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Hartree-Fock Equations with a Perturbing Field
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The Hartree-Fock equations under the action of an arbitrary Qeld for any order of perturbation are set
up in an integro-difI'erential form. This form appears particularly advantageous for practical computation
in such problems as electronic polarizability and electronic structure perturbations caused by nuclear mo-
ments. The equations are explicitly written down for a uniform perturbing 6eld and a comparison is made
with previous formulations. A wide variety of other applications is also discussed.

I. INTRODUCTION

ECENTLY there has been considerable work on
electronic polarization eGects in atoms, molecules,

and solids. Sternheimer has investigated the perturba-
tion of the atomic core by a nuclear quadrupole' and
the dipole (uniform Geld) polarizability of atoms and
ions in an external field. ' Dipole polarizabilities for
several other elements have been computed by Sund-
bom. ' Das and Bersohn4 have calculated quadrupole
polarizabilities for ions. The author has studied the
polarization of an ion in a molecular environment to
motivate the choice of molecular wave functions. '
Callaway' has analyzed the contribution of the core
polarization to the cohesive energy of alkali metals.
In this paper expressions for the perturbed wave func-
tions and energies within the framework of the Hartree-
Fock approximation are set up in a general and straight-
forward manner. The resulting equations are presented
in an integro-diGerential form which is especially suit-
able for practical computation. In addition to polariza-
bility problems, calculations of the magnetic properties
of molecules and the elastic constants of alkali metals
find a natural basis in the perturbed Hartree-Fock
formalism. A survey of these and similar problems is
given.

jected to a unitary transformation such that they form
an orthonormal set solving the equation, '

BCtg;= bye;.

ll; and h; are expanded in powers of the ordering pa-
rameter X:

4'= 4 +) 4 '+)t'4 "+
8;= e,+he +X'e,"+

(2a)

(2b)

3Ct~i'(2) = (fp+)ti')4'(2)

+2 4p*(1)li o(1)G4'(2)drt

It is then completely straightforward to carry through
the problem, but since it must be written out specifi-
cally for each type of perturbation, we restrict the
problem to a scalar, one-particle perturbing potential
in first order, XU. Also, the results are displayed only
through 6rst order (i.e., the equations necessary for
calculation of a quantity such as the dipole polariza-
bility). In this case the perturbed one-electron Hartree-
Fock operator Xt, operating on the function P;(2) is:

II. PERTURBED HARTREE-FOCK EQUATIONS'

We may assume that the wave functions defined by
the perturbed Hartree-Pock problem have been sub-
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Tycho, Phys. Rev. 93, 734 (1954).

2 R. M. Sternheimer, Phys. Rev. 96, 951 {1954); 107, 1565
(1957); 115, 1198 (1959).
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4.*(1)4'(1)Gll.(2)~rt = &4'(2),

where G—=2/rts, and fp ——one-electron potential and
kinetic energy terms. Substituting li;=&~+X& +X'p;"+, and P,=p,+Acts, '+)t'rtp, "+, the equations
for the various orders are obtained by equating equal
powers of X. Thus, the zero-order equation just defines
the orthonormal set of unperturbed functions @;:

Kpg;(2) =fpP;(2)+Q Po*(1)pt v(1)GQ;(2)drt
p J

e D. R. Hartree, Proc. Roy. Soc. (London) A150, 9 (1935).
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The erst-order equation determines Q

(pep —e;)y,'(2)

= —V4, (2)—r. "&.*'(1)4.(1)G4'(2)d

+„"~,*(1)~,'(1)G~'(2)d.

detailed knowledge of @;".All of these relations also
can be proved directly from the one-electron equations
of various orders. For example, to prove the second
relation of (6b) we take the complex conjugate of Eq.
(4) multiply by p; and integrate. If this is ad.ded to the
first-order equation determining p, ', multiplied by p,~

and integrated, we get the usual type of proof:

—"~,*'(1)~,(1)G~,(2)d. (~~ ~i) i
4'~ 4'i dr= (~' ~i) 4'~ 4'idr~

@,*(1)p,(1)G&,'(2)dri +e P;(2) (.4) which gives (6b).

