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By means of a covariant Geld-theoretic technique, a formally exact expression has been derived for the
amplitude for photodisintegration of the deuteron. By expanding the result only in the number of mesons
exchanged and by making a series of nonrelativistic approximations, the expression is reduced to one in
which the corrections to the conventional dipole matrix element depend only on the amplitude for photo-
meson production, the renormalized meson-nucleon coupling constant, and the appropriate two nucleon
wave functions. One finds that virtual meson eRects play little role at energies below 100 Mev, in justi-
Gcation of recent calculations based on the conventional nonrelativistic theory. At higher energies good
agreement with the total cross section was obtained by the inclusion of both hard core and tensor force
eRects in the wave functions. In addition the folded angular distribution could be Gtted by using a reasonable
extrapolation of the phase shifts in the 'So and 'D~ states.

I. INTRODUCTION two nucleon problems in a more complete and system-
atic way.

%e have therefore considered it worthwhile to renew

the attack on this problem by means of a completely
covariant formalism, designed not only to include the
possibility of renormalization in a straightforward
manner, but also to provide a means of approximation
in which the appropriate physical effects are con6ned
to the lowest orders.

In our Anal results all references to the abstract
operators and state vectors of the theory will be
eliminated in favor of wavefunction like amplitudes and
operators in conhguration space. In this form the
details of the two nucleon system will be incorporated
only in the appropriate wavefunctions; whereas it is

the operators which will contain reference to the
famibar meson-photon-single nucleon interactions. The
detailed analysis of the matrix element will indicate
first that there is a strong need for a hard core in the
two nucleon potential, and second, to the extent that
one admits the hard core ab initio, we arrive at a semi-

empirical justification for our method of extrapolating
pion-nucleon interaction operators off the energy shell,
the method employed being that which is exact in the
6xed source limit. '

To proceed we exhibit a formally exact expression for
the S matrix for photodisintegration. However, owing
to our ignorance of the correct relativistic dynamics for
strong interactions it will be necessary (in order to
carry throug han explicit evaluation) to resort to a
phenomenological procedure, which relates this ex-
pression to parameters available from more funda-

mental phenomena (such as meson-nucleon scattering,
photomeson production, and nucleon-nucleon interac-

tions). Our object, ultimately, is to obtain a version

of the theory in which such information can be incor-

porated. To e&ect this conveniently will require certain

OTH the existing experimental information and
previous theoretical considerations suggest that it

is convenient to divide the analysis of the photodisin-
tegration of the deuteron into parts corresponding to
two energy regions. In one, the region below 100 Mev,
the experimental results can be completely understood
within the framework of conventional quantum me-
chanics. ' In the other region, however, above 100 Mev,
there is clear evidence of the presence of virtual meson
currents which become predominant with increasing
photon energy. It is our purpose to justify the present
method of explaining the lower energy phenomena and
to exhibit a satisfactory theory for the higher energies.

For the former consideration it is necessary to show
that any virtual mesonic contributions are negligible
in this region. Moreover, we show that such contribu-
tions to the charge operator, responsible for electric
multiple disintegration, constitute a relativistic cor-
rection to the standard operator which vanishes iden-
tically in the limit of zero photon energy. This last
condition is commonly known as Siegert's theorem. '

To date, the only relatively complete and moderately
successful account of the latter higher energy range has
been given by Zachariasen. ' However, his theory was
limited by the fact that the treatment was a nonco-
variant one, and thus one may question whether the
renormalization effects, which must be included, were
correctly incorporated. In addition since this calculation
was performed, advances which have been made in our
theoretical understanding of the pion-nucleon inter-
action permit the inclusion of such eR'ects in treating

* Supported in part by the U. S. Atomic Energy Commission.
t Now at Florida State University, Tallahassee, Florida.' See for example: J. Iwadare, S. Osuki, M. Sano, S. Taketani,

and M. VVatasi, Progr. Theoret. Phys. (Kyoto) 16, 455, 472, 604,
585 (1956); S. Hsieh, Progr. Theoret. Phys. (Kyoto) 18, 637
(1957); J. J. DeSwart and R. K. Marshak, Phys. Rev. 111, 272
(1958); A. F. Nicholson and G. E. Brown, Bull. Am. Phys. Soc.
3, 172 (1958); S. H. Hsieh, Progr. Theoret. Phys. (Kyoto) 21, 585
(1959).' A. J. F. Siegert, Phys. Rev. 49, 904 (1936).' F. Zachariasen, Phys. Rev. 101, 371 (1956).

4 This is the method derived by C. F. Chew and F. E. Low,
Phys. Rev. 101, 1570, 1579 (1956).' We use a formalism due to one of the authors A. Klein (A.K.)
and C. Zemach, Phys. Rev. 108, 126 (1958).
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II. FORMAL EXPRESSION FOR THE 8-MATRIX

In this section we exhibit the formal solution for the
S matrix for the photodisintegration of a deuteron
(4-momentum P') by an impinging photon (4-momen-
tum k and polarization X) resulting in two nucleons
(4-momentum pi and ps), which is defined by

S-s=&P P ' 'IP'&(7)'+'&. (2)

The superscripts distinguish in the usual manner the
ingoing wave-state (—) from the outgoing wave-state

(+), each being a member of a complete set of states.
We have suppressed the polarization degrees of freedom
necessary to specify the particle aspects of the initial
and final states.

The starting point for developing a useful expression
for the definition (2) is a formalism for bound state

approximations: We neglect the meson-meson inter-
action; we assume that nucleons interact only via
p-wave mesons; and we invoke the adiabatic limit.

The first assumption suggests. a description of two
nucleon interactions in terms of the numbers of mesons
exchanged, since it allows a natural separation of the
nucleon self field quanta from the exchange quanta.
Consequently, we can develop a perturbation treatment
in which successive orders represent larger numbers of
mesons exchanged. In this work. we limit ourselves to
expression arising from the exchange of a single meson
at most.

The above considerations will eventually lead to a
representation of the S matrix of the form

S=Ss+S„
where So will be the matrix element of the standard
theory, and S& will arise from the one meson exchange
effect. The latter will be characterized by f', the renor-
malized p-wave meson nucleon coupling constant and
by the amplitude for photo-meson production oG the
energy shell.

In Sec. II we develop the formal solution for the
S matrix. In order to arrive at the final working form
of this matrix element, which will finally be derived and
exhibited in Sec. IV, it is first necessary to relate the
relativistic amplitudes (RA) which describe the re-
spective two nucleon systems defined in Sec. II to the
appropriate Schrodinger wavefunctions. To accomplish
this we must here also develop a perturbation treatment
in which the RA consists of a sum of terms, each
characterized by the numbers of mesons exchanged.
The eGects of such a treatment are to remove, in the
final results, all diagrams which (from a temporal
point of view) contain no virtual mesons in intermediate
states excepting, of course, the lowest order, standard
matrix element.

Finally in Sec. V we report the results of the numerical
analysis and describe and estimate the eGects of the
various approximations made throughout the analysis.

problems proposed by Klein and Zemach, ' in which all
quantities of interest are developed with the aid of the
renormalized many body Green's functions. ' ' For our
case it will be sufficient to consider the two-nucleon
Green's function

G(12)=G(x,x,)xi',x')

=ss(0~ T(y(x,)y(x,)g(x, ')it(x, ')) ~0& (3)

(0(+ )Ig(.)lo(—
)&

(Q[J7&=
(0(+ ), o(— ))

(10)

where the vacuum states 0(+~), 0(—~) are defined
if we assume J„(x) to vanish in the remote past and

' We shall be dealing throughout with a theory which can be
renormalized via a unitary scale transformation. Hence, we assume
that such a transformation has been applied.

~ R. P. Feynman, Phys. Rev. 80, 440 (1950); J. Schwinger,
Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951)and unpublished
lectures; E. Freese, Nuovo cimento 11, 312 (1954); R. Y.
Matthews and A. Salam, Proc. Roy. Soc. (London) 221, 128
(1953);F. Coester, Phys. Rev. 95, 1318 (1954); H. Umezawa and
A. Visconti, Nuovo cimento 1, 1079 (1955); Y. Nambu, Phys.
Rev. 100, 294 it955l; 101, 459 i1956l; j.M. Yauch, Heiv. Phys.
Acta. 29, 287 (1956).

We use the notation y;+= —y;, y0+=y0, x„=(x;it), yx=y„x„
=p x—y0t, gx=g4x, dx=dex, A=c=1, yp= —1, (y„,y„}=—28„„.' G. C. Wick, Phys. Rev. 80, 268 (1950).

"Equation (6) has been derived in unpublished lectures by
J. Schwinger. See also J. Schwinger and Umezawa and Visconti,
reference 7.

and the two nucleon single photon Green's function,

Gi, (12; $) =G), (xixs, xi'xs', $)
= s'&0I T(4 (»)0(»)4 (»')0 (»')A~(E)) I o), (4)

where T is the chronological ordering symbol of Wick'
and P (x) [A ($)) are the renormalized Heisenberg
operator for the nucleon [photon' field with

4(x) =4(x)'Vo.

