for the
two-particle decay modes considered.

In the jj, LS, or intermediate coupling shell model
without configuration mixing, the Be? ground state is
composed of four angular momentum S-state and
five P-state nucleons. The low excited states of negative
parity, such as the 2.43-Mev level, are than explained
by recoupling the nucleons in the P shell to add to a
different angular momentum. These low states cannot
arise by means of the excitation of a single nucleon or a
pair of nucleons to a new shell because of the large
energy required. Thus, except for center-of-mass
effects,® the wave functions of the nucleons in the
2.43-Mev state of Be? have no orbital angular momen-
tum /=3 component, and reference to Table I shows
that decay by mode (1a) is then forbidden. It further-
more follows from this table that the same argument
does not restrict decay modes (1b) and (2).

In the alpha-particle model for the ground state of
Be?, the neutron is strongly coupled to the motion of
the two alphas. In a coordinate system in which the
axis of the alpha particles is the z axis, the neutron is in
a Pj state with a projection on the z axis of 4=%. In a
deformed nucleus as this model describes, the total
angular momentum, 7, is not a good quantum number
but is approximately so because of a large energy

Laboratory Report UCRL-3388, 1956 (unpublished); S. W.
Rasmussen, Phys. Rev. 103, 186 (1956).

8 A review of experimental and theoretical literature is given by
J. S. Blair and E. M. Henley, Phys. Rev. 112, 2029 (1958).

9 D. Kurath, Phys. Rev. 101, 216 (1956).

10 The admixture of /=3 due to center-of-mass effects is expected
to be of the order (M,/Mpe)?~1%,.
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difference to states of different j. The 2.43-Mev state
is given by this model as a rotational state of spin -
with the same neutron Pj wave functions as was the
ground state. The transformation of the neutron wave
function to a space-fixed axis does not introduce any
new neutron angular momentum states, and therefore,
mode (la) is again forbidden. In transforming the
neutron wave function to the space-fixed frame one
finds that the two alpha particles have a spin-2 compo-
nent and this means that mode (1b) is allowed. The
same conclusion for mode (2) is arrived at as for the
shell model. The decay is not restricted.

It is easy to show that similar statements and
conclusions can be made for the Nilsson! wave functions
based on the Bohr-Mottelson model. In conclusion if
one does not allow configuration mixing of neutron
I=3 waves in the description of the 2.43-Mev state of
Be?, then decay to the ground state of Be® is inhibited
by angular momentum and parity conservation alone.
The other decay modes are not hindered. In order to
obtain an approximate amount of decay through the
Be? ground state, we shall in our later calculations
introduce some /=3 configuration by means of the
alpha-particle model.

III. DECAY MODEL
A. Method of Calculation

The decay of the 2.43 level of Be? finally results in
three particles, two alpha particles and a neutron. In
the description of the decay we make the assumption of
a two-step decay in which a first particle is emitted and
the residual nucleus subsequently breaks up. We
furthermore assume that the decay into each mode
can be described independently of the others. The first
assumption is realized if the transit time in Be® of
the first emitted nucleon is short compared to the
lifetime of the residual nucleus as is the case for the
decay to the Be® ground state. If this condition is not
met but the particles forming the residual nucleus have
a strong final state interaction* compared with the
intitial Be® decay interaction, then one effectively
still has a two-step decay process. The second assump-
tion implies that the states which result from the
primary decay are orthogonal to one another. This
assumption is valid for mode (1a) but not directly
justifiable for mode (1b) relative to mode (2). These
modes become identical if the recoil effect of the
neutron motion is completely neglected. When an
alpha-particle model is used to describe Be? the
neutron wave function does not remove the lack of
orthogonality referred to above because of the large
energy widths of the states. Unless this second assump-
tion is made, however, it becomes increasingly difficult
to discuss the breakup into channels (1b) and (2).
Since the decay via the excited state of Be® occurs at

11S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd 29, No. 16 (1955).
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energies which are at least three times the half-width
from resonance we expect the probability of decay
through this channel to be small. In this sense the
second assumption is unimportant and the calculations
will bear this out.

Inspection of Table I indicates which angular
momentum combinations must be considered in the
decay of the §-state of Be® at 2.43 Mev. Because of
the small energy released in any of the primary decays,
the angular momentum barrier effectively limits the
open channels to the lowest ! value listed for each
channel. Emission through higher relative angular
momentum channels, when allowed, can be shown to
be less probable by at least two orders of magnitude.
One further factor to consider is the strength of the
final state interaction of the residual nucleus. In the
Heb states of L >2 one has weak interactions in which
the first assumption is violated. These cases are to be
thought of as three-body decays. Because of the weak
final state interactions they will have a small probability
and we shall neglect them.

B. Expansion of the Wave Function

The wave function of the decay nucleus, ¥, is an
eigenfunction of the total Hamiltonian, H,

H¥n=E\Y,, 1)

and can be expanded into a complete orthonormal set,'?

Ye(1)é,(R)
U= cp Or; e (1)$(R). (2)

Here ¢.(r) describes the stationary states of the
residual nucleus and ¢,(R) is the wave function of the
emitted particle. It has the form ¢,(R)=v,(KR) ¥ ,(Q,),
where v,(KR) satisfies the boundary condition of an
outgoing wave of wave number K. The set ¥.(r)¢,(R)
is a solution of the wave equation

Ho(r)p»(R)= Eopbe(r)¢,(R), 3)

where H, is the Hamiltonian of the residual nucleus
plus that of the emitted particle moving in an average
potential of this nucleus. Since the sets ¥, and ¢4,
are both orthonormal and complete sets, the expansion
coefficients satisfy the usual relations,

Zcp C)\; cpC)\’;cp = 5)0\', (4)
Z)\ C)\;cpc)\;c'p’ = 5cc’6pzz’; (5)
Criep= f%tﬁp‘l’)\dTrdTR- (6)

