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Upper Bounds on Scattering Lengths When Composite Bound States Exist*
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In the case of the zero-energy scattering of one compound system by another, where one real scattering
length completely characterizes the problem (e.g. , the reaction A+8 -+ C+D, in addition to A+8 ~A+8,
cannot take place) it has previously been shown that the Kohn-Hulthen variational principle provides an
upper bound on the scattering length if no composite bound states exist. The extension of this result to the
case where one or more composite bound states do exist is presented here. The inclusion of tensor forces,
exchange forces, and Coulomb forces is allowed. Several methods are given for obtaining a rigorous upper
bound on the scattering length, which involve the addition of certain positive terms to the Kohn-Hulthen
variational expression. The approximate information about the composite bound states which is required
to construct these additional terms can be found by standard methods. As a consequence of one of the
results obtained, it is shown that under certain circumstances some ordinary variational calculations give
a bound. Thus, an analysis of a previous calculation in the light of the present results leads, without further
calculations, to a rigorous upper bound on the singlet electron-hydrogen scattering length.

I. INTRODUCTION

'HE value of variational methods in scattering
problems is greatly increased when these methods

are based on a minimum (or maximum) principle. This
is especially true for the dificult case of scattering by
a compound system, where calculations in which
different trial functions are used can lead to quite
different results. Such a minimum principle, for zero
energy scattering, has already been obtained for the
case in which the scattered particle cannot be bound to
the scattering system. ' The present paper is concerned
with the extension of this result to the case in which
one or more composite bound states exist. For clarity
of presentation the detailed discussion is confined to
the problem of the scattering of a spinless, neutral
particle, of zero orbital angular momentum, from a
short range center of force. The generalization to the
case where the scattering is by a compound system,
and to long range repulsive Coulomb forces, is identical
with the corresponding generalization in the problem
in which no composite bound states exist, ' and the
details will be omitted. Further, the inclusion of tensor
forces is allowed. The formulation, given in II, for the
scattering of a particle by a compound system can be
extended, in a straightforward way, to treat the scat-
tering of one compound system by another. It will in
fact be understood in the following that unless other-
wise stated (in particular, the result of Sec. IV is
excepted) each of the results obtained has, under the
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~ L. Spruch and L. Rosenberg, Phys. Rev. 117, 1095 (1960).
This paper will be referred to in the following as II.

condition discussed in II, direct applicability to this
wider class of problems (the essential requirement is
that the scattering be completely characterized by one
real scattering length). The problems which may be
treated include zero energy scattering of a neutron or a
proton (or in fact of nuclei) by nuclei, assuming realistic
nuclear potentials. Similarly, the scattering of electrons
(or atoms) by atoms may be treated.

As discussed in II, the scattering cannot be charac-
terized by a real scattering length if the radiative
capture process is possible. We shall, in the following,
make the approximation of ignoring the interaction of
the particle with the radiation Geld. The bound on the
scattering length is then rigorous only to the extent
that this generally excellent approximation is in fact
valid. '

In Sec. II a number of results are obtained which
provide upper bounds on the scattering length for the
case where only one bound state exists. In Sec. III it
is shown that there are well defined circumstances for
which some ordinary variational calculations provide a
bound. An alternate method for obtaining bounds,
based on the Kato formalism, is considered in Sec. IV.
The extension to the case of many bound states is
treated in Sec. V. Since in this case the exact scattering
function has a number of nodes (even for the scattering
of a particle by a center of force), making the con-
struction of an accurate trial function more dificult,
it would seem that a minimum principle for the scatter-
ing length is even more valuable here.

II. THE CASE OF ONE BOUND STATE

We begin by considering the problem of the zero
energy, zero orbital angular momentum scattering of a

3 Actually, the neglect of the radiative capture process is not
valid at zero energy since it obeys a 1/v law. However, the coefh-
cient of 1/e is sufficiently small so that the capture process is
negligible compared to the probability for elastic scattering for
all but the lowest energies. The calculated scattering length may
then be interpreted as an extrapolation from some small, non-
zero energy value.
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spinless neutral particle of mass m by a short range
center of force whose strength is such that one, and only
one, bound state exists. As shown in I, the scattering
length A may, in general, be written

A=Ag — ug«gdr+ ~wZwdr, (2.1)

where u& is a trial scattering function, m is the difference
between u~ and the exact function, u, and 2 is defined,
in terms of the Hamiltonian, H, as

2 =—(2m/h') H = (d'/dr') (2m—/h') U (r) .