The higher-order equations can be obtained in the
same manner. By multiplying Kq. (4) through p;* and
integrating, e is determined. The result is:

~,*'(1)~'*(2)G~,(1)~.(2)d d.
q

III. THE ENERGY EXPRESSIONS

The total energy is:

E=
~

'I'*%'dr= Eo+XE—,+ME,+ ~ (7)

+ 4,*(1)e'*(2)G4.'(1)&'(2)dridr2

—
~
"0,*'(1)4,'(2)G4'(1)4. (2)dridr2

where 0' is the normalized determinantal wave function
made up from the functions P,, H is the many-particle
Hamiltonian, Eo is the unperturbed total energy and in
the case of a uniform perturbing Geld E2 is proportional
to the dipole polarizability. The standard expression
for the diagonal energy of a single determinant is:

I @~+(1)P;+(2)GP,(1)P~'(2)dridr2 "~*&~d =2, O;*(1)fe;(1)d.

r
+ g;~V&;dr (5). + ZZ I4"-(1)A (2%4"(1)A'(2)d

1'

Besides these equations the orthonormality conditions

on the/ s are: ~'*(1)A*(2)GA(1)4'(2)d»dr 2,

This leads to:

t 4'*4~dr =4.
where f=f0+7 U. Equa—tion (2a) is substituted for p;
and the terms are ordered according to X. The one-
electron energy terms to second order in X are then:

g,*@;dr=1, $;*@,dr =0,

y;*y dr=0, 4,*4~'dr = 4'*'4Ar— (6b)
+P

( „it/'*foist''dr+ 0'*'fob'dr+ t p;*V@'dr
)

y,*@,"dr+ (P,')'dr=0,f
+X'~ ~ y;*f,y,"dr+ I y,*"f,y;dr+ "y;*'f,y, 'dr

I Q,*"4,dr+ ~Q; @,"dr = —
~ P;*'g~'dr. (6c)

The relations (6a) are the orthonormality conditions
on the unperturbed functions awhile the Grst relation of
(6b) assures that the normalization of P, can be carried
out in principle to second order without having and

+~ Q;*V/, 'dr+~ Q;*'Vg,dr
I

The taro-electron terms are similarly ordered and give
a set of Coulomb and exchange integrals. Equating the
zero-order terms in Eq. (7), we get the well-known
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relation for the unperturbed energy:

Ep=g Q; fpPdr

P spin. However, the general procedure which has been
followed is not restricted to doubly occupied orbitals
and may be carried through for any single determinant.
Our method of formulation has been built around this
idea of a single determinant, each one-electron orbital
of which is expanded in a series in powers of ).An en-
tirely equivalent and sometimes convenient viewpoint
is the determinantal expansion of 4:

4'*(I)A*(2)G4'(1)A(2)dr dr
i

P;*(1)g,*(2)G&,(1)P;(2)drtdrp

To simplify the first- and second-order energy expres-
sions we must introduce information from the one-
electron equations. Thus to reduce the first-order terms,
Eqs. (3) and (6b) are employed:

Co is the determinant made from unperturbed orbitals.
C; and C~ are those determinants which have the ith
row replaced by @ and p;", respectively and P~ C~~
is the sum over all determinants where g, ' has been
substituted for the 1th row and p for the mth row.

IV. UNIFORM FIELD POLARIZABILITY

Developments in the theoretical description of elec-
tronic systems perturbed by external fields has largely
been undertaken to predict the uniform field polariza-
bility and the work may be classified into two lines of
attack: perturbation methods and variation methods.

E,=Q ~p;*V&;dr=+ t (P,)'Vdr.

Relations similar to Eq. (8) can be derived from Eqs.
(3) and (4) to reduce the second-order energy terms.
The final result is simply

Ep=Real part of P I g,*V& dr. (10)

Ihe simplicity of E2 for a one-particle perturbing po-
tential in first order is somewhat misleading. If higher
orders of one- and two-particle perturbing potentials
are imposed, E2 will include not only the above but
also matrix elements involving the one-particle potential
in second order and the two-particle potential in first
order and second order.