The residual nuclei may have broad states (energy-
wise) in which case their wave functions depend upon
energy as do those of the emitted particle. We will,
therefore, define the expansion coefficients to take this

2 A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys. Rev.
98, 693 (1955).
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into account explicitly and to expose the additions of
angular momentum of two particles resulting from the
initial breakup. If one replaces the label A, by the
angular momentum J and writes ¢.(r) in the form
Yo (r)=u.(kr)Y.(Q,), then

VM= Zcp CcpJ (k,K)uc(kr)vp(KR)
X2 mm Yem(Qn) Y ™ (Qr) (cpmm’ | TM), (7)

where (cpmm'|JM) is the Clebsch-Gordan coefficient
for the addition of angular momentum ¢ and p to
that of the initial state. The wave number % is a
measure of the internal energy of the residual nucleus.
The coefficients C.,” which determine the decay rate
only differ from zero when energy is conserved,

CcpJ (k,K) ‘_‘CCPJ (k:K)B(Eck‘}“Epk; EJ); (8)

where E.; and E,; are the energies associated with the
residual nucleus and emitted particle, respectively.
The rate of decay to a state (c,p,k,K) is given by

%
ey’ (k, K)/ﬁ*—IC ! (B,K)[?

d d
Xf(¢p*—“¢p__¢p*¢p) dQIB (9)
dR dR R=Ry

= (ﬁRo/#) | Cer” (B, K) |*| v, (K Ro) |* Im o,

v,(KRo) \d (—v”( )R=Ro

and R, is a radius beyond which nuclear forces can be
neglected. From the boundary conditions of an out-
going wave for v,(KR) one obtains

Imf,=KRW ,(KRy), (10)

where W ,(KR,) is the barrier transmission coefficient
V1 of Blatt and Weisskopf.1?

The energy dependence of the expansion coefficients
is obtained from a knowledge of the radial dependence
of the functions #,(kr) and v,(KR) inside the nucleus.
Since all energies (kinetic energy of relative motion
and “binding energies”’) are very small compared to
the potential strengths which act between the particles,
we can approximate the internal wave functions by

wo(kr)=u.(kro) f.(r),
1,(KR)=v,(KRo)g»(R),

where f.(r) and g,(R) do not depend upon % and K,
respectively, and

e (kro) = (2/m)de? (kro)!
X[Fe(kro) cosd(k)+G.(kro) sind(k)] (12)

is the normalized stationary scattering solution of

where

Jo=

(11)

18 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952).
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two particles into which the residual nucleus decays.
The functions F.(kr,) and G.(kro) are the regular and
irregular solutions® for the two particles outside their
range of interaction. By means of (11) the expansion
coefficients, C,,’ defined by (6) can be expressed by

Cop’ (k,K)=1to(kr0)v,(KRo)M o, (13)
where M .,=(fc(r)g,(R)|¥s) is independent of & and
K

The decay rate, (9), becomes upon substitution of
(10) and (13)

»’ (B,K)= |v,(KRo) 2] tc (o) |2IM61)| Tp(KRo), (14)

where we have defined T',(KR,), the single-particle
decay rate, by

I'p(KRo)=2KRqys ;"W »(KRy), (15)

and y,*= (#2Ro/2u)|v,(KRo)|? is the single-particle
reduced width. The energy dependence of the decay
rate (14) is determined by (a) | #.(kro)|? the strength of
the final state interaction of the residual nucleus,
(b) |9,(KRo)|?, the value of the outgoing particle
wave functions evaluated at the radius Ry, and (c)
T',(KRy), the single-particle decay rate. The latter is
proportional to the barrier transmission factor (10)
and also to |v,(KRy)|2 If we adopt for v,,% the single-
particle width!4.!5

Var'’=2 (#*/uRo), (16)
then this estimate requires that |v,(KRy)|? be given by
|95(KRo) [*=2/R¢, (7

and the final form for I';,” is
Top? (B,K)=(2/Re®) | e (kro) |2| M .| T »(KRo). (18)

IV. MOMENTUM AND ANGULAR DISTRIBUTIONS—
COMPARISON WITH EXPERIMENT

The development of the previous section allows us
to write for the momentum and angular dependence of
the primary decay

Top? (-, K)=2Rq*| M op|* | e (o) | T » (K Ro)
X | me’ ch(Qk) YpMI (QK)
X (cpmm' | TM)|*(Eci+Eypx, Ey), (19)

where 0x is the angle of the direction K of the emitted
particle and 6 is the angle of the direction of the
particles of the residual nucleus (see Fig. 2). If one is
interested in the angular and momentum distributions
in the Be® rest frame of either of the alpha particles
emitted in the two successive decays (to compare with
experiment), then the relative coordinates k and K
(Fig. 2) must be transformed to the alpha-particle and
neutron coordinates, kei, kes, and k, and the coordinates

4 A. Bohr and B. Mottelson, Kgl. Danske Vidensk. Selskab,
Mat.-fys. Medd 27, No. 16 (195 ).
15T, Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).
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Fi1G. 2. Internal momentum of the particles used in
computing the decay rates.

of one alpha and the neutron must be integrated out
[see Appendix A7.

The final state interaction is evaluated by using the
scattering phase shifts of the particles involved in the
residual nucleus. For the decay to the Be® ground state
this need not be done explicitly since the extremely
narrow width and the very low energy of the state
causes the wave function to be approximately propor-
tional to a delta function of the energy of the state, E,,

240 (ko) | 2222 (Fro) = Eod (Er— Eo). (20)
4}
8

Be + n

L =0
3l

N
2 -
'k
0 1 1 1 1 f { { J
(o] 2 4 6 8 1.0 12
K/K .