(Actually, since we write the one dimensional equations
with a factor of 1/r separated out from the wave func-
tion, the differential operator in H is not exactly the
kinetic energy operator. ) In Eq. (2.1), and in the
following, all one dimensional integrals are understood
to have the limits zero and infinity. The exact function
is determined by the equation

Zu=0,

with boundary conditions

(u.r,u, t) =1. )We have Zu, t=etu, t, where et is related
to the bound state energy E& by et= —(2m/h')E&. j
Since the exact solutions u and u, ~ are orthogonal, the
difference function m will be orthogonal to u, j provided
u~ and u, ~ are orthogonal. We therefore have the result
that the Kohn-Hulthen variational principle gives an
upper bound on the scattering length provided a trial
function is used which is orthogonal to the exact bound
state wave function.

It is easily shown that this statement is equivalent to
the expression for the bound given below in Eq. (2.5),
where the only requirement on u& is that it satisfy the
correct boundary conditions. However, we will actually
obtain Eq. (2.5) in a slightly different way, which is
the more natural generalization of the method used for
the no bound state case. Although m is in fact unknown,
we may formally construct a function, namely,

av —Yv)u~y ugj

which is orthogonal to u, &. It then follows, exactly as in
the case for no bound states, that

(Lw —(w, u, t)u, t], ZLw —(w,u, t)u„))(0.

u(0) =0,
u(r) ~A —r, for r~ ~. (2 2)

This inequality may be written

(w, Zw) & ct(ug, u, r)',

The trial function, u&, satisfies the same boundary
conditions, with A replaced by A&. It was shown in I
that if no bound state exists, and if the normalization
given by Eqs. (2.2) (referred to in the following as the
"appropriate" normalization) is employed, then

~ wow&0, (2.3)

u~1 —r/A, for r~ ~. (2.4)

We assume in the following that the "appropriate"
normalization is employed. (It is of course true that at
nonzero energies one cannot generally say which normal-
ization is superior, and that even at zero energy the
"inappropriate" normalization provides a variational
estimate for, if not a bound on, the scattering length. )

In the case where one bound state exists, which is
our present concern, the inequality, Eq. (2.3), will not
be valid unless the error function, m, is orthogonal to
the exact bound state function, denoted by u, &, where

so that the Kohn-Hulthen variational expression pro-
vides an upper bound on A. The inequality, Eq. (2.3)
follows from the fact that under the circumstance
considered, the Hamiltonian is positive definite on a
space of quadratically integrable functions or, more
generally (see I) for functions which approach some
finite, possibly nonvanishing constant at infinity. Thus
the inequality will not generally be valid if the asymp-
totic form for u has what we shall refer to as the
"inappropriate" normalization, namely,

where we have made use of the relation (w, u, r) = (ug, u, t) .
Thus, an upper bound on A may be obtained from

A (A g
— ug«gdr+ et i I

' ugu, rdr (2.5)

=(1/.g)~ u, r«Wr
~

&(1/.t) ~ («g)'dr,(r

where use has been made of the Schwarz inequality.
g M. J. Seaton, Proc. Roy. Soc. (London) A241, 522 (1957).

The diKculty with Eq. (2.5) is that u, & is not known
in general. Therefore unless the last term in Eq. (2.5)
is small, for a given (presumably) reasonably accurate
trial function u&, and shows very small variation as the
accuracy of the trial bound state function, u, &&, is in-
creased, one cannot claim to have a bound. In fact,
preliminary calculations based on Eq. (2.5), for the
singlet e H problem, gave negative results in the sense
that the last term in Eq. (2.5) was large and showed
large variations for a series of functions u, ~~ ranging
from a two parameter to an eleven parameter function
with u& that given by Seaton. ' The failure of this method
in the particularly favorable e H case indicates that
Eq. (2.5) is not a useful form. However, from Eq. (2.5)
one can obtain an expression which does not depend on
the unknown function u, & by writing

(( l' ((
u,u„dr

[ =(1/g, )( i ug«„dr
)
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We then obtain

A&Ai — uiZuidr+(1/et) (Zui)'dr. (2.6)

functions v1 and e2 and form the 2X2 Hamiltonian
matrix

(Hii His)

LHst Hss)
where

The experimental value of the binding energy, if avail-
able, gives e1. Alternatively, ~1 may be replaced by

H,;= (v;—,Hv, ), i, j=1,2.

e1g = n, 1gZN, 1(dr + e1)

where N, 1~ is a normalized trial bound state function,
while still preserving the inequality, Eq. (2.6). For the
case of scattering by a center of force, where quite
accurate trial scattering functions may be constructed
without great difficulty, Eq. (2.6) may be expected to
give useful upper bounds on A. However, the use of
the Schwarz inequality in passing from Eq. (2.5) to
Eq. (2.6) leads to a very great overestimate of the error
term for any but an excellent I&. Thus, the trial function
given by Seaton for the singlet e H problem, ' which is
expected to be reasonably accurate, leads nevertheless,
when used in the appropriate generalization of Eq. (2.6)
to scattering by a compound system, to an upper
bound on the scattering length which is so large as to
be quite useless. It does not seem that there exist other
many body scattering problems for which a similar
treatment would yield more favorable results.