In our derivation, a specific separation of the one-
electron wave functions into spin-dependent and space-
dependent parts has been suppressed, and thus we have
tacitly assumed the same spacial dependence for o. and

Using the Hermitian property of Ko, the other one-
electron integrals involving fp are obtained. By making
a change in variable in the double summation, i —+ j,j—+ i and letting 1 —+ 2, 2 —+ 1, it is immediately ap-
parent that all of the two electron integrals cancel,
yielding the first-order energy as:

A. Perturbation Methods

In this method the wave function for the perturbed
system is expanded in a complete set of unperturbed
solutions and the expansion coeKcients are then deter-
mined, e.g. , by the familiar second-order perturbation
theory formula. Early work was carried out by Vinti'
and he was able to simplify second-order perturbation
theory terms by use of a sum rule. However, from the
standpoint of the treatment presented in this article,
by far the most interesting paper within the perturba-
tion method frame work is that of Peng. " Peng has
considered the unperturbed Hartree-Fock equation as
an eigenvalue problem for which, in principle, it is
possible to obtain a complete orthonormal set of solu-
tions. Expanding P, p,",etc. , in terms of this complete
set, he obtains linear algebraic relations analogous to
Eq. (4), etc. , for his expansion coefficients. He has also
written down the expressions for Eo, E~, and E2 and
these agree with ours. To compute polarizabilities from
Peng's formulation, we must determine a large part of
the excited eigenfunction spectrum of the unperturbed
Hartree-Fock equations. During the period since Peng's
paper appeared, the Roothaan procedure" has been
devised and, for many applications, this has proved to
be the most practical computational approach to
Hartree-Fock solutions. In the Roothaan procedure, a
finite basis set with energy-determined linear coe%cients
is substituted for the numerical solution of the integro-
diGerential equations, and for simple atoms it is not
too dificult to obtain an unperturbed Hartree-Fock

P P. Vinti, Phys. Rev. 41, 813 (1932)."H. Peng, Proc. Roy. Soc. (London) A178, 499 (1941).' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
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solution by this procedure. By somewhat similar means,
each excited function would be determined separately
from already-known functions. However, without the
usual qualitative rules available for unperturbed solu-
tions, the choice of basis functions would be much
harder and would require considerable experimentation.
But the most serious drawback is the slow convergence
produced by the inappropriate nature of these excited
eigenfunctions. Tillieu and Guy have recently demon-
strated this typically slow convergence by calculating
the polarizability of the hydrogen atom. " The large
error, still. remaining after using eleven terms indi-
cated the probable necessity of including continuum
eigenfunctions.

C=g V,R(r;), (12)

where V;= the perturbing potential for the ith electron.
They formulated the variation problem for a direct
determination of the perturbation energy itself. A
Hartree product of one-electron functions was assumed
for %0 and the variation procedure then leads to Euler
equations in the form of a second-order ordinary dif-
ferential equation for R(r). For hydrogen they found

R(~)=«+ ("/2).

This result is veriGed by the well-known exact solution

is J. Tillieu and J. Guy, Compt. rend. 236, 2222 (1953).
'3 H. R. Hasse, Proc. Cambridge Phil. Soc. 26, 542 (1930).
'4 J. V. Atanasoff, Phys. Rev. 36, 1232 (1930).i' G. Steensholt, Z. Physik 93, 620 (1935).
~6 R. P. Bell and D. A. Long, Proc. Roy. Soc. (London) A203,

364 (1950).
'r J. E. Lennard-Jones, Proc. Roy. Soc. (London) A129, 598

(1931).
's J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 686 (1931).