Fi1c. 3. Bed+n, ground state, momentum distribution along
the Be? recoil direction where N is the number of alpha particles
per unit volume in momentum space and k/ko is the fraction of
momentum of the alpha particle from the kinematic limit Zo.
The experimental points are those of BEH.
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For the L=2 state of Be?, the alpha-alpha scattering
phase shifts were obtained from a low-energy interpola-
tion of an analysis of scattering data.!'® Below an Ej
of 1 Mev the phase shifts were less than 1 degree but
this is sufficient to cause an enhancement of the decay
rate by a factor of about 4 over the free-particle wave
function.

The Pj; phase shifts were obtained from the analysis
of neutron-helium scattering.!” With these values for
the final state interaction and the usual form® for the
barrier transmission factor W,(KR,) in I',(KRy), the
momentum and angular distribution of the alpha
particles can be calculated. In modes (1a) and (1b) the
distribution of either alpha particle is the same since
the symmetrization is taken care of in the Be® wave
function. In the decay to mode (2) we have neglected
the interference between the two alphas in He’ and
He* and have taken the distribution to be just the sum
of the two.

In the experiment of BEH, the 2.43-Mev level of
Be® was excited by inelastically scattered 42-Mev
alpha particles. The momentum and angular dependence
of alpha particles emitted by the breakup of Be®*

Fic. 4. Bed+n, first excited state, momentum distribution
along the Be? recoil direction where N is the number of alpha
particles per unit volume in momentum space and k/ko is the
fraction of momentum of the alpha particle from the kinematic
limit k. The experimental points are those of BEH.

16 N, P. Heydenburg and G. M. Temmer, Phys. Rev. 104, 123
(1956); J. M. Russell, Jr., G. C. Phillips, and C. W. Reich,
Phys. Rev. 104, 135 (1956).

17D, C. Dodder and J. H. Gammel, Phys. Rev. 88, 520 (1952).
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were measured in coincidence with those inelastically
scattered. The angular distributions of the latter? is in
almost quantitative agreement with the predictions of
simple direct interaction theories.!®* We, therefore,
have used these theories to calculate the relative
population of the Be®* magnetic substates, M, along
the recoil axis. In support of this assumption it may
be worth noting that gamma-ray correlations following
(P,P’) and (a,a’) reactions on C2 and Mg* " which
similarly depend upon the relative My population of
the excited states, are in good agreement with theoret-
ical predictions even when the inelastic angular
distributions are not. Furthermore the predicted
populations are not very sensitive to the nuclear model
employed; both the shell model'® and Bohr-Mottelson
model® lead to a population proportional (32M0]|5M)?
for our case. Thus the relative population of M=%
to M=% 1s 6 to 1. The corresponding population using
the alpha-particle model for Be® 2 is proportional to

[5(3230(33) (32M0|5M) j>(OR)

—9(3450(33) (34MO[3M) j.(QR) P, (21)
il He5+ H:
3fb
N
2l
R .
I L
o 2 4 6 8 10 1.2
K/K,

F1c. 5. He5+He! momentum distribution along the Be® recoil
direction where & is the number of alpha particles per unit volume
in momentum space and k/ko is the fraction of momentum of
the alpha particle from the kinematic limit k0. The experimental
points are those of BEH.

18 N. Austern, S. T. Butler, and H. McManus, Phys. Rev. 92,
350 (1953).

19 G. B. Shook, Bull. Am. Phys. Soc. 1, 330 (1938).

2 S, Hayakawa and S. Yoshida, Progr. Theoret. Phys. (Kyoto)
14, 1 (1955).

21 J. S. Blair and E. M. Henley (private communication).
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Fi16. 6. Angular distribution, integrated over all momentum,
of alpha particles about the recoil axis for the decay into Be®-}-n,
ground state.

where j2(QR) and js(QR) are spherical Bessel functions,
Q is the momentum transfer, and R is an interaction
radius. For an angle of 60° of the inelastic alpha which
corresponded to a maximum in the angular distribution
and a radius R picked to match the angular distribution
of the inelastic alphas,” there is almost complete
cancellation of the two parts of the M=% term
leaving the M=% state dominantly populated.

The calculated momentum distributions® of alphas
emitted in the decay along the direction of recoil are
compared with the results of BEH in Figs. 3-5. A
separate figure is given for each breakup mode (la),
(1b), and (2) to allow detailed comparison with
experiment. The cases shown are for the decay from
pure M =% states. The addition of a § fraction of the
M==+1 state would make a negligible contribution
along the Be®* recoil direction. The theoretical angular
distribution of the alphas in the Be®* center-of-mass
frame are shown in Figs. 6-8. The two cases shown
are for M==+3% and M=% plus & of M =--1 mixture
except for the ground state of Be® where the difference
between the two cases is negligible. The comparison of
the angular distributions with the experiment of BEH
is uncertain because of the large errors in the data.
For the alpha group beneath the large peak in the
momentum distribution, BEH obtain an angular
distribution which has a minimum at an angle of 50°
with the recoil direction. This minimum is of the order
of the half the value at 0°. The total decay distribution
is consistent with symmetry about 90°.

22 We have consistently assumed He® to be in the Pj state.
Decay through a Pj state of He® might be expected to compete
with the Pj state, but the energy available for decay is several
Mev from the Pj resonance energy. This reason alone reduces the
ratio of the Pj to Pj decay to less than 8%, and the alpha-particle
and Nilsson models predict very little Py state to be present in the
initial wave function which further lowers the ratio.
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Fi1c. 7. Angular distribution, integrated over all momentum,
of alpha particles about the recoil axis for the decay into Be?+4-#,
first excited state.

V. ESTIMATES OF DECAY RATES;
REDUCED WIDTHS

We have been able to obtain both the energy and
angular distributions of some of the final decay products
from the 2.43-Mev state of Be® without knowledge of
the explicit internal wave function for that state. In
order to estimate the absolute decay rate into the
various two-body channels available, we now use an
alpha-particle model to describe the motion of the
initial state. Aside from simplicity, this model has the
advantage that it easily explains® the position and
excitation of rotational states such as the & level
under discussion.