The two-nucleon Green's function satisfies a diGeren-
tio-integral equation of the symbolic form'

(Gi 'Gs '—I(12))G(12)=1(2),
or

G(12) 'G(12) =1(2), (7)

where G; is the free nucleon Green's function, I(12)
is the interaction for two nucleons, and 1(2) is the
antisymmetric 6 function, i.e.,

(xixsi1i xi'xs') =8(xi—xi')8(x, —xs')
—6(xi—xs')5(xs —xi'). (8)

We exhibit a relationship between (3) and (4) by
introducing an auxiliary external field characterized by
a source function J„($) coupled linearly to the photon
field. This coupling is described by an addition to the
Lagrange density of the form

Z'(x) =Q„J„(x)A„(x).

By means of the quantity
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future, we obtain by a consideration of the variation of

(QP7) with respect to J„($), the formula"

(0l T(Q(~)A. (~)) Io)
=((A, (S)&-i5/5[J, (S)7)(Q[I7&I.=o (»)

Applied to the two nucleon propagator, Eq. (11) yields

Gy(12; $) = ((Ag($)& —i&)/5[Jg(()7)G(12)
I
z=o. (12)

Recalling that

D,.(be) =i(0I T(A.(k)A. (k')) I0)
=[~(A.(&)&/» (&')7l =o (13)

Equation (12) yields, since A„(P) I z=o vanishes,

G), (12; $) = i)—D(g, $')[6G(12)/&)(A), (('))7I z od$', (14)

For the case t —+ &~ we define the special limits

[4 (»)4 (»)7= [4 (»)4 (xs)7'""".
t-+oo (—oo)

(23)

The tools developed will now be used to construct
the S matrix. This is done by noting that from a
knowledge of the Green's function, G&, (12; $), the S
matrix can be identified as follows: We note first that

lim G), (12; P)=i'(OIQ(x))P(xs)7'""
g —+ co

t'~ —oo

(p ~—oo

X[4(x ')0(x ')A~(t)7'"
I o) (24)

Introducing the appropriate complete set of states and
utilizing Eq. (2) results in

»m G (12; k)=s'Z-p(0I[ll(»)4(»)7'"'l~' '&
g —+ oo

g'-+ —oo

$0-+ —oO
where we have chosen the diagonal form of the photon
propagator, D„„=8„„D.

To utilize the constructs so far introduced for the
evaluation of (2) we introduce the related Relativistic
Amplitudes (hereafter referred to as RA)

Xp&ps& ) (x)xs) = (P)Ps& &

I T(g(xs) f(x))) I
0&. (15)

xs.p(P&+)
I [P(* ')P(* ')»(S)7'" I'). (»)

Inserting for G),(12; $) the results of Eq. (14) and the
identity

5G(12) $5G(12) '~
= —G(12) I I

G(12),
~(»(~)& ~5(A.(~)»

(26)

XP'klx) (xlxsj 5) Xp' (x)xs)A&&&)(f)
= (0 I T(p(x,)p(»)A, (()) I

p'p(&&) &+)), (16) we obtain on the other hand for the same limit as in (24)

and
Xp)ps (12)G(12) =0

G(12) 'Xp n(12) =0

(17)

(18)

or when converted to the integral form they obey

Xp)ps& &(12)=Xp)ps")(12)+Xp)ps& )(12)I(12)G)G,) (19)

which will serve as relativistic descriptions of the m—P
scattering system and deuteron, respectively.

By means of the limiting procedure of Gell-Mann and
Low" one can demonstrate that the relativistic am-
plitudes satisfy the symbolic homogeneous equations

—i' ~~ Z (01[a(*)4(x)7'"'I ' ')x-' '(*"*")

(8G(X) Xs 1X) Xs )
X

I I
x '+'(* "' "Y)

S(A„(g')& ),=,

X(p&+)
I
[p(xs')ll (x)')A), (t)7'" IO&dx\ ' ' 'dxs

XSap(P&+)
I [4 (x2 )lt'(» )A) (p)7'"I0& (27)

From Eq. (27), we conclude that"

Xp ~(12)=G)GsI(12)Xp.n(12). (20) &'
t

$G(x,g, ,x,'x, ')—
~S.p-—

J~ p, x.&-)(x,x,)l—
l & ~=oIn Eq. (19) x» ps&o) (12) is the solution of the free equa-

tion given by
~(A~(~)&

XXp), &+& (x)'xs'$)dx& dxs'd$, (28)
xp)ps&')(12)G) Gs =0, (21)

or for our case

XX, (x)'x, ')A), &)) ((),dx)' dxs'dP. (29)

and has been added to satisfy the boundary conditions.
Finally it will be necessary to understand what is

meant by the T symbol in the limiting instance of equal S~p= J 2) X»» (»»)(5G(12) '/5(Ax(k)&) I a=o
times, namely

T(4 (xl)4 (x2)) ($(xl)4 (x2) 4 (x2)lt (x)))
—=[4 (»)ll (xs)7.

The expression for the S matrix given by (29) can also
(22)

"M, Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951).
'~ For further justification, see A. Klein and C. Zemach, refer-

ence 5. Also note Gell-Mann and Low, reference 11.
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be written in the form

5 p Qi Xpi p2 (xix2) (xix2
~ j&(t) ~

xi'x2')

where
XXp. (xi'x, ')A), (g)(&),dxi dx2'd&, (30)

(x,x,
~
ji (p) ~

xi'x, ') =— (31)

where
g a=go)+g(&) (32)

This form should not be unexpected since the varia-
tional derivative of the Hamiltonian with respect to
the photon field (—()H/I)(Ai$)&~~ 0) is the current
density operator in the noncovariant formalism and as
seen from Eqs. (17) and (18), the inverse 2-nucleon
Green's function, in the covariant theory plays the role
analogous to the Hamiltonian.

Recalling the expression for the inverse Green's
function given by (6) and (7), we write

essentially the appropriate Schrodinger wave function.
This technique leads to a natural division into two
contributions, one the lowest order amplitude (de-
pending on no meson coordinates), and the other, the
one meson exchange eRects. The details of this pro-
cedure will be exhibited in Sec. III. It is after it has
been carried out that one has the decomposition referred
to in Eq. (1).

X Xo+Xi~ (36)

where Xo is the lowest order forms and &~ contains one
meson exchange corrections. We will concern ourselves
only with the continuum amplitude, X) ip2( ) (xix2)
since for the deuteron amplitude, Xp.n(xix2), the
reduction will proceed in an analogous manner. We find
it desirable to separate the former into its dependence
on the total and relative coordinates

III. REDUCTION OF THE RELATIVISTIC
AMPLITUDE

To reduce the RA we will be guided by the fact that
we wish to separate the amplitude into two terms

r
Z) )(uiu~ (12)

which yields

x xi x2) p 2 (pi p2))

2 (xl+x2)) ~ pl+p2)
(37)

Xx~(1'2')A), (i) (&)dxi . dx2'd$, (33)
x»»(-) (x,x,) = (2~)-le-'~" x„(—) (x), (38)

Xx) .D(1'2')A, o, ) (()dx, dx, 'dt. (34)

wherein we have chosen the standard normalization of
one particle in a box of volume (2~)'. It is our purpose
to relate X„( ) (x), depending an unequal time amplitude
p~( '(x), which in momentum space is equivalent to
relating X„' )(q) to g„( )(q) where,

In Eq. (33) the electromagnetic vertex operator for the
ith particle, I'), (') (P) is defined by the equation p„( )(q) = (2') ')~x„(—)(q)dq, . (39)

(35)
Since by definition

The division of S p into S"& and S(2), not to be confused
with the one described in the beginning of this section
Lsee Eq. (1)), is a na, tural one from a covariant point
of view, since it appears to be a clean separation into
one and two body effects. From a practical point of
view this is an illusion, for in order to evaluate Eq. (32)
it will be necessary to carry out a noncovariant ex-
pansion of the RA. It will then be seen that S"'
contains in addition to the standard interaction some
mesonic contributions; of course S(2' will consist ex-
clusively of meson interaction terms.

The expansion of the RA alluded to above is designed
to relate it to the analogous Schrodinger two nucleon
wave function. To effect this we use an iteration pro-
cedure" in which the RA depending on unequal times
is related to an equal time amplitude, recognized to be

u. ' '(q) =(2 ) 'J"xo.' '(q)dqo, (40)

= tx.' '(v') ~'(&—g') (c 'v 'I I
l v v &4

'

+X."'(C)~'(~—0) (42)

we shall require as a condition for the determination of
x,„(—)(g) tha, t

)(i.( )(C)d&o=0. (41)

The reduction of the relativistic amplitude is accom-
plished from a consideration of the integral equation
(19) which in momentum space reads

)(.( ) (c)~'(~—Q)

"This resu]t has been derived by both E. Sa]tpeter, phys. Rev. At this Point we break away from the covariant form
87, 328 (1952) and A. Klein, Phys. Rev. 90, 1101 (1953). of the theory by taking only positive energy projections
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of the RA, denoted by the relation

X++.' '(q)'=X. ' '(q)'A+"'(q )A+"'(qs), (43)

where A~o& (qi) is the Casimir positive energy projection
operator for the erst particle as defined by

A+"'(qi) = (~"'«i+0-"'+Eoi)/2E~i (44)

FIG. 1. Feynman diagram for the
two nucleon interactions consid-
ered.