B. Variation Methods

The practical difhculties of convergence and of ob-
taining many unperturbed excited states that are in-
herent in the perturbation method has directed almost
all of the recent eGort toward employing variation
methods. This approach centers around representation
of the perturbed wave functions as:

e=e, (1+4),
with 0'0 the unperturbed function. Hasse" and Atanas-
oG'4 empirically chose wave functions with C equal to
a constant times the perturbing potential and computed
uniform Geld polarizabilities for one- and two-electron
atoms and ions. Molecular polarizability calculations
for H2+ and H2 analogous to those of Hasse were worked
out by Steenshalt'5 and Bell and Long."This choice
of C can be considered as motivated by Lennard-Jones'
approximate treatment of second-order perturbation
theory. "

Slater and Kirkwood" laid the basis for much of the
future work by taking

of the H atom in a uniform field carried out by Epstein"
in parabolic coordinates. It also shows that Slater and
Kirkwood's form, Eq. (12), is appropriate for low-lying
excited states as well. However, a closed-form solution
and the separability of the R(r) differential equation
depended upon the linearity of V in rectangular co-
ordinates and the spherical symmetry of 40. In order to
develop a workable technique for more general systems,
Kirkwood" replaced R(r,) of Eq. (12) by constants, X,,
and determined these in a straightforward variation
calculation. Kirkwood also considered the use of a
determinantal wave function for 4'0 in place of the
Hartree product. A development similar to Kirkwood's
was given by Hellmann. "Buckingham" improved on
Kirkwood's work by introducing more flexibility into
the perturbed functions. Each one-electron orbital in a
determinantal wave function for the system was set
up as:

f;=iJs[1+U,R(r;)j, (13)

where R(r,) = C; or C;i+C;sr, with the C;; as variation
parameters. Bravin" has followed up the work of
Hellmann. He has employed a Hartree product wave
function but increased the flexibility of the one-electron
orbitals in essentially the same way as Buckingham.

Another scheme for improving Kirkwood's formula-
tion has been developed by Pople and Schofield. '4 For
C in Eq. (11) they substitute

C =Q u(r;),

and u(r) is determined by minimization of the per-
turbation energy. Further, they set u(r) =Fg(r) cosg,
where F=strength of the electric field. This yields a
final ordinary differential equation for g(r) which Pople
and Schofield have numerically integrated for Argon
(using a Hartree-Fock free-atom wave function for 4's).
The relatively small amount of numerical work required
in this approach results primarily from the assumption
of a single u(r) for all electrons. The shortcomings of
Kirkwood's scheme are clearly shown since his method
corresponds to u(r) =Cr while the actual form of u(r)
turns out to be a monotonic curve not particularly well
represented by a straight line.

A somewhat diferent method of obtaining a suitable
variation function has been attempted by Abbott and
Bolton for the polarizability of helium. " Selected ex-
cited states of the free He atom were multiplied by a
variation parameter and quite successfully used to
describe the distortion produced by the external field.

"P.S. Epstein, Phys. Rev. 28, 695 (1926).
J. G. Kirkwood, Physik. Z. M, 57 (1932).' H. Hellmann, Acta Physicochim. U.R.S.S. 2, 273 (1935).

'2 R. A. Buckingham, Proc. Roy. Soc. A160, 94 (1937).
s8A. V. Bravin, J. Exptl. Theoret. Phys. (U.S.S.R.) 25, 147

(1953);2?, 384 (1954).
'4 I. A. Pople and P. Schofield, Phil. Mag. 2, 591 (1957).
ss J. A. Abbott and H. C. Bolton, Proc. Roy. Soc. (London)

A221, 135 (1954).
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The parallel and perpendicular polarizability of Hs has
been calculated with this type of approach by Ishi-
guro, Arai, Mizushima, and Kotani. ss The James and
Coolidge'~ unperturbed ground state H2 wave function
was employed. Perturbed functions expressed in elliptic
coordinates similar to the ground state, but with P„+
and s., symmetry instead of P,+, were chosen and the
energy minimized with respect to linear coefficients. As
in the regular perturbation method the difhculty is in
obtaining appropriate excited states.

An extensive set of papers has been written by Guy,
Harrand, and Tillieu. "This work derives from that of
Slater and Kirkwood but is developed in a more com-
plete and elegant fashion. A general energy expression
is set up and Euler equations are derived that define
the distortion of the wave function. A Hartree product
of one-electron functions with the form of Eq. (13) is
then substituted into the Euler equations. This yields
a series of uncoupled one-electron equations in which
each perturbed one-electron function depends only upon
a single unperturbed orbital and the perturbing field

acting on that orbital. Except for a few special cases,
these Euler equations do not have a closed form solution
and this is related to the situation found by Slater and
Kirkwood.