In the alpha-particle model of Be? the motion of the
neutron is assumed to be much more rapid than that of
the alpha particles. To lowest order, this motion can
be considered to take place about two alpha particles
separated by an equilibrium distance. The effective
potential in which the neutron moves is, therefore, not
spherically symmetric, and only the projection of the
neutron angular momentum on the alpha-particle
symmetry axis is a good quantum number. We have
here a mechanism for the decay to the ground state of
Bed.

The wave functions for a state specified by a total
spin J with projection M on a space-fixed axis and K
on a body (a—c) fixed axis is given by?

®(JMK)=[(27+1)/167* ] R(%)
X [po(p) Darx” (@) + (=) "o (o) Dar—x” () ].
Let r; and r» be the coordinates of the centers of mass

of the two alpha particles and r, the neutron coordinate,
then

(22)

£=(r1—1y)/2, e=r1,—(11}+1)/2, (23)

28 This formula assumes that the states are stable. We shall
assume that the life time of the 2.43-Mev state is sufficiently
long so that this relation is still approximately valid inside a
region of radius Ro.
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(unprimed quantities signify that angles are referred to
the body axis) and o; represents the Eulerian angles
which specify the orientation of the body axis in space.
The wave function is separated into the neutron motion
[specified by ¢q(p) ] with a magnetic substate projection
on the a—a body axis of ©Q, the vibrational motion of
the alphas [specified by R(£)], and rotational motion
[specified by the symmetric top function, Dyx” (a;)].
The second term in (22) is required for the Bose-
Einstein statistics of the alpha particles.

With the assumption of small vibrational motion of
the two alphas, one obtains the usual formula for the
spacing of the rotational energy

E=[J(J+1)—Jo(Jot+1)]#/210),

where J and J, are the spin of the excited state and
ground state, respectively, Io=2M £, and 2¢, is the
equilibrium spacing of the two alpha particles. The
ground state of Be? is specified by the quantum numbers

— —3
=K=3,

(24)

~

and the first rotational state at 2.43 Mev by
J=% K=3.

The neutron wave function satisfies the wave
equation

K4V (|o—&)+V (] o+&|)Ibalo,0)

where K is the kinetic energy of the neutron and
V(le+£|) and V(|e—&|) are the neutron-alpha
interactions. These potentials were assumed to be of
a Gaussian form

V(%)= —A; exp[—pa*],

where x represents the neutron-alpha distance and j
is the total spin of the neutron.

The parameters which give a best fit of the p-wave
scattering of protons on alphas are*

(1/8)}=2.3X10" cm, A3;=53.17 Mev,
A3=35.61 Mev.

(25)

(26)

27

To solve the Schrédinger equation of the neutron,
we take a trial wave function

o3(p,E)=a: p1(o+ &)+ d1(o+E)T+aude(o), (28)

where
¢1(x) =o(x) =[8(2a)¥/3rt Jix exp (—aa?) Y5 (0.).

The form of (28) was chosen so as to mix in implicitly
higher than /=1 angular momentum states by means
of the noncentral wave functions ¢;(g+¥). The ratio
of the coefficients a@o/a1, and the oscillator strength «

2§, Sack, L. C. Biedenharn, and G. Breit, Phys. Rev. 93,
321 (1954).
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were determined by minimizing the energy E(£) with
respect to these constants [see Appendix B].

The absolute decay rates of the various modes can
now be calculated. From (19) we obtain the total
decay rate

e/ =4| M., |2 (mRo*re®) !
X f [F.(2) cosd+G,(z) sind 'T',(KRo)dz, (29)

where z=Fkro and kB and K are connected by energy
conservation. The decay rate will be dependent upon
the radius of interaction for the outgoing wave. R,,
since the barrier transmission depends upon this
quantity. For the two Be® decay modes this parameter
is the radius outside of which no interaction with the
neutron occurs and for the He® decay it is the He’—He?*
interaction distance. The radius of interaction 7o is
presumed to be fixed by analysis of scattering data.

The reduced width amplitudes are denoted by v.p,
where!?

Yer(k,K) = (Rth/Zp)5f¢cYp(QR)\I/dTTdQR. (30)

In this expression the total nuclear wave function is
evaluated at the radius R= R,. From the above equation
and (2), the reduced width amplitude can be given as

Ve (k,K) = (Ri#*/2u)}Cep (k, K)v,(KRo).  (31)

From the single-particle behavior of the coefficients
C.,’ (k,K), their approximate form (13), and the value
of v,(kRy), (17), the reduced widths are given by

Yer' (B, K)=2Rq™| M op| * | o (kro) | (#/uRe?).  (32)

We shall define a total reduced width for the state
(¢,p) to be (32) integrated over all energies available
for decay. We denote this by

Yeo'=4| Moy |*(wRer®) ™ (#*/uRo?)
Xf[Fc(z) cosd+G.(z) sind fdz, (33)

where again z=kro. The values of the total decay rate
T'.,’ and total reduced width divided by #2/uR® are
shown in Table II for various values of the parameter
R,. The evaluation of M, is in Appendices C and D.

It remains to consider the decay through channel (3).
A calculation with the alpha-particle model of the
magnetic dipole transition width, which is the dominant
one, gives I'y=1.3 ev. The single-particle estimate®® of
this width is approximately twice this value.

VI. DISCUSSION

In the last section we made use of an alpha-particle
model to estimate the two-body decay rate of the 2.43
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TasrLE II. Total decay rate and reduced width for the decay
modes as a function of the interaction radius R,.

Ry (107 cm) T (ev) v/ (2 /uRe?)

Bed+n 3.0 3.6 0.008

3.5 15 0.011

4.0 37 0.015

4.5 68 0.016
Be¥*-n 3.0 4 0.00029

3.5 5 0.00024

4.0 6 0.00020

4.5 7 0.00016
Hed4-Het 3.5 33 0.32

4.0 73 0.32

4.5 150 0.32

5.0 280 0.32

state of Be? through channels (1)-(3). The reduced
width ., divided by #?/uRs® are approximately
independent of the nuclear interaction radii R, and
for the particle decays are =~0.015(Bedn), =0.00020
X (Be¥* n), and =~0.32(He% He?).