It was therefore necessary to consider a somewhat
different approach to the problem, one leading to a
bound on 2 which does not require a knowledge of the
exact composite bound state function and which does
not utilize the often very crude Schwarz inequality.
We now show how such a result can be obtained based
on the following two theorems' which, for the purposes
of later generalization, are quoted in a more general
form than is needed in this section.

Theorem 1: We consider a system with exactly E
bound states. If a E&(E matrix of the Hamiltonian
operator H is formed (E may be larger than, equal to
or smaller than N) using a set of Z orthonormal func-
tions, and is diagonalized, with the diagonal elements
arranged in increasing order, i.e.,

jV (K) /jan (K)(.. .g.(K) g. . .gg (K)

then E;(K)&E;, if i&X. Here E; is the energy of the ith
bound state. For i&N, we have E,(K»0.

Theorem 2: If the Hamiltonian matrix is constructed
in the same way as discussed in Theorem 1, but of rank
X+1 with the first E functions unaltered, then the
eigenvalues, E;(K+», satisfy the relations

g.(g.(K+1)g g.(K)

We now apply these theorems to the case where only
one bound state exists. We introduce the orthonorrnal

~ E. A. Hylleraas and B. Undheim, Z. Physik 65, 759 (1930).
See also, J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).

It is assumed that e1 is a suKciently accurate ground
state trial function' so that

II„=Z,()&0.

(If this last inequality is not satisfied, the method
described below will not be applicable. This, however,
does not represent a serious limitation since a trial
function with the required accuracy can almost always
be found. ) It then follows that the eigenvalues of the
above matrix, E1(2) and E2(2), satisfy the relations

g (2)&0

from Theorem 1, and

E,(2) &E,(»(0,
from Theorem 2, so that

g, (2)g, (2) g 0

Since the product of the eigenvalues of a matrix is
equal to the determinant of the matrix we obtain the
inequality

B11+22 +12 (2.7)

We note that since v2 appears exactly twice in each of
the two terms of this inequality, neither the magnitude
nor the sign of the normalization of e2 is relevant,
though of course vs must be normalizable. (Clearly the
same is true of v1 but it will be convenient in the
following to think of v, as normalized to unity. ) We now
observe that the inequality, Eq. (2.7), is valid if vs is
replaced by a normalizable function e2' which is rot
orthogonal to v1. This is verified by writing

v2 v2 (v2 )v1) vi)

[so that (vs, vt) =0 is satisfied] and substituting this
expression for e2 in the integrals which appear in
Eq. (2.7). Since the normalization of vs' as well as the
value of (v, ',vi) a,re both arbitrary, as is clear from the
above discussion, we are now in the position to choose

v, '=w(X)=—we '"

with X&0. We then have the inequality which is the
new form of Eq. (2.7),

f 2

w(X)Zw(X)dr& (1(et))
~

u, tiZw(h)dr ~, (2.8)iJ
It would be more consistent to denote this trial function as

u, q~ (as is done later on in this section). For the present, however,
we use the simpler notation v1. In Sec. V, where the case of many
bound states is considered, we label the trial bound state functions
by v; rather than u„&, again for simplicity of notation.
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with eig ———(2m/5')Eif" and N, ig=et. Since both sides
of the inequality, Eq. (2.8), are continuous at )i=O
(see I) we have

The analysis then proceeds in a manner similar to that
already described in I and II and we shall omit further
details here. '

t' I'
wZwdr& (1/e„)

~
N, tgZwdr I

.

Therefore, since Zm=Zu~, the expression which pro-
vides an upper bound on the scattering length becomes

(A&Ag — gggZgggdr+(1/elg)
~

N, igzsggdr
~
. (2.9)

Ke have then succeeded in our purpose in that we
have obtained a bound which does not require a knowl-
edge of the exact bound state function nor of its
energy, and which has at the same time avoided the
use of the rigorous but often very crude Schwarz
inequality. (In the case where the scatterer is a com-
pound system, the ground state wave function of the
scatterer must still be known exactly in order to obtain
a rigorous bound. ') Note that the earlier results,
Eqs. (2.5) and (2.6), may be considered as special
cases of Eq. (2.9); the choice e, ig

——gg, i in Eq. (2.9)
yields Eq. (2.5), and the use of the Schwarz inequality
in the last integral of Eq. (2.9) leads back to Eq. (2.6).
It is of course clear that for a given form of the trial
functions u~ and u, ~~ the optimum choice of the vari-
ational parameters is such as to minimize the right-hand
side of Eq. (2.9), subject to the requirement that
J sggtgZQgtgdr) 0.