Recently, Sternheimer' has reformulated the problem
in a manner which leads to a particularly convenient
and easy-to-handle differential equation. He adopts a
one-particIe viewpoint from the beginning and sets up
a perturbation theory in the usual way:

(a,y) U)(q, +)y, ') = (.,+~.,') 9,+) e,').

For the uniform field, (1'g,*Up;dr=0), the first-order
equation becomes:

(Hs —e~)y, '= —Uy;.

Sternheimer then introduces information from the un-

perturbed equation that makes the resulting differential
equation especially well suited for direct determination
of the perturbed functions. This leads to:

(& —')O''= L
—~'+(1/4') ~'0'34''= —U4' (14)

In Eq. (14), as in the work of Guy, Harrand, and Tillieu,
each perturbed function is associated uniquely with its
unperturbed orbital and, in fact, the two approaches
are essentially equivalent. The standard assumption of
separability, N(r, 8, 1s) =E(r) Fit ~(e, g), for the one-
electron perturbed and unperturbed functions is sub-
stituted into Eq. (14) and decomposition of the per-
turbed function into various angular components is at
once apparent. Thus, if p; is a p function, g will have
both an s-like and a d-like part and orthogonality of the
angular parts leads to two independent equations. The

"E.Ishiguro, T. Arai M. Mizushima, and M. Kotani, Proc.
Phys. Soc. (London) A6, 178 (1952)."H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933).

's J. Guy and M. Harrand, Compt. rend. 234, 616, 716 (1952);
J. Tillieu and J. Guy, Compt. rend. 238, 2498 (1954); Guy, Har-
rand, and Tillieu, Ann. phys. 9, 373 (1954).

division into two equations with separate angular de-
pendence makes each easily reducible to an inhomo-
geneous differential equation dependent upon r only.
They can then be numerically integrated. Numerous
dipole polarizabilities have been calculated by Stern-
heimer' and Sundbom' using this technique. Wikner and
Das" also have based their determination of dipole po-
larizabilities for the helium-like ions on Sternheimer s
formulation, but instead of integrating the one-dimen-
sional inhomogeneous equation, they have utilized a
trial function similar to Bravin's (R(r) =C,+Csr+Csr'
in Eq. (13))and evaluated the linear coe%cients varia-
tionally. The various authors using Eq. (14) have
generally employed either Hartree-Pock or Hartree
solutions for @;, depending upon their availability for
the particular atom or ion in question.

Equation (14) is to be compared with Eqs. (4) and

(5), and we find that three discrepancies are introduced
by treating the problem in a one-particle manner. To
show these, we first separate the terms of the one-
electron operator, fs.

fp
—V'+ (2——Z/r).

(The one-electron potential energy has been taken as
that for an atom with atomic number Z.) Putting this
in Eq. (3), we have:

(3('s —e,)4,=o= ~'4'+(2Z/r)0' *4.+& f—&'}

where g(p, } stands for the summation over the two-
electron operators occurring in Eq. (3) and indicates we
are operating on p, . Rearranging the above equation
yields:

(1/y, ) PP, = L(2Z/r) —e,+ (1/y;) Q (y;}). (15)

We now expand the left side of Eq. (4):
(3('o—')0''= —~'4''+O''L(2Z/ )—'+ (1/4 '') 2 (0''})
The left side of Sternheimer's equation PEq. (14)) is
obtained by substituting Eq. (15) for the bracket above
resulting in:

(5('o- ')~''= —&'~''+~''L(1/~. ) &'~')
=(-&'+L(1/~') &'~;)}~''.