The preliminary qualitative discussion given in
Sec. II indicated that decay to the ground state of
Be® should be considerably inhibited. It should, in
fact, be forbidden if center-of-mass effects and single-
particle configuration mixing are neglected. In our
deteailed calculation we were able to introduce in a
natural manner configuration mixing for the neutron.
The above results indicate that even with such mixing
the reduced width for neutron emission is less than 59
of the total width. Emission through the first excited
state of Be® is computed to be negligibly small; this
comes about because the energy available to the
Be®* state is at least three half-widths from the res-
onance peak. Our calculations predict that most of
the decay proceeds by means of He5+He®. It should be
noted that the angular momentum and Coulomb
barrier transmission factors do not essentially change the
conclusions, but for reasonable R, do predict that
approximately 5-209, of the decay will occur to the
ground state of Be®. This is also in accord with the
momentum distribution of alpha particles as measured
by BEH.

Our computations of the momentum and angular
distributions of alphas emitted are relatively independ-
ent of any specific model for the description of Be?®.
They make use, principally, of a generalization which
we have developed along the lines suggested by Watson*
to discuss the decay to and through an intermediate
state, the energy of which is not well defined. The
other information needed in the calculation of the
distributions are (a) the spin and parity of the state,
and (b) the relative population of the magnetic sub-
states of Be¥* along its recoil direction. We have argued
that any direct excitation of this state populates
mainly the M=% states, independent of any nuclear
model.

A detailed comparison (see Fig. 9) of the calculated
momentum spectra for modes (1)-(3) with the experi-
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F16. 8. Angular distribution, integrated over all momentum, of
alpha particles about the recoil axis for the decay into Heb-+Het,

mental findings of BEH, indicate that a good fit can
be obtained by admixing approximately 79, decay to
the ground state of Be? to the momentum distribution
of the He®4He* decay. As indicated earlier this ratio of
decay rates is consistent with our calculation and can be
obtained by requiring the radius of the Bed+# and
He®+He* systems to be related as shown in Fig. 10. If
one chooses the He’+He* radius to be 4.6X 107 c¢m
which is consistent with the alpha particle model rota-
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F16. 9. Total decay of Be® assuming the decay is He®+4-He! with
the following percentages of Be®+#, ground state admixed:
A—0%, B—5%, and C—10%,.
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F16. 10. Relationship between the interaction radius of Hes+Het

and Be3+# to obtain a 7% admixture of Bed+#, ground state,
in the decay.

tional energy spacings in Be?, then the radius of Be3+#
must be approximately 3.5X107% cm. In view of the
approximate nature of the decay rate calculations, these
sizes are not unreasonable.

From the momentum distribution alone it is not
possible to exclude appreciable decay to Be®*--n.
We do not believe this to be the case for two reasons:
First, in spite of inaccuracies of the decay rate calcula-
tions, we expect the relative magnitude of the various
processes to be given accurately, and second, the
momentum distributions for the He’+He! case fits
the experimental data better, especially near the
kinematic limit where purely kinematical considerations
should determine the shape of the curve.

The experimental angular distribution of BEH has
a minimum at about 50° where the magnitude is about
half the value at 0°. These results agree with our
previous conclusion that there is little decay to the
Be? ground state and the direct interaction prediction
that the magnetic substates M=% are the ones
principally populated. (The other magnetic substates
contribute a maximum at about 50°.)

In order to satisfy the experimental result of BEH
of an upper limit of 19, for the decay by v emission to
the ground state of Be?, it is only necessary to choose
an interaction radius of He®+He* that is at least
4.3 107 cm. However, the magnetic dipole transition
rate calculation should not be taken too literally, since
the alpha-particle model gives a value for the ground-
state magnetic moment of —0.85 nm as compared with
—1.18 nm experimentally observed.?

In conclusion, with interaction radii indicated, the
total width of the 2.43-Mev state of Be® is of the
order of 200 ev, and this is consistent with present
knowledge.2® The decay is expected to occur pre-
dominantly to He® and He*. -

APPENDIX A

From Eq. (19), the decay rate per unit volume in
momentum space for one of the alphas is

2 H. Kopfermann, Kernmomente
Gesellschaft, Frankfurt am Main, 1956).

26 C, P. Browne, R. M. Williamson, D. S. Craig, and D. J.
Donahue, Phys. Rev. 83, 179 (1951).

(Akademische Verlags
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T, | Bhe
24(7"R03)_1| Mcplszcp(k,K)

X | Zmme Vo (@)Y ™ Q) (cpmm’ | TM) 2
X 5 (EJ— Eal_ Ea2'— E,,)B (ka1+ku2+kn)

X Phasdka, (A1)

where the symbols kei, kes and k, are the momenta of
the two alphas and the neutron, the axis of quantization
is the direction of recoil, and

Fop(k,K) = (kro) [ F(kro) cosd+Go(kro) sind J?
X (2Ex/K¥T',(KRo). (A2)

In order to carry out the integrations in Eq. (A1) we
express k and K in terms of kei, ko, and k. (Fig. 2).
The procedure is given below for the open channels.