For the case of arbitrary values of the orbital angular
momentum, L, the inequality which corresponds to
that given in Eq. (2.9) has the same form as the result
for L=O. We merely replace A (with a similar replace-
ment of Ag) by A I„, defined in terms of the phase shift
gl, as

A z = —[1X3X X (2L+ 1)]'(ta ng/) IO'~ )+g,=o

Further, the trial function, uz, g(r), satisfies the boundary
conditions

lt, g(0) =0,
sgtg(r) ~ [At, gr z/(2L+1) j rz+', for r—~go,

and 2 now contains the additional term L(L+1)/r . s

Of course for a particular value of L the bound state
considered is one with orbital angular momentum L.
These results for arbitrary values of L can be extended
in a straightforward manner to the case of scattering of
one compound system by another; they may carry net
charges of like sign. The regular and irregular solutions
of the "free" wave equation in the limit of vanishing
energy have previously been given for this general case.
The asymptotic form of the wave function is taken as
the "appropriate" linear combination of these solutions.

' L. Spruch and L. Rosenberg, Phys. Rev. 117, 14j. (1960).
g See, for example, L. M. Delves, Nuclear Phys. 8, 358 (1958).

III. CONNECTION WITH FORMS OF THE
VARIATIONAL PRINCIPLE

The inequality, Eq. (2.9), has the particular con-
sequence that there exist well defined circumstances,
which will now be described, under which an upper
bound on the scattering length may be obtained from
an ordinary variational calculation. (As in Sec. II the
discussion in this section will be confined to the case
where only one bound state exists. ) We consider first
the Kohn-Hulthen principle, which has the zero energy
form

A=Ay — ' u]Su)dr, (3 1)

where u& satisfies the boundary conditions given in
Eqs. (2.2). Now suppose Ng may be written

Ng=lg +bl, ig,
I (3.2)

where u, ~g is a trial bound state function which is
sufficiently accurate to give binding, i.e.,

eig= ' sgigZN, tgdr) 0.

Since u, && vanishes at the origin and at infinity, u&

satisfies the same boundary condition as u& and can
therefore itself serve as a proper trial scattering func-
tion, Substituting this form for u& into the variational
expression, Eq. (3.1), and determining b variationally,
with u&' and u, && momentarily considered as fixed, we
find

f
b = —(1/et, ) ) N, igdug'dr,

and

( f
A=Ag —,t Ng'Zggg'dr+(1/eig)

~
~
I i Zgg gdr

g~
. (3.3)

E~

It follows from Eq. (2.9) that the variational estimate
of A given by Eq. (3.3) is actually an upper bound.
Conversely, the approximation to the zero energy
scattering function, obtained in the course of a calcu-
lation of an upper bound on A based on Eq. (2.9),
should be taken to be

Ng — (1/eig) I sgtgZQgdr N, ig,

' In the case of electron scattering by atoms where the effective
potential, which arises through polarization of the atom, falls off
as 1/r4 the phase shift for L)0 vanishes as k' rather than k~~+'

I see B.H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton,
Proc. Phys. Soc. (London) 71, 882 (1958)g so that the method as
outlined above would require some modification.
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rather than I& since it is the former function which can
be interpreted as a variationally determined trial func-
tion. We note that the prescription given by Kohn to
evaluate the variational parameters should be used
rather than that of Hulthen since, while both methods
will provide an upper bound, for a given form of the
trial function the Kohn method will yield a lower (and
therefore better) estimate of the scattering length.
(See I.)

It is of interest to see if there are any variational
calculations of scattering lengths reported in the litera-
ture which were performed with trial functions which
may be written in the form given by Eq. (3.2). Such
calculations may be reinterpreted in the light of the
present discussion. As an example we note that Borowitz
and Greenberg" have recently performed a variational
calculation for electron-hydrogen scattering, using as a
zero energy trial function one which was explicitly
constructed to be of the form of a trial scattering func-
tion plus a multiple of a trial H bound state function.
Since the normalization used by these authors corre-
sponds to what we have called the inappropriate normal-
ization Lsee Eq. (2.4)$ neither the results for the singlet
case, where one bound state of II exists, nor for the
triplet case, where no bound states exist, is necessarily
a bound. However, as described in I, for those calcu-
lations which have been performed using the inappro-
priate normalization the results may be converted,
with a trivial amount of labor, so that they correspond
to the Kohn-Hulthen form and therefore do give a
bound under the circumstances considered. The method
of conversion may be brieQy restated as follows. If A&

and I=fIggggdr h—ave been evaluated, with Ng normal-
ized as in Eq. (2.4), then the bound on A is given by

A &A]—A]'I.
If A, is positive and ~AgI~ is small compared to unity
then this conversion may be expected to give, in addi-
tion to a bound, an improved approximation to the
scattering length.