The approximation is that

2 (~ }= (~,'/~, ) 2 {~,}
Writing each side of this out gives:

Z(&''}=E
~

4.*(1)4.(1)G4''(2)«t

—~"y,*(1)Ly (1))Gy,(2)«i,

(4''/4')Z(4*} =2 4.*(1)4.(1)G4''(2)«
s J

0*'(2)
4.*(1) 4'(1) G4.(2)«

~'(2)
ss E. G. Wilrner and T. P. Das, Phys. Rev. 107, 497 (1957).
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The difference in the operators occurs only in the ex-
change terms and thus, if we had initially adopted the
Hartree rather than Hartree-Fock method in Sec. II,
the one-electron approach would have yielded the cor-
rect result for the left side of the equation de6ning the
first-order perturbed function. This is partly responsible
for the close similarity of Sternheimer's method to that
of Guy, Harrand, and Tillieu. We know also that for
an atom or simple molecule the Hartree-Fock solution
is rather well approximated by a Hartree solution and
so for such cases the left side approximation in the
first-order perturbed equation may not be a severe one.

The second discrepancy can be seen by writing out
all of the two-electron terms in Eq. (4) and considering
only the diagonal components, i= g. The six two-elec-
tron integral operators cancel out in pairs and this part
of &,

' is also zero for a uniform field or any perturbing
potential odd under a coordinate inversion. Equation
(4) is reduced to

(f.—')~, '(2) =-V~, (2),

and this is just the i= q term of Eq. (14). It is thus off-
diagonal Coulomb and exchange operators which are
omitted from the right side of Sternheimer's equation
and similarly from the equations of Guy, Harrand, and
Tillieu. These terms mix in the other perturbed and
unperturbed functions and act as a screening potential.

The third omission is the Coulomb and exchange
integrals in e, which do not arise in a one-particle
approach. It may be further noted that neither Guy,
Harrand, and Tillieu's method nor Sternheimer's is
exactly equivalent to a Hartree formulation because if
we omit all of the exchange terms in Eq. (4) the Cou-
lomb operators still mix p, and p, ' into the equation
for g, ' and prevent an uncoupling.

In spite of these discrepancies, all of the relations (6)
can be proved directly from Eq. (14), as well as Eq.
(4). In addition, Sternheimer obtains the same expres-
sions for E& and E2 as we have given, although they are
not derivable from a many-particle standpoint. Another
similarity between Eq. (4) and Eq. (14) concerns the
symmetry of the perturbed solutions. We noted above
that for Sternheimer's equation an unperturbed p func-
tion gives rise to s- and d-like perturbed solutions. The
general symmetry relation between the perturbed and
unperturbed functions is obvious from Eq. (14). Thus
for a perturbing potential which is odd under inversion
like the uniform field: even p, 's lead to odd p;"s and
visa versa. For Eq. (4), the symmetry relations are not
so obvious but nevertheless are the same as for Eq.
(14).P may be written as a sum of odd and even parts
and, if V is odd, we find Eq. (4) splits into two equa-
tions, one containing the perturbing potential and the
other not. The relation which lacks V is an eigenvalue
equation which in general has no solution other than
the null one for p, '. e does not appear in the equation
which includes V, again in agreement with Eq. (14).

At the end of part A in this section, we discussed the

computational difhculties to be expected with the
perturbation approach. Solution of the integro-dif-
ferential equations resulting from our method, even
though convergence difficulties are avoided, may also
appear formidable. Fortunately such is not the case.
Our formulation of the perturbed Hartree-Fock equa-
tions should be viewed as an extension of Sternheimer's
work and for practical computation the only logical
procedure is to use solutions of his one-particle equa-
tions for the initial trial functions. As in the standard
unperturbed Hartree-Fock problem, an iterative tech-
nique leading to a self-consistent solution is necessary,
but numerical integration of the perturbed radial equa-
tion, as well as the quadratures required for the Cou-
lomb and exchange terms, can be computed by any of a
number of schemes that now generally exist as sub-
routines for high-speed digital computers. In fact,
computer programs for the automatic computation of
free-atom Hartree-Fock solutions have already been
constructed by several groups and the perturbed equa-
tions should not be appreciably more diKcult to handle.