1. Be?+-n, Ground State

The ground state of Be? is spin zero and the neutron
is emitted with spin $—. In Eq. (A1) (c,k) refer to
Be? and (p,K) to the relative motion of the neutron
with respect to Be®. We obtain

AT, | Phar=4 (xR )| M|, (A3)
where (hereafter we set #=1)
I= (4 [ Fop(O) [ S V0.0
X (33mm' |3M) |6 (E— Eay— Eas—E,)
X8 (Kar+Kag+Kn)dhard®n.  (A4)

The angular part of the neutron wave function in
(A4) is transformed from a system in which the recoil
axis is the z axis to one in which the z axis is ka;. The
spin quantization axis is also changed to the new axis.
The transformation is performed for ease in evaluating
the integrals in (A4) and is given by

Y (O) =2 Y ) (M| D (Bar, ) | M), (AS)

where 6o and ¢e; are the angles of kg with respect to
the recoil axis and (M'|D7|M) is the symmetric top
function.?” Carrying out this transformation and
integrating over @, and d(cosfas)dées we obtain for 1

I = m(darkar) fpw(kK)

X2 ar Zomme | V3™ (02) (35mm’ |5 M) |2
X | (M'| D} M) |?kasdkaz, (AG)
where the functions ¥3™(6,") of the neutron coordinates

referred to the ke axis are expressed in terms of ka;
and ke by energy and momentum conservation. The

27 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley and Sons, Inc., New York, 1957).
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F1c. 11. The functions Fmy;’ used in momentum distribution of
Be®4-n, ground state, plotted against e, the normalized energy.

remaining integration over dkes is trivial in this case
because of the long life time of the Be® state. The
consequent sharply defined energy allows us to use
the approximate relation Eq. (20). This relation is
derived by neglecting the regular solution in the
expression for |u.(kro)|? and using

/2y
sin% = ~Ir

(Ex—Eo)+ (/2%

where I'is the width of the Be? state, Ey is the energy of
the state in terms of ka1 and kas, and Ey=0.096 Mev.28
Carrying out the integration, we obtain

I= mMEoE;, (87rka1K3)—lI‘p(KR0)
XEaw Faw| 0| DY ID) 1

T6(Ex—E,), (A7)

(A8)
where

Far=4m X | V5™ (02") (35mm’ | 3M") |2,

= (15/8) sin9,/, M'==+5,
=6 sin®,/— (45/8) sin'6,!,  M'=-3,
=3—6sin%,'+ (15/4) sin%,/, M'=41%,

and
sinf,’ = — (kaz/kn) Sinfas.

From energy and momentum conservation one finds
C0s%ag= (E—‘ 10E0)2/36Ea1 (8E0+E— 9Ea1) .

Using these relations the Fir can be evaluated and are
shown in Fig. 11. The momentum distribution along

(1;25) Ajzenberg and T. Lauritsen, Revs. Modern Phys. 21, 77
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the recoil axis for a particular magnetic quantum
substate is then
dFCPJM/dak"q: mMEUEKE I Mcp I 2

X (2W2R03ka1K3)—lrp(KRo) FM.

The angular distribution integrated over all energies
of ay, is

A0 7™ Q= 4] M., |2 (xRy?) f The?dben

= 1(),’”]M'zl{:OEKE I Mcp| 2(97F2K3R03)—1
XT,(KRo) 3" ar aar |(M'| DY M) |2,

where @y = S Fu-der, and e1=9FE«;/SE. The results
of the integration are shown in Table III. As indicated
in the text the M=% states are the main ones
populated and give for the angular dependence of
chp/ dﬂal

ATep/ Qo aa | (M| D|3) P
~3.70[14-0.015 c0s%0a1+0.020 cos¥fer ]. (A11)

This distribution, plotted in Fig. 6, is almost isotropic.
If one wishes to add a contribution from the M =41
state, one will find for the maximum contribution of %

chp/anlzZM' dMl[6/7 I (M’ ID%I %) I2
+1/7[(M"| D} 3) |*]
~3.64[1+40.034 c08%0e1+0.019 cosfe; ]. (A12)

Be6 +n
L=2
30oF
3
2
20
F ’
le
(0] of
o 1.0

F16. 12. The functions Famy used in momentum]distribution of
Beb--n, excited state, plotted against e;, the normalized energy.
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2. Be®* +n, First Excited State

The subscripts (c,k) now refer to the L=2 state of
Be? and (p,K) apply to the neutron in a j=%— state.
The method of calculation is the same as for the
ground-state case except for the difference in angular
momenta and the integration over dka; must be done
with the appropriate scattering solution substituted in
F.»(k,K) which is given by (A2).

The momentum distribution is given by

AT o/ Bhay=4(xRP) | M o, |21, (A13)

where
I=5mME(144x%ka1)1 ¥ s Far | (M| DE| M) 2.

The functions F- are shown in Fig. 12. The results
obtained for the angular dependence integrated over

5 4
He +He
1.Of
fo 4+ 3
M=x3
8F
! (-1 od o+
FMJ’ M=tz
'.+5
MJ--_2
4r-
2
(o] ! L 1 L
(o} 2 4 6 8 1.0

€

Fi16. 13. The functions Fa;! used in momentum distribution of the
alpha particle from He?® plotted against €, the normalized energy.
all energies for a; is

dI‘cp/anlzZM» ay I (M/ I Dt M) |2,

where the ay are defined by (A10) and tabulated in
Table ITII. The angular dependence for the M=443%
case is

AT ¢p/dQa1=~8.0[1—2.9 c0s20a1+3.5 cos0ar], (Al4)

and with a § fraction of M=% added, the angular
dependence is

dT o/ dQa1 = 7.3[1—2.3 c08%0a1+2.8 c0s%er ].

(A15)

3. He®+He!

The decay into He® [subscripts (c,k)] and He?
[subscripts (p,K)] differs somewhat from the decay
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into Be®+#n, and we will go into somewhat more
detail. The distribution of alpha particles for this
case contains the sum of those alphas emitted in the
primary decay and those emitted by He®.
dI‘c,,/daka= dl‘cp/d?‘kal-l—dI‘c,,/d"kaz

=4(mRe) 7| Mop|*1,
where

I= [ Fepl) | o V4 @)V ()
X (%me’ l %M) ] 26 (E"‘ Eal_ EaQ_En)
56 (kat+kag-+kn) dPhasd¥nt f Fop(E.K)

X[ Zmm Y™ (@) Vo™ (@) (§2mm’ | 3M) |2
X5 (E—Eal— Etx2_ En)6<ka1+ka2+kn)

X B kardkn, (A17)

and where
k=1ke;—tk,=k,,
(A18)
K= 5/9ka2— 4/9 (ka1+kn) = Kz.