Returning to the work of Borowitz and Greenberg,
we note that two separate calculations of the singlet
scattering length" were performed, using two trial H
functions obtained by Chandrasekhar. " One of these
was a two parameter function containing no dependence
on the interelectronic distance, r~2, so that no polarization
was allowed for. The other function, which included a
linear rI2 dependence, contained three parameters. In
each case the parameters used where those given by
Chandrasekhar. The two and three parameter functions
give values of cy] equal to 0.0266up and 0.0518ap
respectively" (ag is the Bohr radius). The rigorous

"S. Borowitz and H. Greenberg, Phys. Rev. 108, 716 (1957).
"Since no composite bound state exists in the triplet state,

conversion to the Kohn-Hulthen form will provide an upper
bound on the triplet scattering length, a result which does not
depend on the fact that an H function was used in the construc-
tion of the trial scattering function. Any properly normalized
trial function will give a bound for this problem.

'g S. Chandrasekhar, Astrophys J. 100, 176 (1.944).

TABLE I. Results of variational calculations of the singlet e IZ
scattering length, in units of the Bohr radius. In the first column
the values obtained by Borowitz and Greenberg, who used what
we have called the "inappropriate" normalization Lsee Eq. (2.4)],
are given. The values which appear in the second column were
obtained by the present authors by converting the Borowitz-
Greenberg data to the Kohn-Hulthen form ("appropriate" nor-
malization; see Eqs. (2.2)], thereby obtaining a rigorous upper
bound. The fact that a slight improvement is gained in this con-
version is in agreement with the discussion in the text. It was
possible to obtain a bound because the I& used by the foregoing
authors included a bound state component multiplied by a
variational parameter.

Normalization
"Inappropriate" "Appropriate"

No polarization approximation
Polarization considered

8.16
7.75

8.14
7.63

upper bounds obtained by the conversion process de-
scribed above yielded, in both cases, slightly improved
approximations to the scattering length (see Table I).

+ wgZwgdr, (4.1)

where now
2 = (d'/dr') (2ggg/5') V(r)+ k'. —

The exact solution, ug, satisfies the differential equation
ZN8=0, and the boundary conditions

Ng(0) =0,

Ng(r) ~ sin(kr+t))/sin(gl —8), for r —+ ao,

where g is the exact phase shift and where 0 satis6es
0&8&m. The trial function, I&&, satisfies boundary con-
ditions of the form given in Eqs. (4.2), but with rl

replaced by a trial phase shift, p&, which is arbitrary;
mq is defined as Ne~ —Ne. The Kato inequalities are

—ng ' (Zgggg)'p 'dr& wgZwgdr

&Pg
—& ~ (ggggq) &p

—&dr (4 3)

"T.Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951).

IV. AN ALTERNATE METHOD

In this section we consider an alternate method for
obtaining upper bounds on the scattering length for the
case of the scattering of a particle by a center of force
where one bound state exists. The method is based on
the formalism given by Kato" for finding upper and
lower bounds on the scattering phase shift. (Since the
Kato method, as opposed to the Kato identity, is
unrelated to the other methods discussed in this paper,
this section may be read independently of the others. )

The Kato identity for arbitrary scattering energy,
(Ak)'/2ggg, of which Eq. (2.1) is the zero energy form
with the normalization 0&8&gr (i.e., 8/0), is

f
k cot(q —8) =k cot(gl, —8)— '

ggg, Zggg, dr
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Here p(r) is a non-negative function which must fall
off faster than 1/r but which is otherwise arbitrary and
is chosen for convenience. The numbers ns and Ps are
de6ned by the associated eigenvalue problem, in which
the equation

(&+pp)A(r) =o

is considered. The asymptotic form of ps(r) is charac-
terized by a phase shift, 5(li). The infinite, discreet set
of eigenvalues, (li„s), is defined such that for any
integer, e,

5 (ps) =, 0+rstr

The smallest positive eigenvalue is o.g and the largest
negative eigenvalue is —Ps.