I

q

q

with
Eo = (q '+m') i.

In lowest order the (+—) and (—+) projection give
a vanishing contribution whereas (——) contains cor-
rections negligible for our purposes. " These approxi-
mations are all consistent with retaining only the p-wave
pion-nucleon interaction. In the considerations which
follow we suppress the dependence on the projection
operator.

Owing to the assumption that we keep only the one
meson exchange term, the matrix element of the inter-
action, I, is given by"

&qiq2I I I ql q2') = —
I
i/(2~)'jI's"'(ql q q )

.I's"'(qs, q' —q) ~'(Q —Q') (46)

with the meson-nucleon vertex functions, I' s(q,p),
defined by the equation

&PI L5G '/5&4(q))ll =oI p') = I' (p,q)5'(p —p' —q), (47)

where P(q) is the renormalized meson field operator.
The matrix element given by (46) is represented by the
Feynman diagram in I'ig. 1.

In evaluating (46) and (47), we shall make what is
essentially a low-energy approximation, introducing
forms for the Green's functions of the theory that have
been utilized in the proof of the so-called low-energy
theorems. " These forms depend on parameters all of
which can be taken from experiment, such as nucleon
charge, magnetic moment, mass, etc. We thus write'~

G '(p L@3 I:~3)

=y(p —cA)-,'(1+ s)+r~s

—(p,' ,'( + o)+IJ~' .,'(1—rs))-',-o„„F„p-
(f/~)vsv. e 0+(—ef/'~hoV~kbs, ~ Pj (48)

In Eq. (48) F„„ is the electromagnetic field tensor,
p~'(liiv') is the proton (neutron) anomalous moment,
and in (49), 9"s is the matrix

(o i 0)
v'3 —— —i 0 0,

( o o o)'

de6ned by the equation

'frs"-

(50)

(51)

From the approximate forms (48) and (49) we obtain

and

Accordingly

r,"'(p,q) = (f/~) h,q)"'q~"',

~(q) = (q'+~') ',

G (q)=(y"&q+m) '

(52)

(53)

(54)

(qiqs I
I

I
qi'qs') = l (q q' Q)5'(Q —Q')

= ~(q, q'; Q)5'(Q —Q').

Realizing that"

(56)

A+"'(qi)Gi(qi)»"'
A+ (ql) (-', Qo —Eqi —qo+ie) ', (57)

we obtain after integrating over qo and qo' in Eq. (42)

o.' '(q)'= v."'(q)t+J pn '(q')&(q', q;&)

X (—2ori) (Eo—Eoi —Eo&) 'dq'. (58)

&qiqs I
I

I
qr'qs') = I:s/(2~)'j(»~) "'(q—q') (7A) "'

&& (q
—q') ~"'~"'~(q—q')5'(Q —Q') (55)

To initiate the iteration procedure we assume Grst
that the interaction is static, i.e.,

6 '(q, I Aj)=(q —ed'')s+p'. (49) wherein we have

ql= sQ+q= sP+q, «2= 2Q —«= sP —q (59)
'4 See A. Klein, reference 13.
'5 See J. Schwinger, reference 7.
"See A. Klein, Phys. Rev. 99, 998 (1955).' This form is a reasonable approximation for threshold reac-

tions. However for the higher energies one must make a more
sophisticated approximation to arrive at the proper form of
bI/b, &A) ~ g o. We must include the scattering corrections insofar
as it is these terms which are primarily responsible for the reso-
nance which occurs in both photomeson production and photodis-
integration. The occurrence of the analogous terms in the expan-
sion of the RA is expected to be of much less importance since
here it can be shown that they do not retain their resonant be-
havior. For further details note: A. Klein and B. C. McCormick,
Phys. Rev. 104, 1747 (1950), and H. Miyazawa, Phys. Rev. 104,
1741 (1956).

»(q) = (V'o —Eoi+qo) '

~s(q)=(s&o —E s—qo) '. (61)

' In the Feynmann de6nition we add a small negative imagi-
nary part of the mass.

To proceed it is first necessa, ry to note that Xylol(q) t

can be written in the readily verified form

x,"'(q) = (2 )-'*(~ (q)+ (q)),"'(q), (6o)

where
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Inserting (58) and (60) into (42) and again demanding
that the interaction be static, we find that

)t'. ( '(q) =4(2~) '(~i(q)+~ (q))o.( '(«) (62)

To continue the iteration procedure we insert (62)
back into (42), which yields

)(,' '(q) =)(."'(q)+4
& .' '(«')(~i(q')+»(q'))

XI(q,q'; P)yo(')po(') Fi(q)»(q) (24r)
—*'d«'. (63)

The right-hand side of Eq. (63) is readily separated into
the sum Xp„& ) (q)+xi~( '(q). However, before doing so
we make one further assumption, namely, that we can
neglect the fourth component of the meson nucleon
vertex since it is a recoil correction to the spatial part
of the vertex operator. " Consequently, inserting the
resulting interaction, (63) takes the form

X.' '(q) =X."'(q)+(2~) **(/'/~')

X un( )(«')(»(q')+»(q'))

&«"' («—«') ~(p' («—«')

X~"'~")((«—«')'+y') '

X~i(q)»(q)vp"'vp")dq'. (64)

Integrating the r.h.s. of (64) over qp' we then obtain

X~' '(q) =)(~"'(q)+4(2~) '"(f'/& ')

f
X &( „'-'(«')((-'po —Eoi —~+qo) '

+ (opo Eop' o) qo)
—}(2i(')—

X~(" ~(')(r") («—«')(r(" («—«')

The integral equation which po~( &(«) satisfies can be
easily determined from Eq. (65) and is seen to be

&.' '(«)=&."'(«)+ "A' '(«')~"'(« —«')

X~(2) . (««&)p (1)p (2)~(1) .~(2) (2~)—1

X((Po—Eoi —Eop —~) '

+(P()—Eo, —Eoi—~) '}

X (P,—Eoi—Eq,)-'(j'/p') (2ir)-'d«'. (68)

To obtain the analogous results for g~(q) we need
only replace P by P' and interchange the order of all
operators. To complete the description of the reduction
of the RA all that is necessary is to determine the
appropriate normalization of the single time amplitude.
The need for such a consideration may be understood
as follows: It has long been known that the single time
amplitude which we have obtained is roughly equivalent
to the two nucleon no meson amplitude of a Fock space
expansion of the state vector. We must therefore antici-
pate that the norm associated with this amplitude be
less than unity. We determine the appropriate nor-
malization within the framework of our method from a
consideration of the matrix element of the nucleon
"number" operator"

x„(12)(12
~

ro(') (P)G,
—'+ I'o(') (P)G,

—'

+()I/&(Vo(P))
~
v=pj 1'2'))(.(1'2')&» . d*p', (69)

where V„($) is an external vector field which is coupled
to the nucleon "particular current, ":)P(x)y„g(x):."
Examining the normalization of a single nucleon am-
plitude, it can be shown that to a sufficient approxi-
mation"

where
X~)(q)»(q)vo")vo")d«', (65) I 0 +0) (70)

~= ((«—«')'+)")'* (66)

X.' '(q)=4&. ( )(«)(~i(q)+»(q))(2~) '*

+4(2~) "(f'/) ')& .' '(«')

X f(P()—Eoi' —Eop —(o) i

X (-', Po—Eoi —(o+qp)
—P, (q)

+ (Po—Eop —Eoi—~)-'

X (ioPp —Eop —(o—qo)»(q)} (2o)) '

X~ (1) ~ (2)(r (1) (««~)(r(2), (««I)
y~, ()~,( gq (67)

"Essentially this involves eo/m which is a Qz/c correction.

Finally, by some straightforward algebraic manipula-
tion, (65) can be cast into the desired form

whereas from a consideration of the linear coupling,
V„($):)P($)y„)P($):,we realize that the meson prop-
agator depends on (V„(P)) in a manner completely
analogous to its dependence on (A„($)) except that q'p

is replaced by the unit matrix. Consequently, for a
single meson exchange, recalling the approximate form,
(49), we have

(qjqp ~
BI/8( Vo (&)) ~

v=p
~ ql q2 )

=2i(24r) 4(f'/&4')(r('). («—«'+-', 44)(r&'&

(«—«' —l~) (qo
—qo') ~(q —q'+ l~)

X 6(q —q' —-'(()~"'~(P)5(4) (Q—Q' —)(), (71)

"We use a method due to A. Klein and C. Zemach, reference 5.
2' The double dot surrounding the operator indicates the

"normal" order."See A. Klein and C. Zemach, reference 5.
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the variational derivative of the vertex" giving a small
additional relativistic correction which we shall ignore
(and wherein we have again limited ourselves to the
spatial part of the vertex operator). Incorporating the
results of (69)—(71) we find that for the deuteron state

2(2s) ' volume

If we take the adiabatic limit of the integral equation
which ion(q) satisfies, as determined from (68) and use
the result in the second term on the r.h.s. of Eq. (78),
we obtain a crude estimate for the latter,

q (q)'q (q)d'q

= (1V&+&Vs)(2') ' volume

+(~) ' q'(q)(Po' —&qr —&qs)q (q)dq, (79)

J

�/2(2
) 4(2 ) o volume ~xD(q)

X~"' (q —q') ~"' (q —«') (qo
—qo')

where co is an average value of co(~ ~ ~. Consequently
we see that indeed the normalization correction (q'/mto)
is of the order of p/m as the relative kinetic energy,
q'/m, is about 20 Mev and oo is approximately @=140
Mev. It should be remarked that had we retained the
temporal part of the vertex operator it would have con-
tributed a normalization correction of order (p/m)'. A
detailed calculation of the second term on the r.h.s. of
(79), shows it to be even smaller than the order of mag-
nitude value we have attained. '4 We shall not take this
correction into account in our numerical results, since
it involves effects of an order of magnitude that will be
neglected throughout our work.