TasLE III. Values of am,’ used in the angular distribution
of the decay modes.

M +3 +3 +3
Be¥*+4n 0.27 0.41 0.46
Be4n 0.7 13.1 4.0

. (He*4+-Hel), 0 0.92 0.15
(Hes4-He?), 0.23 0.55 0.39

If in the second part of 7 we make a change of variables,

kaq — ka2,
ka2 — ka]_,
then I becomes

I=f|:Fc,,(k1,K2) | 2o mmr V3™ (k1) Vo (Qho)

X (§2mm’ |$M) |*+Fep(k2,K 1)
X X e V3™ ( Qo) Vo (Qy) (§2mm’ | §M) | %]
X3 (E— Eai— Eay— En)b (ki + k)
X hasdh,  (A19)

where k2 and K, are defined by (A18) with subscripts
o1 and a2 interchanged. As in the two Be® cases we
transform the angular and spin functions to the ko
axis, and the integrations are performed in the same
manner as in the preceding two cases. One then finds

I=125M2E(60487%kar)~
X2 (Far'+Fu?) (M| DY M) [,
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Fic. 14. The functions F ;2 used in momentum distribution of the
emitted alpha particle plotted against e, the normalized energy.

where Fy! and Fy? are obtained from integrating the
two parts of (A19), respectively, and are shown in
Figs. 13 and 14. The angular distribution is given by

AT p/dQam~3 pr (@' +aae?) | (M| DE| M) |2,

where again ay! and ay? are defined in terms of
Fyt and Fyr? similarly to (A10) and are tabulated in
Table III. For the case of M =43

AT 4/ dRam~0.96[1—2.7 cosa-t3.2 cos'al,
and with a % fraction of M =--% mixed in

AT .p/dQa=20.88[ 1—2.2 c0s%ar+2.6 cos'fay].

APPENDIX B

The minimization of the energy with respect to the
constants ao and ¢, of Eq. (28) gives the usual secular
determinant

2H11+2H12— 2(1+0)E(E) 2H 10— ZbE(E) _
2H 10— 20E(£) Ho—E(¥)

where

0, (B1)

H=K+V(lo—&)+V(|o+&]),
Hu=(¢:1(o==9) | H|b1(0=£9)),
Hyy= <¢1(9:tf) [Hld’l(é’:':f»;
Hiyo=($o(0) | H|$1(e=£5)),
Hoo= (po(0) | H | ¢o(e)),
a= {$1(0=8)|$1(6FY)),
b= (p1(0=£¥)|¢o(g))-



260

3r
2r
b
13
00
o~
Q
1 4=
<]
0 1 ] 1 i
o] | 3 4
=13
§-10"cm
o e
>
b
=
' -IoF
L3
w
-20 1 1 1 J
(o] ] 2 3 4

¢ - |0_'3cm

F16. 15. Oscillator strength function, , and neutron energy, E(£),
from the variational calculation as a function of £.

For the especially simple case of
$1(x) =¢o(x) = (20)**(1/m) " exp(—aa?) Y3}(Qa),

and for the gaussian form of the neutron-alpha potential,
these integrals reduce to

Hyu=5c72/2m—V —V exp(42—F?),
Hyo= (5a72/2m) (1— 2k?) exp(— k) —2V exp(j2—2k?),
H o= (502/2m) (1— k2/10) exp(—k2/4)
— V{exp[ (44/4)— (#/2)]
+exp[(97%/4)— (5&*/4) 1},
Hoo= (5ah2/2m)—2V exp (52— &),

a=-exp(—k?),
b=exp(—£*/4),
where

=43/ (146/24)",
B2=2af,
7*=208/(1+8/2).

The minimum energy with respect to the constants
ao and @; was obtained by solving the secular deter-
minant (B1) for each value £ This energy was again
minimized by varying the neutron oscillator strength a.
Since the minimum energy E(£) is not a simple function

E. M. HENLEY AND P. D. KUNZ

of @, the work must be done numerically. The values of
E(%), ao/a1 and a as a function of ¢ are shown in Figs.
15 and 16.

The equilibrium distance of the two alpha particles
is found by calculating the moment of inertia of the
Be?® system assuming the alpha particles to be mass
points. The energy level formula in this case is

Ey=#*/210)J (J+1),

and matching the J=2, 2.9-Mev state, to the first
rotational level one obtains the equilibrium distance
£=2.3X107* cm. At this separation of the two alphas,
the values of the calculated quantities are

ao/a:1=0.57,
a=0.147X10% cm?,
E(%0)=—2.11 Mev.
The total energy of the Be® nucleus is given by
E=Er+E,,

where E, is the neutron energy given approximately by
E(%) and Eg is the rotational energy given by

E= @/21)[J(J+1D+j(j+1)—K*—m*],

where J is the total spin of the nucleus, j is the neutron
spin, and K and m are the projection on the body
axis of the total spin and neutron spin, respectively.

sof

c']o

oo

£ - 16™%em

F1c. 16. Expectation value of the /=3 neutron wave function
and the ratio of the noncentral wave function to central wave
function as a function of £.
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Normally, the 72, K? and m?® terms are omitted from
the expression since only rotational levels are treated,
but for the total energy of the system, these must be
included. The ground state of Be® is given by

J: j:K:m:%,

and for the given value of 7#2/27, one obtains Er=1.45
Mev. Together with the value of E(%) from the
variational calculation one finds for the ground-state
energy E=—0.66 Mev. This figure is to be compared
with the actual ground-state energy E=—1.57 Mev.
Since E, is the difference of large energies, the agreement
is rather good.