For zero energy scattering the phase shift in the
associated eigenvalue problem, 5(li), is given, according
to a theorem due to Levinson, i4 by 5(p) =mr, if there
is no state of exactly zero energy, where m is the
number of bound states for the operator 2+lip. LIf
there are m bound states and there is one at zero energy
in addition, the phase shift is (m+-, )s..j We are con-
sidering the case for which there is one and only one
bound state for the actual physical system, i.e., for
@=0. We choose e=y, where 0&ad&m. (The point is
that we wish to exclude 8=0; note that the eigenvalues

p s do not form a discreet set at zero energy. ) It is then
clear that —P~ is determined by the condition that the
operator 2—P~p has associated with it a single, zero
energy bound state. Actually, according to Eq. (4.3),
only a lower bound on Ps is required in order to obtain
an upper bound on t'wsZwsdr. Now a lower bound
on P7 is easily determined, according to the Rayleigh-
Ritz principle, by

,

~ 4i(~ P.p)4~«&0—,

where it~ is an arbitrary normalized trial bound state
function. We have

(2 /&') )" I~()Id &(2~+1) (4.6)

In the case being considered, where the actual potential,
V(r), supports one bound state with I-=0, we have from
Eq. (4.6) that n~', determined by

r
I

—(2m/5') V (r) +a~'p (r) I
«= 2,

is a lower bound on o.~. This result will be useful only
if n~')0. In particular, a necessary condition for the
applicability of the method is

A number of methods have been given previously" "
for determining lower bounds on ns and Ps, for arbitrary
scattering energy. The method just described, while
limited to zero energy scattering, has the virtue that
the prescription for finding a bound on Ps is quite
general. The potential need satisfy no special require-
ments other than that it lead to one bound state, "and
that a phase shift be defined. This generality becomes
quite significant in the case of scattering by a com-
pound system, where methods based on special proper-
ties of the potential (such as being everywhere negative,
for example) will usually be inapplicable. However,
serious problems arise in the extension of Levinson's
theorem to the case of scattering by a compound system,
and as discussed brieQy in I, the inclusion of the Pauli
principle raises additional difhculties. Therefore, until
these questions are clariled the method presented in
this section should be used only for one body scattering
problems.

It is noted that a,~, which is required to obtain a
lower bound on A, is determined as that value of p for
which the second bound state appears. Now for a static
potential, U(r), the necessary condition for the existence
of e~ bound states, of orbital angular momentum L, is'7

P & 4'i~A«4i p«=P (4 4)
—(2m/h') r V(r)dr &2.

This result is useful only if P„')0, that is, P, must be
sufficiently accurate such that (fi,ZPi)) 0.

If we take the zero energy form of Eq. (4.1), with
0=y, and make use of Eqs. (4.3) and (4.4), we obtain

A&A, —)"N, Zsi, dr-+(P, ')-' )t (ZN, )'p 'dr, (4.5)

where
A —=—(tanti/k) k=o,

A g—=—(tantig/&) a=o,

Ni—= (~„/&)s=s,

and where P„' is defined in Eq. (4.4).
'4 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 25, No. 9 (1949).

An obvious disadvantage of this approach is that
(contrary to the method for determining P~') it provides
no way of successively improving the bound on o.~.
Further, even if Levinson's theorem can be shown to
hold in the case of scattering by a compound system,
no generalization of Eq. (4.6) has been obtained; there
wouM still remain the problem of determiningcondi-
tions for the nonexistence of many body bound states.

~' L. Spruch and M. Kelly, Phys. Rev. 109, 2144 (1958);
L. Spruch, Phys. Rev. 109, 2149 (1958)."If no bound states exist, then P may be taken to be infinite
(i.e., there are no negative eigenvalues oi the associated eigen-
value problem) so that the Kohn-Hulthen principle gives a bound
(see references 1 and 7). The extension to the case of a number of
bound states would proceed along the lines described in Sec. V,
but the details will be omitted here.

» R. Jost and A. Pais, Phys. Rev. 82, 840 (1951);V. Batgmann,
Proc. Natl. Acad. Sci. U. S. 58, 961 (1952).
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V. THE CASE OF MORE THAN ONE
BOUND STATE

The generalization of the above results to the case
for which there is more than one bound state of zero
angular momentum of the particle and the center of
force is fairly straightforward. We assume that it is
known that there exist exactly F such bound states.
The exact eigenfunctions and the exact energies of these
states will be denoted by N, 1 through u,N and by E1
through EN, respectively, where

E1&E2& ~ .EN&0

and e,=—(2m/A')Z;, 1&i&X.We do not assume that
the eigenfunctions or the eigenvalues are actually
known.