Performing the calculation for the continuum state
we achieve the result analogous to Eq. (79),

XL~(q —q') 7x'(q')dqdq', (72)

where

(73)Jqr= s~ XD(q)G—& '(qr)Vo"&XD(q)dq

Owing to the fact that the integrand on the r.h.s. of
(72) is odd in the variable (qo

—qo') the corresponding
integral vanishes, and we find that

Xr+Es 2. —— (74)

In the present approximation in which

(75)

v. ' &(q)'qu' &(q)dq+(~) '

q (q)'q (q)dq+(2~) '(f'/u')

X Xo+Xt
(2m) 'volume

as given by (67) converted to the deuteron state, we
are led to the result fO

X) (2n&(q q &)
—'q (q')t{(Po'—Eqt —&qo'

—
o&(q q &) + (Po—Eqs —Eqr' —&v(q q &)

x~&'& (q-q')~&" (q-q')

X~&'& ~&'&p(q')dqdq'. (76)

Finally taking the adiabtic limit, i.e., setting

I0
—Eq —Eq —co = —co,

I / (77)

which means essentially that we neglect the relative
kinetic energies q'/m, (q')'/m compared with p, the
meson mass, we arrive at the expression

(q)' (q)dq+(2 ) '(f'/p')

X q'(q)'(~«-q &) '~"'(q —q')~"'(q —q')

X & Ol ~ & (ol yD (q~)dqdq~ (78)

"This involves the matrix element of y~ and contributes a
relativistic correction to the surviving meson term.

XJ"q, ' '(q)'(Po —&qr —&qo) q, ' '(q)dq, (80)

where, in this case the adiabatic limit states that the
diGerence in the kinetic energies of the free and inter-
acting states, (1&'/nz —qo/m) is negligible compared to
the meson mass. Examining (80) we see that the l.h.s.
and the first term on the r.h.s. go as the volume of the
system whereas the second term on the r.h.s. is inde-
pendent of the volume and consequently negligible.
This is to be expected since the continuum state is
non-normalizable. However, the second term on the
r.h.s. arises from the one meson bound state which
exists only when the two nucleons are no greater than a
pion compton wavelength apart and consequently
should be finite and independent of the size of the
system.

g s=5'o&+g(sl (32)

o' J. Bernstein and A. Klein, Phys. Rev. 99, 966 (1955).

IV. WORKING FORM OF THE MATRIX ELEMENT;
PROOF OF STEGERT'S THEOREM

We are now in a position to exhibit the explicit form
of the S matrix. Previously, we have shown that
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with

S(»= (e'/4)rko)lX„{ &(x)e ' ~

X(*...l«&- l.()(g)+«')-'l. {')(~)I*'*.')
Xx»(x') e'i""' o„e'"t(2pr) 4dxi dx 'df (33)

and

S('&= (e'/4mko)l X&,
{ &(x)e '~~

X&**.l»/~. &&.(S))I.=oI ."'&x (")
Xe"'P'"'o„e'"{'(2m) 'dxi dxo'd$. (34)

fn re-exhibiting Eqs. (33)—(34) we have changed to the
total and relative coordinate dependence of the RA as
defined by Eqs. (37) and (38). Also we have assumed
the usual normalization for the photon wave function.

A{,(„)(P) = (2n) —l(2kp)
—'o„e'"{.

To perform the evaluation of (32) we make a trans-
formation from the photon coordinate, to $—R, the
coordinate relative to the center of momentum. The
value of this transformation is obvious since it is only
meaningful to make a multipole expansion in the rela-
tive photon coordinate.

To rewrite (32) we proceed as follows: taking the
fourier components of the matrix elements in (33) and

(34) we obtain

S(i)= (ep/4&rkp)k I e
—i(p—Q)&exp(—) (q)

Xo„dqdKdri(27r) 4o4(P P' k), —(89)—

S"'=nkp ' "X.' '(q)L(qq'~)x (q')e "" "'"p

where,
Xdqdq'd{(d»(27r) 484(P P' k),—(9P—)

p&
= $—R, n = (e'/47r) &. (9l)

Recalling the definition of the S matrix as given by (3p)
we now have

with

j (i&)~&{ )(&)d», (92)

j.(~) = (2-)-'~"d.&t x„'-)(q)L(G; (q,)l„{)(„,,)
Xx (q+p {()+61 '(qi)p„") (qp, K)x (q

—
p K) jdq

&qil l'.")(K) I
qi') = &qil

—~G '/~ (~.(~) & I
~=p

I
qi'&

=r„(q„~)S4(q,—q,
'—~), (87)

and de6nlng

&qiqo I
»/~. (~.(~)) I ~=p

I
qi'qo')
= &.(q q' ~)~'(0—0'—~), (88)

(82) and (83) can be written as

S"'=nkp ' tX„( )(q)LGp '(qp)I'„{')(q),K)XD(q ——.', r)
aJ

+Gi") '(qi)f', "'(qp, &()X (q+-', &()je"" "'"

and

X&qiqo I
f'.")(~)Go '+l'. ")(~)Gi 'I qi'qp'&

XxD (q~) ei(P' —Q') R'e irfeik$o d—
q

XdRdR'd. d~(2~)

+I„(q,q'; &()x (q')dqdq'$e —'"p. (93)

Following a method due to Foldy, "we can separate
the S-matrix element into its contributions from electric
and magnetic multipole radiation,

S('&=(e'/4&rko)l)~e i{~ o)~X ' '(q) where
S p=[S p(E)+S p(M)]54(P P' k), (9—4)—

where

S p(E) = i(kp/47—r)& ds jp(»)e ~p'&) ed'), (95)
~0X&qlq2 I

»/~. (~.(~) & I ~=p I
qi'qo'&x (q')

Xei{&"—Q') 8'e—i{~—k){o (2~)
—lpdqi. . . and

f1

Xdq, 'dRdR'd((d$ (83) S p(M) =i(4prkp) l p,J ds~ j;(i&)
0

x(q) = (2') ' t x (x)e"*dx, (84)
with

X(~X(k X)), '" d~, (96)

and (for other than the wave-functions)

f(k) = f(k)'"'dt

kgs=k gs —k0g0. (97)

We now need only determine the current density,
defined by the equation

dehne the fourier transforms. Noting that

&qo IGo 'I qo'&=Go '(qo)~'(qp —qo'), (86)

j„(&()= x„' '(q) J„(q,q', &()XD(q')dqdq',
4

Foldy, Phys Rev 92 178 (1953)

(98)
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since we have already determined an approximate
representation of the RA. For the electromagnetic
vertex operator, first note that to our approximation

I'„i'& (qi, «)

=y t'&-'(1+rsi'&)+i(o i'&Xi')/2eLr&i '(1+rpi'&)

+l& -'(1—
p "&)3, (99)

in consequence of Eqs. (87) and (48). We also require
the form of I„(q,q'; «) defined by Eq. (88). According
to (46), we can write

(qiqs I»/~. (A.(«)) I
~=p

I
qi'qs')

= —s(2pr) '(qiqp I (&/&e(&, («)))

(b)

(e)

(c)

X rs'(~)~(ZX') r, '(—&')

XDtd&t'I A=pI ql q2 ). (100)
Fin. 2. Feynman diagrams obtained from SI/S, (A„) ~

z=p. Dashed
lines represent mesons and wavy lines represent photons.

Carrying through the functional differentiation, we
obtain, as described in more detail below, the form

I„(q,q', «)

= —s(2pr)-'(f'/p, ') (L(y py„) "'(ps') "'
X (q—q' ——,'«)&(q —q' —s «)+ (vpv&) "&(Vpe) "'
x(q q'+ ,")~(q—q'+-', )3(.—' & -")
—I:2(q—q'). (vs&) "'(q—q'+k«) h'») "'
X (q—q' ——,'«) a(q —q'+-', «)Z(q —q' —-', «)&

X (~ "& &s~ "&)+(& /f)Z~L(»&) "'
X (q q'+-,'«) r, i' h—(&q q'+ «)—
X V„& & (q q'+ «j '—«)+ (—1 ~ 2; q ~ q') $); (101)

where V„&'&(p,j; «), the p-wave meson part of the
"photon-nucleon-meson" vertex operator, is defined by
the relation

nucleon current transitions proceeding via one nucleon
intermediate states and that of the meson current. The
analog of the latter accounts for the second term of
(101). It is characteristic that the dominant effects of
the former (the "Born Approximation" ) do not occur
explicitly in the current density, since they are in fact
absorbed into the definition of the nuclear wave
function. The terms depending on the operator
V„"&(q,j; «) will be seen to be decisive for understand-
ing the high-energy photodisintegration.