This calculation means the following in terms of
l=3 mixing for the neutron wave functions. If we
expand the neutron wave function about the center of
mass in spherical harmonics

¢3(0)="La1(0) Y 1(0)+as(0) V' )+ - - Txat,

with > ;(|a@;|?)=1 then the amount of /=3 wave is
(|as|?). This quantity is plotted in Fig. 16. At the
equilibrium distance the amount of /=3 wave is about
49,

APPENDIX C

The initial wave function of Be’ is given by Eq. (22).
To perform the overlap integrals M., in the total
decay rate Eq. (29), we expand the neutron wave
function into spherical harmonics about the alpha-alpha
center of mass for the Be®+# decay and about each
alpha for the He’+He* decay. The expansion of the
neutron state, Eq. (28), is accomplished by first
using the law of sines on the angular part of the function
(see Fig. 17).

p1Y11(01) = p2 Y3t (62) = p Y3t (6). (1)

1. Bed+n

Using (C1), we obtain for the noncentral portions of
the neutron wave function

$1(05) =N ,"pYs}(6) exp(—af’—ap®) exp(F2ak-p),

F1c. 17. Description of co-
ordinate system used in the
calculation of the total decay
rate.
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where N ;2= (2a)!8/3+/x. Using the expansion
exp(—ma€-0)= 2 (2l+1)i'5i(imapk) Pi(cosh),
=0

one obtains for the j=35— projection of the neutron
wave function about the center of the two. alphas to
be the following

(NN ) p exp(—ap?)[ao+2a: exp(—at?)(jo(2iatp)
+72(2iatp)) 1} Y5}(60), (C2)
and similarly for the 7=2— projection one obtains
(VN )7 {(12/7)asp exp(—at’—ap’)[ j2(2iakp)
+ ju(2iatp) T} Y (6), (C3)

where N2=(p|¢) is the normalizing constant for the
total neutron wave function.

2. He’—He!

By means of the procedure illustrated above, one
obtains the j=3— projection of the neutron wave
function centered about a; to be

(VN o) *p1 exp(—api®){ai[ 1+exp(—4af?)
X (fo(4iakpr)+ j2(4iakp1)) ]+ a0 exp(—af?)
X (jo(2iatpr)+ ja(2iatpr))} Ysk(61).

APPENDIX D

To evaluate M., Eq. (13), we use the variational
wave function inside the range of forces and the set
Y, of which we need f(r) and g(R).

(C4)

1. Be3+n, Ground State

In this case f(r) is the relative alpha-particle wave
function with r=2¢, and g(R) is the neutron wave
function with R=p. The latter is approximated by
an /=3 harmonic oscillator function

g(oy=" P o1

pe® exp(—dp2)’

and ¢ is adjusted to match the slope and value of g(p)
to an outgoing wave at the radius po. The values of
dp¢® required are shown in Table IV. The relative
alpha-particle interior wave function is

f2EH=R(®/R(¥),

TaBrLE IV. Values of po and 6pe® used to match the outgoing
wave to the interior wave function at po.

(D2)

Po 8po?
3.43
3.41
3.40
1.38
1.34
1.25

Bet+4-n

Be¥*+n

S O o o
QOO OOO
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where R(£) is the Be® radial function which matches
onto the outside scattering solution at #. Using the
relations (C2), (D1), and (D2), one obtains for | M.,|2,

KAVZ S
IMcp[2=T|C%07|

012 )
2— exp ( 26pg*— ———a£2>
N a+6
( 2a )7/2 1 1 (208)?
X{— — .
ato/  (a+0)* p® |R(E)|

(D3)

The values of the constants used in evaluating this
expression are

(1) From the alpha-particle model and variation cal-
culation
[Crof|*=1,
£=2.3X1071 cm,
a=0.147X10% cm2,
ao/a1=0.57,

(2) From matching the outgoing wave, dp¢®, which is
tabulated in Table IV,

(3) From the single-particle estimate of the nuclear
wave function at the boundary

[R(&)[*=2/(2¢)".

These values substituted into (D3) give the total
decay rate Ty, Eq. (29), and the reduced width 7.2
Eq. (33). The values are shown in Table III.

2. Bed+n, First Excited State

The calculation is similar to the ground state except
now the neutron wave function is approximated by an
/=1 harmonic oscillator wave function.

p exp(—dp?)
glo)=—"—.

D4)
po exp(—8pc?) (

Whereas the radial alpha-alpha wave function is
taken to be the same as for the ground-state case,
the constant § is again evaluated by matching an

E. M. HENLEY AND P. D. KUNZ

outgoing wave onto g(p) at po; the results are shown
in Table IV. Performing the overlap integral M., one
obtains

| Mop|2=35(m)IN=2| Cyst

2( 2a )g exp(28po?)
a+o (a+6)%pe?

)
)
6

X ' +2
|R() l2[a° " eXp( ot

where the value of |C32#[2=6/7, and the other constants
(except for §) are the same as the ground-state case.
The values of the decay rate and reduced width are
shown in Table III.

(Ds)

3. He®+He!

The interior function f(7) and g(R) refer to the He®
and relative He’+He! systems, respectively. We
approximate f(r) by an I=1 harmonic oscillator
function with the oscillator strength adjusted to
match the scattering solution at a radius of 2.9 10~
cm, the radius used in the energy and angular distribu-
tions, and a value of §p?=0.74.

The relative He®— Hetradial function is approximated
by that of Bed, Eq. (D2). This approximation is in
the spirit of the alpha-particle model, where the
neutron mass is taken to be small compared to that of
the alphas. One simply obtains

2a 1\ F exp(20p0")
|Mcpl2=%<w)*lC;2%!2‘V‘2(—_) —
(a+6)%pe?

a8
1 45
X [a1+a1 exp( —+a£2)
[R(E) | atd

1]
+ay exp(~—a£2) ] (D6)
-+

a

The values of the parameters in the above expression
are the same as in the Be? excited-state case except for
& and po. The evaluation of the total decay rate and
reduced width for this case is listed in Table ITI.