The generalization of Eq. (2.6) is particularly simple.
Since the function

N
w'—=w —P (w, e„)N„.

4=1

is orthogonal to each of the bound states, it follows that

where the summation in the last term (which actually
includes an integration over continuum functions) is
over the complete set of energy eigenfunctions. Making
use of the closure property of this set we have

wZwdr& (1/e~) (Zn, )'«, (5.1)

so that

I

A (A,— N, Z~,«+ (1/e~) (2u, ) '«. (5.1)'

Pi(II C)'lyidr &—(E, C)' i/i'dr—
&

(5.2)

If cN is unknown, a lower bound may be employed,
obtained, for example, by the method described in
Theorem 1.

An alternate proof' of Eq. (5.1) may be based on the
inequality"

zv'Zx'dr &0,

where it is assumed that the "appropriate" normaliza-
tion, namely that given by Eq. (2.2), has been used.
Substituting for m', we find

The elimination of the unknown N„by the Schwarz
inequality leads to

However, an improved bound may be obtained by
writing

E;(»&O, (5.3)

We now introduce an additional trial function,
v~+r(r), which is normalized and which is orthogonal to
each of the v;(r), 1(i&X With th. is set of X+1 ortho-
normal functions, we construct an (%+1)X(X+1)
matrix from the operator B. Since the determinant of
a matrix is equal to the product of its eigenvalues,
we have

which is verified by substituting the energy eigenfunc-
tion expansion for the normalizable trial function, f„.
c is an arbitrary nonpositive energy value and E, is the
energy eigenvalue closest to c. The inequality, Eq. (5.1),
follows from the choice c=E~/2.

To obtain the generalization of the more useful result,
Eq. (2.9), we introduce E orthonormal functions and
construct and diagonalize the S&(X matrix of the
operator H, as discussed in Theorem 1. The E eigen-
values of the matrix will again be denoted by E,(N),

while the X orthonormal eigenvectors of the matrix
determine E orthonormal eigenfunctions; the latter
will be denoted by v;(r). It is assumed that the trial
functions v;(r) are sufficiently accurate so that

E (N)

E (N)

+1,N+1

+2,N+1

E (N+1) )(E (N+1) y. . .E (N+1) (5.4)

+N+1, 1 +N+1, 2
' ' +N+1,N+1

Thisalternateproof was arrived at in the course of an attempt to obtain an ex ression for the lower bound on the scattering
length. While the proof actually yields the result previously obtained )Eq. (5.1) it is included here in the hope that it might
nevertheless be suggestive of a method for obtaining the lower bound."D H. Weinstein, .Proc. Natl Acad. Sci. U. . S. 20, 529 (1934).
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In the above determinant all the elements not on the
diagonal nor in the last row nor last column are equal
to zero, and we have

IIN+i; H;,~——+i= ) ii Hv~~idr, 1&i&&+1;

variance can perhaps be better understood by recog-
nizing that the earlier determinantal equation, Eq.
(5.4), is invariant under the same transformation. Thus,
the transformation from v~, -, v~, v~+~ to v~, , v~, z,
where a~+i is defined by Eq. (5.6), is given by the
transformation matrix B, where

N E {N+1)

&~+i,x»= 2 (K,sr+i)'+
i=y P.(N) E,(&)

E (x+s)

X 0 0 0 XNAN+1(%+1)
(N)

Since from the previous discussion E;i +"/E,i») 0 for
1&i&X and E&+&(~+')&0, we have the inequality

the E ~+'&, 1&i&X+1, are the X+1 ordered eigen-
values of the matrix. Since we have introduced an
additional trial function, it foBows from Theorem 2
that Ei(~+"&E;(~), 1&i&X, and therefore, from Eq.
(5.3), that E,'~+'&&0 for 1 &i&1V. On the other hand,
since there are only E bound states, it follows from
Theorem 1 that E~ ~(~+') &0.

Now the expansion of the determinant in Eq. (5.4)
leads to

B=

(w, i,) (wp, ) ~ 1

The invariance of the determinantal equation, Eq. (5.4),
under the substitution v&+& —+ m is then guaranteed by
the fact that B is unimodular.

Finally, we note that the result of Sec. III is easily
extended to the case of many bound states. That is,
the right-hand side of Eq. (5.8) may be identified with
the Kohn-Hulthen expression for the scattering length,
in which the trial function

I,+P b, ii;

N 1
+Nyl, N+1 +Z (K',N+1)

j E,(N)
(5.5)

is used, provided each of the bi is determined vari-
ationally; the bi must not appear in u& or in the v;.