In determining the current operator, j„(r&),as defined
by (93) we consider the RA, in the approximate form

X=xp+Xi& (103)

defined by Eq. (67). Utilizing Eq. (103) we realize that

a.(«) =a."'(«)+i"(«)+j."'(«) (1o4)

where the quantities in (104) are defined by the fol-
lowing equations:

j."'( )=— xo.' '(q)l:G '(lp —
q)

$2G—I

~.(Ap(«))&(4'~(p)) ~ ~=p=
=L—(fl )(».)"'ll, "',

+V„o&(Pj; «)]64(q+P q' «). (102)——

XI'."'(kP+q «)xo (q —k«)+Gp '('P+q)
Xl'„' (-',p —

q, «)xpp(q+-,'«)dq, (105)

rj"(«) = —e (xpn' '(q)LG1 '(kP+q)

Xl"„i'&(-',p —
q, «)xp(q+-', «)

The first term here follows from the approximate form
of G ' given by Eq. (48) and is recognized to be the
Kroll-Ruderman, s-wave contribution, " whereas the
second term, which is responsible for the resonance in
photomeson production is represented by the Feynman
diagrams in Fig. 2. Thus the matrix element (102)
describes photomeson production (off the energy shell)
e

+Gs '(pp —q)1'„"&(-'p+q, «)XP(q —-'«)j
+x»' '(q)LGi '(kP+q)1'. "&(kP—

q «)

X xp~ (q+-', «)+Gs-'(-,'p —q)

XI'„t'&(-',p+q, «)xp(q ——,'«)))dq, (106)

(107)
xclusive of two contributions, namely that of the

j„i'&(«)= —e Xp„(q)i„(q,q'; «)XP(q')dqdq'."N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
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It will be seen presently that j„(o)(x) is the standard
contribution to the current, whereas j„ao(x) is that
part of the current containing the residual aspects of the
Born approximation to photomeson production.

We now turn to the evaluation of Eqs. (105)—(107).
Inserting the pertinent definitions, namely Eqs. (67),

(88), and (99), we obtain for (105) and (106).

j„"'(«)=ie I'&p„( )(q)t)E (')(q K) yD(q —-'r)

+E„(2)(—(7, K) pon(q+-', x)]dI7, (108)
and

p
—Eq —~q +-,.—

f2 ~ ~
e(1) (q qi 1~)e(2) (q q'+1~) z(1) z(2)

j Bo(K)— po
(—)(q)t X

(2~)2 p2 „ 2M

R ("((t',«)
X

Pp —Eq —Eq~ ~„—M

wherein

e"' (q—q'+ 2&)e"' (q—«'+-'r. )
X

Pp
—Eq—Eq~ ~& M+

P p Eo K——Eo'+ —
2K (d—

e(1) (q q~ 1&)e(2) (q q' 1&) &(1) z(2)

X X
2M

E ("(—q', K) E ("(g)K)
X

Pp
—E —E ~y r„—M+ Pp

—Eq —Eq~+ ~„—M

g 0) .g(2)

&& && (p (q')dqdq', (109)
2M+

R„(2)(—q, «) e('& (q—q'+-'x) e(') . (q—q'+-'v)
X-

P p E, E—; *„—o&+=- Pp' —~q+,—&q —x—M+

g ('&(q «)=((q/2&2)1(1+rp('))+[2(e('))&x)/2e222](y~2(1+rp('))+y„2(1 —rp(')) yo(') —(1+rp(')), (110)

o&~= L(q—q'+ l «)'+&1']',

w1th y (y„) the gyromagnetic ratio of the proton (neutron) and

P=0, Po=&1+&2=2Po, (112)

the center-of-momentum coordinates for the continuum state. Equation (108) is now recognized to be the standard
current operator. Consequently, in the adiabatic limit, namely, for

Pp —E —E I —M= —kp —M2 ) Pp E E ~ —M= ——kp —
M&

1
2 (113)

we obtain for the complete one meson contribution to the current, the addition to the standard result (108),

oe f' (
t

e('& (q—q' —-'x)e(') (q—q' —-'x) ( q~ - q' »~(„)— (—)( ) . )( (1). (2)g (1)( ' )+l
(2~)2 p2 " l 2(o ((o '—4kp') E q'~ —q')

"'(q—q' —l~) "'(q—q' —l2() ( a ~ —a+ ~ "'(V K)~"'~" ', , +I 1~2, l
~'(q')dqdq', (114)

2p& (o&+' —o&o') q' ~ —q')
and

f' ( (2(»V.)"'e"'(q—q' —22o) 2(»~.)"'e"'(q—q'+22o)j.('& (.) = — v.'-'(q)' —
I
", +

(2~)2~2 3 M+ gkp

2(q—q' 0)e('& (q—q'+'2x)a(2) (q—q' ——2,~) y i&2 (
I& (~"),&2~" )+—Z& l

Ir."'(q—q' —2„, 2«o) j ~ K)
(o&

'—&&o') (pp+' —&&p') f

X
r ("e(" (q —q' —-'x)

+(1&-+2, q~ q')
l q»(q')dqdq', (115)

M gkp

wherein once again we have dropped the temporal part of the meson-nucleon vertex function. Also we note that
the fourth component of the meson current, the second term of Eq. (115) is identically zero in the adiabatic limit.

The currents (108), (114), and (115) are now to be inserted into the appropriate electric and magnetic parts of
the S matrix given by Eqs. (95) and (96). The standard contributions require no additional discussion at present.
and will be found recorded below in Eqs. (128) and (129).We then turn to a consideration of the additional electric
effects to show that they conform with Siegert's theorem. ' From (114) and (115) as inserted in (95) we find tha, t
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inko'* f'
S& (E)=— —' dsa ~)„q„(—)(q)t

(27r)' )((,
2 "()

(r"' (q —q' ——',ks)(r "& (q —q' ——',ks)
{~o).g(2) ) (]+~ (&))}

zu (&u
'—-', kp')

1~2
+

~ l q (q') dqdq', (116)
(k ~ —k)

S o)(E)=
—ZQko~ f [

ia") (q—q'+-', ks) i(r(') (q —q' —-', ks)
ds e V),. q

' '(q)+ (vsvo) "'- (vnvo)"'
(2~)' )((' "0 M 4kp

CO+ gkp
2 &$, 2

p r, (2)e(') (q—q' —2~ks) r;&') a ('& ~ (q —q'+,'-ks)
X(~ ' v'3~('))+i- Vo")(q—q' ——',ks, 2ko) ji —ks, ko) +

CO
'—4kp2

X V, (') (q—q'+-,'ks, -', ko, j;ks, ko po(q')dqdq' (117)

wherein x has been replaced by ks and {,} indicates that the anticommutator be taken.
Examining the first term on the r.h.s. of the latter equation, we note that it is proportional to the matrix element

of yn which in one case is equal to 0"' (q—q —~ks)/m and consequently, since it is a correction of order u/m
compared to the analogous term arising from (116), we can neglect it. A similar argument allows us to drop the
contribution from Vo('& since it too can be shown to be at best a correction of order cu/m compared with the terms
of Eq. (116).2' We now examine the E1 contribution from (116) given by

—i (ko)'*f' t ~"'(«—«')~"'(q —«')(q —«')'Si"(Z1)= — ~.(-)(q)'—
(2~)' (u (aP —-', ko')

2 1 ) e ae ~ (q —q)+o' se (q —q)
xl +—l+ qP(q')dqdq', (118)

(CO ——ko (0 I l2(u((a' —-', ko')

wherein we have removed the isotopic spin dependence. Had we evaluated the electric effect from the original
form of the S matrix, Eq. (92), it would have been evident that the mesonic correction given by (118) is a recoil
effect of order e/c compared to the former: thus we have a proof of the Siegert theorem.