C. Statistical Methods

For completeness, a few comments on statistical
methods are appropriate. Gombas" has developed a
statistical theory for application to the uniform per-
turbing Geld problem that incorporates the Fermi-
Amaldis correction and introduces an energy deter-
mined variabIe parameter in the electron charge density.
On this model the theoretical polarizability is always
greater than the experimental value. Gombas reports
sizable errors for light atoms and ions but satisfactory
results for heavy ones. Sternheimer"' has investigated
the feasibility of employing the Thomas-Fermi scheme
to evaluate the field at the nucleus induced by an ex-
ternal field acting on an atom or ion. He Ands that the
incorrect behavior at large r makes this model inade-
quate. For the same reason, it also should be unsatis-
factory for the prediction of dipole polarizabilities. In
the Thomas-Fermi-Dirac case, Sternheimer has shown
that, while some improvement over Thomas-Fermi re-
sults is achieved, the induced field is far too large for
low Z atoms and ions.

V. OTHER APPLICATIONS OF THE THEORY

Perturbation theories closely related to the Hartree-
Fock approach have been applied to a wide range of
atomic, molecular, and solid-state problems in addition
to the uniform 6eld polarizability discussed above. In
these cases the perturbed Hartree-Fock equations can
help to unify work in diGerent areas that is similar but
has been carried out independently in each area.

The perturbing 6eld that gives rise to a distortion in
the electronic structure can be, of course, an internal
field such as the electric quadrupole of a nucleus, as

"P.Gombas, Z. Physik 122, 497 (1944)."R.M. Sternheimer, Phys. Rev. 80, 102 (1950).
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well as the uniform external field discussed above. This
is the basis of Sternheimer s work on antishielding cor-
rections in the interpretation of nuclear quadrupole
moment measurements. ' He has also calculated mag-
netic hyperfine-structure corrections to the magnetic
Geld at the nucleus due to the current induced in the
electronic core by an external valence electron. "
Schwartz" has considered Sternheimer's hyperfine-
structure corrections in the framework of the allowed
excitations of the unperturbed Hartree-Pock equations.
His objections are closely related to ours and represent
the sort of comparison to be made between Stern-
heimer's approach and the perturbation theory treat-
ment carried out by Peng's (see part A of IV).

The quadrupole polarizability, o,„comesfrom an ex-
ternal perturbing potential of the form:

U, = Pr'(3 cos'i7 —1),

and is defined as the induced quadrupole moment
divided by the field gradient. Values of 0., for a number
of atoms and ions have been computed by Sternheimer, '
and by Das and Bersohn. 4 The latter follows Stern-
heimer's theory but substitutes a simple variation
function for the numerical integration. (See note on
Wikner and Das. These latter authors also have used
this procedure to compute nuclear quadrupole moment
antishielding corrections for heavy ions. s4)

A natural application of perturbation theory for
external electric fields is the Van der Waals force be-
tween two atoms. The perturbing potential for the
dipole-dipole Van der Waals term is:

NI N2

U» ———Q P (x,x +y;y, '—2s,s ),
g3 i=1 j=l

where A=internuclear distance. The prime and un-
primed coordinate systems represent the coordinates of
the electrons in each separate atom, X~ is the number
of electrons in atom 1, E2 is the number comprising 2,
and the s axis is taken to be that connecting the centers.
The evolution of the Van der Waals problem has pro-
ceeded along the same lines as the uniform field polar-
izability. Slater and Kirkwood, ' Buckingham, '5 and
Pople and Schofield'4 each applied their uniform field
polarizability techniques to the dipole-dipole term. In
fact, it is well known that these methods lead to a
Van der Waals energy term that is proportional to the
product of the uniform field polarizability of the two
isolated atoms. Their methods start from Eq. (11) with

+o=+oz+o2,

O'= Ug)nR(r, ,rj').

For many electron atoms, E(r;,/r') has been taken as a
's R. M. Sternheimer, Phys. Rev. 86, 316 (1952)."C. Schwartz, Phys. Rev. 105, 173 (1957).
'4 E. G. Wikner and T. P. Das, Phys. Rev. 109, 360 (1958)."R. A. Buckingham, Proc. Roy. Soc. (London) A160, 113

(1937).

product of r;-dependent and r -dependent factors, and
the theory proceeds in the same manner as the uniform
field problem. Buckingham also considered the dipole-
quadrupole term for two like atoms and found that the
ratio of the dipole-dipole to dipole-quadrupole coe%-
cients in the energy expansion could be simply related
to the atomic diamagnetic susceptibility.