VI. DISCUSSION

It is clear from this last inequality that while vN+& must
be normalizable, its specific normalization is irrelevant.
We choose for v~+~ a function which, as required, is
orthogonal to the v;, 1&i&X, i.e.,

iii+i ——w —P (w, v;)v, . (5.6)

The difference function m must be thought of as
normalizable, but need rot be orthogonal to the v;.
Equation (5.5) then becomes

(5.7)

using Hm =HI&, or, equivalently,

wgwdr&P
~

' v,ZNidr
~

.J,=i,,i» g~ )
(5.7)'

A&A) — t lion, dr++
~

~
ii;Zu, dr

~
. (5.8)

J )
We might note that Eq. (5.7) is of precisely the same

form as Eq. (5.5), with a~+i replaced by w. This in-

We now obtain from this the generalization that we

want, namely,

The two principle results that have been derived,
which enable one to calculate upper bounds on the
scattering length for those problems in which a finite
(and known) number of composite bound states exist,
are expressed by the inequalities, Eqs. (5.1)' and (5.8).
The inequality of Eq. (5.8) will lead to more accurate
estimates of the scattering length than may be obtained
from Eq. (5.1)'. The latter result does have one ad-
vantage in that one has removed the necessity of con-
structing a set of trial bound state functions and
performing the various integrals involving these func-
tions. However, it may be quite dificult, in the more
complicated problems, to construct a trial scattering
function suKciently accurate to obtain useful results
from Eq. (5.1)'; the performance of the required

integrals may also present formidable difhculties. Eq.
(5.8) has the interesting consequence that certain
ordinary variational calculations provide bounds.

As was mentioned in Sec. I, the results are derived
in terms of the simple case of the zero orbital angular
momentum scattering of a spinless, neutral particle by
a center of force, but may be directly generalized to a
far wider class of problems. The essential restriction
which must be maintained is that only one exit channel

(elastic scattering, including Pauli exchange) should be
open. As an illustration we cite the extension of Eq.
(5.8) for the problem of the scattering of a particle by
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a compound system. The appropriate inequality be-
comes

1V 1
A&Ag — I O', *Mgdr+Q —

~

' C,*M(dr
~
. (6.1)

Ke have denoted the trial scattering function and
the trial function for the ith composite bound state
by +& and C,, respectively, instead of I& and v; merely
to indicate that they represent the functions with no
factors of 1/r separated out. The operator A is defined
as A= —(2p/A') (H E,), w—here EE is the total Hamil-
tonian, where E, is the ground state binding energy of
the scattering system, and where p, is the reduced mass
for the scattered particle and the compound scatterer.
If, asymptotically, there exists a net repulsive Coulomb
interaction between the scattered particle and the
scattering system then the inequality which is applicable
is identical in form with that given in Eq. (6.1) but A is
now defined in terms of the "additional" phase shift,
g, as"

A =—(tauri/kC') a=o,

where C' is the Coulomb penetration factor. (The
asymptotic form of the trial function, +&, is altered in
this case but we shall omit further details here. )

There is a lack of completeness in the results obtained
here in the sense that no method has been given, valid
for many body scattering problems, which provides a

~ L. Spruch and L. Rosenberg, Proceedings of the International
Conference on Nuclear Forces and the Few-Nucleon Problem,
London, July 1959 (to be published by Pergamon Press, London).

lower bound on the scattering length. Such a method is
clearly very much to be desired and work is now in
progress on this aspect of the problem. On the other
hand, while a single bound on the scattering length
allows one, in a particular calculation, to Inake no
rigorous error estimate whatsoever, and may provide
weigher bound on the zero energy cross section, " the
knowledge that one has a minimum principle allows
for successive improvements not only in the calculated
scattering length but the trial wave function as well.
Since an accurate estimate of the effective range, ro

(but not the shape dependent parameter, I'), may be
obtained from an accurate zero energy trial function it
can be said that the benefits obtained from doing the
zero energy calculation based on a minimum principle
may be utilized in the case of slightly higher energies
as well. Numerical calculations for the problem of
electron scattering by atomic hydrogen (for I' and D,
as well as S-wave scattering) are now being performed.
It is hoped that with the aid of the present techniques
the discrepancies regarding the total low energy e H
scattering cross section, which have recently been re-
ported, may be resolved.

The bounds obtained in the present paper have also
been utilized in an analysis of zero energy neutron-
deuteron doublet scattering. "

2' For L,=O and no Coulomb interaction the zero energy cross
section is given by 0 (k=0) =4m.A'. If the upper bound obtained
for A is positive, neither small values of A nor large negative
values are excluded so that the bound on A does not lead to a
bound on o (k =0).

~ L. Spruch and L. Rosenberg, Nuclear Phys. (to be published).