We now turn to a consideration of the magnetic contributions; however, instead of working with Eq (96) w. e
find it more convenient to extract the magnetic terms directly from Eq. (92). Since we will be concerned only with
an evaluation of the Sf' eGect, which is the predominant one-meson phenomenon, we now limit ourselves to that
contribution. With this in mind, inserting Eqs. (114) and (115) into Eq. (92) and retaining only the prescribed
terms we arrive at

where
S,(M1) S,ao(M1)+S,o) (M1 (119)

f2 ~ t &o) . (q ql)+(2) . (q q~) &(I) . (kX &)

S( (M1)= (ko) '— q, (-)(q)'
(zm)' )((' ~ 2m

and

( 1+~ (1) ] ~ (1))"
X I yn +y. l +(1~2) q D(q')dqdq', (120)

2
"

2 ),
,f ~

— (- X- ) (kX~) L(- X- )X(«-«')] I:(«-«')X(k&«)]i
S,('&(M1) =i (k,)

—*'—
~ &„(-)(q)t

(zm)' p' "
l(~2

1k 2)2

Zp
X (g(&) q 3g (2)) {e(') (q —q')r (')V ('&(q—q', &~ko'kXs, ko)

GP gkp

+(r(') (q—q')r;")V ('&(q —q', -', ko, kXs, ko)} q (q')dqdq', (121)

'~ A consideration of the leading contributions to this term —see A. Klein, reference 18—shows it to be of order co/m.
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with
~= ((q—q')'+t ')'*. (122)

In Eq. (121) V, &'& (q —q, ko, kX e, ko) is the amplitude, excluding the Born approximation, for the photoproduction
of a meson by a ~1 photon from the ith nucleon and is defined by the relation

e V ' (q—q' ——,'k, -'ko, j; 1&X s, ko)
~

»r& =V,"'(q—q', -'ko, k X r, , ko), (123)

To determine the form of this function it is convenient to examine a representative diagram, viz. , Fig. 2(d).
We note first that in the adiabatic limit the kinetic energy of nucleon "1"in the 6nal state is about —,'ko. If the use
of a 6xed source model to describe virtual photomeson production is to have any validity, we must certainly take
some account of this Anal nucleon energy. To first approximation, this can be done by defining an effective meson
energy which is the sum of the actual energy of the meson (-, k& in the adiabatic limit) and the kinetic energy of
the associated nucleon (also —',k&).28' All that remains then is to relate the above operator, which is off the energy
shell, to its well-known form on the energy shell. Within the framework of the 6xed source theory this is precisely
the problem that has been solved in the study of photo-meson production by Chew and Low. ' They have shown
that the isotopic vector part of the P-wave amplitude for this process in the Mi limit, T~ is related to the am-
plitude for p-wave meson-nucleon scattering, T „2' by the equation

ep 'y„—p„
(qual T.-'(ko) Il Xs»= — (qiI T-(ko) Ik&«»

f 4m
(124)

Owing to the simplicity of the Axed source model the above equation holds also for virtual photomeson production. "
Hence, remembering that the operator eV, of Eq. (123) is equal to the full amplitude T~ ~, given by (124), minus
the Born approximation, we arrive at the relation

V;o& (q—q', —',k&, k X e, ko) = [&M(y „—y„)/4m fj[o&'& k X«"' (q —q') ~3"'~, o&A (ko)

+(~"' (q —q')o"'. kX«2 ~j +o~'& lrXs/o'"& (q —q')r;"&r3o&

where
XB(ko)+o'O& (q—q')e&'& liXs r;"&r3 "&C(ko), (125)

3
I

"
do&( o33(t) 1 )"do&, o~3(t)

A (kp) =—
8' ~& t o&g kp 24m L

& t o&g+kp

1 I'" do&( ( 1 1
B(ko) =— o, (t) i

8~ ~„ t 4 o&,
—kp co,+koJ

1 I" da&, o-„(t) 3 t" do&, o,3(t)
C(ko) = +—

24'&I p t o&~ kp 8&r '& p t o&~+kp
(126)

with 0~ 2z the meson-nucleon cross-section in the state of total angular momentum J and isotopic spin T. In
writing down Eq. (126) we have made the approximation

0'3z=a'&3= &ai=0

Inserting (125) and (126) into Eq. (121) we obtain, after removing the isotopic spin dependence,

(127)

n
I

t'(e"'Xo"') (&Xs) 2[(o&'&Xo "&)X(q—q')j [(q—q')X(kXs)$& j'
S o&yr1) = (k,)-» q.&-&(q)t —

i~ +
)3 J ( 2 k2 (o&'—-', kp')' ) ~2

v —v t
"d~«»(t) 1

X (3o"'&&« ~"'(q—q')X~"'(q —q')(1~2)) p (q')dqdq' (128)
1218'&I ~ o t o&g ko co ~ko

The expression given by Eq. (128), as it now stands, contains an integral over the physical meson-nucleon
cross section; to evaluate such a contribution we resort to a form of the meson-nucleon scattering amplitude which

of the low-energy description of photomeson production and meson-nucleon scattering using this theory yields
some hope; that such a treatment is valid.

290wlng to the separabuity of the momentum and energy de- pendence of the varIous amplitudes such an Identity can be made—see Chew and Low, reference 4.
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is equivalent to that in Eq. (126), namely,

4 f 1 t dM ~ 0 33(t) 1 t' dM i 0'33(t)
42re"» sin533= —+—

3kp t32 22r "„ t M3 —kp 182r "„ t M3+kp

2 f' 2 P" dM, 0.„(t)
X—+-

3kp t3 92l ~ ~ t My+ ko

(129)

wherein we have applied the approximation expressed by (127). In Eq. (129), 533 is the phase for the 2 2 state.
Inserting the above result into Eq. (128), we obtain

f'((~"'&«"') (&Xe) 2I:(~"'X~"')X(«—q')j L(q —«')X(&Xe)j)
!i"'(M1)= (k) '

pp
' '(q)t 2

I
+

(2~)3 J t32 ( M2 ik 2 (M2 ik 2)2 )

y0 —y„(82r sin833e"» 3 f2) 1
(3~&'&(1 Xe)~"'(«—«')~"'(q —q') —(1~2)) 3 (q')dqdq'.

12m E (ko' —ti')& ko ti') M' —-'k '
(130)

Removing the isotopic spin dependence, Eq. (120) can be rewritten as

SP0(M1)=— ,f' v~ —v-
(ko) '— p. ' '(q).'— (3~"'(&Xe)~"'(«—«')~"'(« —q')

(22r) 3 t32 4m J 2M M2 —3ko2

70+Yn'—~"' (q —«') ~"' (&Xe)~"' (q—q') —(1~ 2))+ 3 .' '(q)i'—
4m J» ~'—-'&0

x( o&. (q —q') &'& (Ix.) c'& (q—«')+ ('& (lx.) &'&. (q—q')

X0"'(«—q')+(1~ 2)) p'(«')d«d«', (131)

wherein the subscripts t and s on p„' &(q) t refer to the triplet and singlet spin states, respectively.
We finally note that the matrix element on the r.h.s. of Eq. (131) is inversely proportional to 2M. Had we used

an expression of the symbolic form Xp( ~IG( )I'„( )Xp~ which is proportional to the covariant Born approximation,
we would have found that such a term is inversely proportional to kp. Consequently the ratio of that part of the
Born approximation as given by (131) to the total effect is of order kp/2M.

In summarizing the results of this section we have

where
S~p=so(E)+So(M)+S (M1)+Si o(E1)+Si&"(M1)1) (132)

p1

sp(~)= —2 (kp)' d3e».) pn' '(«)'I:2(1+~3"')3 (q—2«)+2(1+~3"')P («+2«)jd«,

and

So(M) = io.'(ko) ' ' ds! («X&)X&30j' y~ («)t! (e X«)(2 (1+23' iy„+2 (1—73ni)yz) pon(q —2«)
"p

(133)

+(~"'X«)(2(1+~3"')Yn+2(1 03"')—Y~)~ ( «+2 «)]( 2)m'dq, (134)

are the standard contributions as obtained from a consideration of Eqs. (95), (96), and (108). The remaining
terms are defined by Eqs. (118), (130), and (131).In the next and final section we shall compute the cross sections
from these expressions and compare the results with experiment.

V. NUMERICAL ANALYSIS AND CONCLUSIONS

In this section we describe the results of the numerical
analysis of the various constituents of the single meson
terms; we compute the cross sections and discuss their

meaning. Finally, we consider in detail the various
approximations made and describe their range of
applicability. These approximations can be subdivided
into two categories, one referring to the assumptions
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made in arriving at the final form of the matrix elements
and the other pertaining to the explicit choice of ts—p
wave functions.

It is important at this point, however, at least to
enumerate some of the simplifying assumptions made
with respect to choice of wave functions:

(1) We consider no wave higher than d wave.
(2) In all transitions in which the matrix element is

small we shall neglect the tensor interaction in both
initial and final states.

To proceed, we consider in detail the contributions
from the E1 and 3f1 transitions. The former terms are
of interest only for the express purpose of exhibiting
Siegert's theorem in practice, whereas, as has been
previously mentioned, it is the latter terms which are
responsible for the resonance. In calculating these latter
terms we shall exclude the Born approximation con-
tribution given by Eq. (131) as (see the discussion
following Eq. (102)) it contributes a recoil correction
compared to the main contribution given by Sin) (M1).
Since, as has been shown, the considered E1(M1) terms
lead to triplet (singlet) final spin states, there will be
no interference, and consequently we may sum the
individual cross sections.

We now consider the E1 effect which is given by Eq.
(118), and when written in coordinate space has the
form

SP'= —~(&o)'(f'/u')5/(2~)'j "~ ' '(x)'

&&(tr") o&s)x eEi(px) —o"'xo") *"x e

&& (2Ei (px) +pxEs (px) )) q&+ (x)dx, (135)

Uo(x) =0

=Q(e I(*-*c) —s Ii(* *—c))—
/)

x&x,

x)x, (138)

and

Vis(Px) =0 x&xc

=(j-- (p*.)j(p*)+j(p*.)j-- (p*)), »x.
(139)

wherein j&(Px) is a spherical Bessel function. In Eq.
(138) n is the deuteron binding energy and P is fitted
to the effective range. The reasons for these particular
choices will be clarified when we consider the magnetic
contributions. The resulting cross section for the pure
mesonic contribution is plotted in Fig. 3, and is evi-
dently insignificant compared to the standard result
in its entire range. We have not considered the cross
term since we do not have the detailed form of the

1000

for the final form of (135). In Eq. (136) 'Ui'(px) pij is
the wavefunction )phase shift) for the sE final state
defined by the expansion

q„' )(x)= (2s) 'Xt" Qi 'Uis(Px)e'"Pi(P z)i'(21+1),
(137)

with Xi the appropriate triplet spin state. In Eq. (136)
UD(x) is the radial part of the S-state deuteron wave
function.

For the nuclear wave functions we choose hard core
functions for both initial and final states with a core
radius of 0.5&(10 "cm. The explicit forms of the wave
functions are given by

wherein E,()ux) is a modified Bessel function of the
second kind. In deriving Eq. (135) we have neglected
the kinetic energy of each of the nucleons in the final
state (-,4). This is certainly a justified approximation
at low energies, i.e., ko((2p, and fortunately at the
higher energies the over-all electric contribution will

prove to be negligible. In addition it is necessary to
remark that a singularity arises at threshold for pion
production (-,')4=a),) which is defined in the usual
manner (we add a small negative imaginary part to the
mass). The resulting imaginary contribution turns out
to be insignificant compared to the real part for all
matrix elements. Consequently, if we invoke all the
prescribed simplifications we arrive at the expression

SP'(E1)= iris' (2s)—'(fs/ps) (ks/2)'*

&( "V,'(px)*e—"
(p a(3E, () x)

500
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Mev—laxEs(px)) (& ' 'P& ' 'e+o ' «" P) FIG. 3. Total cross section vs photon energy in the center-of-

)+ E ( )))U&( ) d (136)
mass system compared with the pure lowest order mesonic cor-
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f' ( ")X "') (kX ) 2[( "'X "')X(q—q')5 [(q—q')X(k&«)5
S,()(M1)=, 2„(-)(q) —i— +

(22r)' j p2 ~2 1$ 2 ((p' —-', kp')'

standard amplitude; however, this cross term, although more significant than the eRect considered, is also
inconsequential compared to the standard result.

We next turn to a consideration of the magnetic terms. We must evaluate the expression [see Eq. (130)5

Yu Y&
F(kp)[3e"'(kXe)e") (q —q')e(') (q —q')+e"' (q —q')e"' (kXe)e"'(q —q')

12m

—(1~2)5, p (q')dqdq', (14o)
CO2 —~k02

where F(kp), which contains the meson-nucleon resonant effect, is given by the formula

When rewritten in coordinate space, Eq. (140) has the form

(141)

n /pr)* (' f
S1("(M1)=

1 1 ~
(p„( )(x)t i [ —(e(—"Xe(2)) (kX3)&(x+(e(')Xe(2)) xx (kXe)(1+&(x)5

(22r)'* &2kp ~ " p2

YI Yn
F(k )(e(') —e")) (kXR) {3e(') xe(') x—1)

~

—+—+K'
1

(8 "*/x) po (x)dxl
12m

{142)

wherein ((= (p2 —x1kp2)' and where 3= i 1((1
—for -'2kp)i(. In arriving at Eq. (142) we have made use of the spin

properties of the initial and final state.
It is found that the transition matrix, S1('&(M1), is completely dominated by the resonant contribution (the

term in the second square bracket on the r.h.s. of Eq. (142); consequently we shall apply our list of approximations
to the term in the first square bracket. We thereby arrive at the form

where

S1"&(M1) =M(XR)+M (I(.'), (143)

M(ER)=inÃ(82r ko)-:(f'/p') Up(Px)(:-"o-'(e( Xe') (kX3)(1—2.x)e-"*U (x)dx

2 3
t g (px)e @2[(e(')Xe(')) pp (kXe) —-(e(') Xe(')) (kXe)5(1+&(x)(, ~~pD(x)dx1

and

=~&(8~'k ) '(f'/u'){3(e"'Xe"') (kXe)Ip(kp)~ '"—[(e"'Xe"'PP (k&«)

—1(e()Xe( &) ~ (kX3)5@2(kp)e '32} (144)

M(g) n+(8&rpkp)
—i t 'U2(px)e —132(e(1) e(2)) . (kX3) (3e(1) .pe(2) .p 1)x—2(3+2((x ((2x2)

X(U (x)—2 'W (x))+ ' 'U *(Px)e 'oo(e(') e('&) (k—X3)x '(3+2 +&(x')&+(x8W (x) e "*dxF(kp)j 1

nI&I&2(82r'kp) iF(kp)(—y —y )(12m)—'((e(') —e('&) (kX3)(3e(') pe('& p —1)

X (~,—~.)/»m

X[I2o(ko)e ' ' I22(ko)e ' —52+( 'e(—e 2&) kX3Io2(ko)e '3o}. (145)
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FIG. 4. J2 and J0 vs the photon energy in center-of-mass system.

and

1V Uo (x) Sis W~(x)
+

x +8 x

q„&-&(x)= Xpe Pi(2l+1)F'Ui(Px)e"~Pi(j i) (14'I).

In the above equations, (144) and (145), we have made
use of the definition

folded angular distribution is approximately 2+sin'0 s

hence we can easily see the need for the interference
term. Our fit to this angular distribution, shown in the
figure is discussed below.

Next we note that the integrand is proportional to
inverse powers of the two-nucleon separation, thereby
emphasizing the interior part of the wavefunctions.
Thus it is to be expected that our calculation containing
the s-wave states should be rather sensitive to the
existence and size of a hard core, and this has therefore
been essentially taken as one of the parameters of the
theory.

There remains now the question of what to do con-
cerning the eBect of the attractive part of the nuclear
potential on the wavefunctions. For the final scattering
state we included its eGect only in the phase shifts
occurring in the expansion, Eq. (147). We are limited
to this approximation simply because at the photon
energies of interest, which correspond to e—p laboratory
energies of greater than 350 Mev, no adequate quan-
titative description of the scattering states exist.
However, we do expect the behavior at small distances
to be most strongly determined by the core. Thus we
note that in the angular distribution there is an
unknown parameter, namely the relative phase between
s- and d-wave states. A phase shift analysis at the
appropriate e—p energies should afford a check on our
choice.

As for the deuteron wavefunction we examine the
consequences of using a Hulthen, a Gartenhaus, and a
Hulthen with hard core for the S state; for the D state
we assume the Gartenhaus form. We have, of course,
chosen the correct normalization for the total deuteron
wavefunction.

As can be seen from the plot of Iss(kp) in Fig. 6, the
final result does depend most strongly on the radius of

3.0

Once again we use hard core functions with a core
radius of 0.5)&10 " cm to evaluate (144) with the
wavefunctions defined by Eqs. (138) and (139) except
that the final state is now in a singlet spin state. In
Fig. 4 we have plotted our results for Js(ks) and js(kp)
in suitable units. To determine its contribution to the
cross section we must include as well the interference
with the resonant term. The resulting part of the total
cross section at the resonance constitutes about a five

percent eGect.
We shall now discuss in detail the essential properties

of the resonant term, Eq. (145). First we note that in
the absence of the deuteron D state there is only an
s-wave final state, which gives rise to a 2+3 sin'0

angular distribution. However, the inclusion of the
D state will introduce s-wave —d-wave interference
with an angular distribution of 2—3 sin'0. We note
that for the greater range of interest (see Fig. 5) the

2.0

IO

0
loO

k,

I

200
t

300
I

400

~ The experimental points were obtained from: E. A. Khalin,
B. D. Schriever, and A. D. Hanson, Phys. Rev. 101, 377 (1956);
J. C. Keck and A. J.Tollestrup, Phys. Rev. 101,360 (1956);J. C.
Keck et al. , Phys. Rev. 93, 827 (1954).

Fzc. 5. Folded angular distribution vs photon energy in the
center-of-mass system. The solid line represents our Gt.
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the hard core. In Fig. 7 we plot the value of I»(ks)
and Iss(ks).

We find that agreement between theory and experi-
ment is reasonably good. To produce this agreement
in both the total and differential cross sections it is
important to include the deuteron D state, and further-
more it was necessary to fix upon a core radius of
0:5)&10 "cm, a value which is indicated by the Gammel-
Thaler analysis. "Had we not included a hard core, our
cross sections wouM be an order of magnitude too
large. The values of the relative s-wave —d-wave phase
shifts needed to fit the folded angular distribution are
plotted in Fig. 8; to arrive at these results we have
included the nonresonant effect as well as the extra-
polated results of the de Swart-Marshak" calculation
at the lower energies. We note that this choice is
consistent with the Gammel-Thaler prediction. " We
have already alluded to the resultant fit shown in Fig. 5.
Finally we have plotted the total cross section as
compared with experiment in Fig. 9; here too we have
included the complete matrix element. To obtain a
true comparison we have subtracted the results of the
de Swart-Marshak calculation. "

To sum up, our calculation shows that in order to
achieve agreement with experiment we must include

/,0
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Fzo. 7. I02 and I» vs the photon energy in the
center-of-mass system.
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the following effects: (1) a hard core (r,=0.5)&10 "
cm), (2) an attractive nuclear potential, (3) a tensor
interaction in the initial state (deuteron).

It is also of interest to note that for the resonant
term our results have the form of Wilson's, "namely it
is essentially a product of two probabilities, one the
probability of photoproduction into a (s, s) state and
the other, the probability of absorption by the remain-
ing nucleon. However, in our case the probability for
absorption is dependent on the nucleon relative mo-
mentum. Furthermore, photodisintegration via s-wave
mesons does not have this simple form. Thus the simi-

larity is actually quite superficial.
It is of more interest to compare our work with

Zachariasen's calculation. Although the underlying
formalisms were quite different, the two calculations
differ, in a practical sense, as follows:

(1) the treatment of the nuclear wave functions,
(2) the technique of introducing the resonant meson-

nucleon interaction,
(3) the treatment of higher order exchanges, i.e.,

Zachariasen includes a piece of the two meson exchange.
Mev

FIG. 6. I20 vs the photon energy in the center-of-mass sysstem
for the various choices of initial and final state wave function.

3i J. Gainmel and R. Thaler, Phys. Rev. 107, 291 (1957).
"See J. „'. de Swart and R. E. Marshak, reference i.

As for (1) it seems somewhat surprising that
Zachariasen achieved such relatively good results
without including any details of the nuclear potential

"R.R. Wilson, Phys. Rev. 104, 218 (1956).
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Fio. 8. Cos(62 —80) vs the photon energy in the
center-of-mass system.

in the wave functions. Especially so since our results
depend so sensitively on such effects.

Concerning (2), the method of going off the energy
shell, both methods assume that the major effect is
just the J=-,', T=~ transition. However, the two cal-
culations differ in the technique of handling this term.
Basically, once we have made the Axed source approxi-
mation we are led unequivocably to an expression
which is dictated by exact pion-nucleon scattering in
the prescribed state. Zachariasen, on the other hand,
makes a one-meson approximation to the Tamm-
DancoG method to arrive at the resonant meson-nucleon
interaction which he handles in an approximate manner.
This major diGerence has the eGect of introducing a
much larger resonant effect, which in our calculation
results in the great sensitivity to the qualitative form
of the nuclear wavefunctions.

We shall now discuss the sources and relative im-

portances of the errors made in the explicit evaluation
of the formal solution of the S matrix. These can be
subdivided into the following classes: (1) The low-

energy approximations on the vertex operators; (2) The
neglect of recoil; (3) The method of going off the energy
shell; and (4) The exclusion of higher order meson

exchanges.
Concerning (1), we mean that in making the low-

energy approximations we have neglected both finite
size eGects as well as all consequences arising from the
fact that these operators are oG the energy shell. It is

unfortunate that within the framework of the present
theory of strong interactions we have little detailed idea
as to the actual form of these neglected effects. How-
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iO

60-
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FIG. 9. Total cross section vs the photon energy i.x the
center-of-mass system.

ever, it is strongly believed that such effects are
decreased by a factor of at least e&/c, the nucleon recoil,
relative to the terms retained.

By "recoil effects" we mean those terms of relative
order v~/c which can be determined explicitly. Since
their neglect involves an error of the same order of
magnitude as that made in the inevitable low-energy
approximations, we have not tried to evaluate these
terms. We note that this nucleon recoil eRect arises in
three possible ways; two of these, which we now
consider, namely, the temporal part of the vertex
functions and the nonadiabatic wavefunction cor-
rections are true corrections of order v~/c. Since,
however, there is one dominant term (the resonant
contribution) recoil can only be of qualitative im-
portance in this term. Moreover, in this term recoil
enters as a factor in the energy denominator which lends
justi6cation to our procedure of going oG the energy
shell. Thus we have accounted for recoil semiade-
quately in a way dictated by the Axed source model.

As for the error incurred in going oR the energy shell,
we can make no rigorous comments since to do so would

entail a detailed knowledge of its form oG the energy
shell, an unknown factor at present. Hence, our only
justification is the success or failure of such a procedure.

Finally, as regards the higher order exchanges, we

can offer no justification for its neglect. An examination
of the two-meson exchange terms should indicate the
seriousness of such a deletion.

A consequence of our calculation is the overwhelming

importance of the hard core, i.e., its deletion would

result in a cross section which is a factor of ten too
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large. Hence if we assume that the higher order meson
exchanges are unimportant we can view our theory both
as an independent conformation of the hard core as
well as an indication that our method of going off the
energy shell is qualitatively correct. Furthermore, our
work shows the necessity of using qualitatively accurate
wave functions. Thus we believe that the major
unknown e8ect is the higher order exchanges, recoil
being completely overshadowed by the hard core. An

extension into two meson exchange effects should deter-
mine whether the above conclusions are meaningful.

Finally we remark that at the lower energies our
work indicates that the entire effect is essentially a
classical one; there are no mesonic contributions of
importance. Thus we may conclude that the various
classical calculations' account for the low-energy phe-
nomenon in a manner which is consistent with 6rst
principles.
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Spin States Associated with Neutron Resonances in In"'
A. STOLOVY

Radiation Division, U. S. guava/ Research Laboratory, Washington, D. C.
(Received October 19, 1959)

By polarizing both the neutron beam and the nuclear sample, the spin states of the first three slow neutron
resonances in the target nucleus In"5 have been measured. These were obtained by observing the direction
of change in the transmitted intensity upon reversing the polarization of the neutrons with respect to the
target nuclei. The spin states associated with the resonances at 1.46 ev, 3.86 ev, and 9.10 ev were found to
be J=5, 4, and 5, respectively. These spin assignments are consistent with measurements of other parameters
of these resonances.

INTRODUCTION

'HERE has been much recent interest in the spin
states of levels in compound nuclei formed by

interaction with slow neutrons. In particular, the
information desired is the relationship of the spin state
to the other resonance parameters such as the radiation
width, neutron scattering width, level spacing, capture
gamma-ray spectrum, and the distribution of the two
possible spin states among the resonances in an isotope.
We are considering only cases where the neutron orbital
angular momentum is zero. Sailor' has made a survey
of the measured spin states and concludes that the often
made assumption that the two possible spins are equally
distributed among the levels may not be valid, since
there are many more levels with measured spin states
I=I+-,' than with I=I '„where I is th—e-spin of the
target nucleus ground state.

Generally speaking, the spin states of these compound
nucleus levels have eluded measurement because the
methods commonly used to obtain the resonance
parameters are rather insensitive to the spin state. In
principle, the combination of good measurements of
total and scattering or capture cross sections would
yield all the resonance parameters, including J. Several
laboratories ' ' are presently using this method to

' V. L. Sailor, Phys. Rev. 104, 736 {1956).' E. R. Rae, E. R. Collins, B.B.Kinsey, J. E. Lynn, and E. R.
Wiblin, Nuclear Phys. 5, 89 (1958).' J. E. Evans, F. W. K. Firk, B.B.Kinsey, M. C. Moxon, J. R.
Waters, and G. H. Williams, Bull. Am. Phys. Soc. 4, 270 (1959).

4 J. A. Harvey, G. G. Slaughter, and R. C. Block, Bull. Am.
Phys. Soc. 5, 177 (1958).

obtain J values, although partial cross-section measure-
ments to the necessary degree of accuracy are difhcult
to make and results obtained in different laboratories
have not always been in agreement. In some cases,
spin assignments could be made on the basis of total
or scattering cross-section measurements alone' ' (see
also cases cited in reference 1). In the kilovolt region,
Hibdon' has reported J values for several resonances
in aluminum from analysis of total cross-section curves.
Other investigators"" have measured spin states by
looking for the presence of a ground-state transition.
This technique is applicable only when I=—,'.

The technique adopted in this investigation is to
polarize both the neutron beam and the target. The
spin state of the compound nucleus can then be ob-
tained directly by observing the direction of change in
the transmitted intensity upon reversing the relative
orientation of the neutrons and the nuclei. The trans-
mission of a polarized neutron beam through a polarized

~F. B. Simpson and R. G. Fluharty, Bull. Am. Phys. Soc. 3,
176 (1958).

6 L. M. Bollinger, R. E. Cote, T. J.Kennett, and G. E. Thomas,
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7 J. R. Bird, M. C. Moxon, and F. W. K. Firk, Bull. Am. Phys.
Soc. 4, 34 (1959).' S. Desjardins, W. W. Havens, J. Rainwater, and J. Rosen,
Bull. Am. Phys. Soc. 4, 34 (1959).
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