There are several problems in spectroscopy and in
electron scattering where the primary interest is in an
accurate description of a single outer electron or a single
outer shell. The unperturbed Hartree-Fock wave func-
tion for such an electron takes into account the average
eGect of this electron on the other but not the eGect of
its instantaneous field on the atomic core. Various at-
tempts have been made to include this polarization term
in the effective potential for an outer electron. "At large
r, the behavior is s (rr/r'), where n is the dipole polariza-
bility. Bates'~ has considered this and a related form to
interpret photo-ionization of atomic potassium, and he
found the excitation cross section very sensitive to the
polarization correction. To obtain the correct form for
all r, a treatment similar to Sternheimer's or that we
have given is required, and it appears likely that this
could lead to ionization energies that agree more ac-
curately with the observed optical spectra terms and
perhaps even to wave functions able to predict satis-
factory transition probabilities. Polarization sects in
the scattering of slow electrons by atomic oxygen has
been considered in some detail recently by Temkin. "
In his numerical work, he used only a dipole distortion
(uniform field) and only the dominant perturbed orbital
computed by Sternheimer's approximation, but even
this led to a significant improvement in results.

In the theory of molecular structure, there are
several classic problems whose solutions in principle are
based on the perturbed Hartree-Pock equations. One
of the most important of these is the study of inductive
and electrometric perturbations in conjugated mole-
cules. All of the treatments are based on the perturba-
tion method (Part A, Sec. IV). Coulson and I.onguet-
Higgins" devised an independent electron model where
the two-electron terms are omitted. Pople4o used the
exact Hamiltonian and set up the equations in the
framework of the Roothaan scheme but assumed
matrix elements between configurations made from
substitution of a single excited orbital to be zero.
Lefebvre and Moser4' have given the complete equation
and these are thus identical to those of Peng. "For all

"D.R. Hartree, Reports on Progress in Physics (The Physical
Society, London, 1948), Vol. 11, p. 113."D.R. Bates, Proc. Roy. Soc. (London) A188, 350 (1947).

A. Temkin, Phys. Rev. 107, 1004 (1957).' C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc.
(London) A191, 39 (1947); A192, 16 (1948); A195, 188 (1948);
and later papers.~ J.A. Pople, Proc. Roy. Soc. (London) A233, 233 (1955);J.A.
Pople and P. Schofield, Proc. Roy. Soc. (London) A233, 241
(1948).

4' R. Lefebvre and C. Moser, Culcll des fonctions d'onde molecN-
Iaire, (Centre national de la recherche scientific, Paris, 1958),
p. 109.
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of this work, calculations have been carried out in a
very approximate and semi-empirical way, but the
results have been of great value to the understanding
of chemical phenomena. The various approximations
are concerned with the details of the specific problem,
and our purpose here is only to make connection with
the general formalism.

Another molecular application has been made by
Allen. ' He solved Sternheimer's equations for a point
charge field acting on a Quorine ion in an effort to
ascertain what type of distorted basis functions should
be employed to describe the hydrogen Quoride molecule.

Tillieu and G-uy4' have given theory and examples for
the determination of the magnetic susceptibility of
molecules with no permanent moment. The perturbing
term in the Hamiltonian is:

J,= —PH M,

where H is the applied magnetic f'ield, and M is the
orbital moment operator. The perturbed wave function
is assumed to be a Hartree product of functions:

P;=its(1+8 g),

where g is a vector function of the electron coordinates.
Minimization of the energy with these functions yields
the equations satisfied by g and the high-frequency
terms in the paramagnetic susceptibility4' may then be
computed. Calculations of the diamagnetic suscepti-
bility and magnetic shielding for molecules have been
made by Das and Bersohn and Ghose."Their work. is
based on the Sternheimer formulation but is carried
through by the choice of easily manageable variation
functions for the perturbed solutions. The techniques
adopted by Tillieu et al. and Das et al. for these mag-
netic properties foHow the same lines that we have dis-
cussed and compared for the uniform field problem.

In solid state applications, as in molecular structure,
a number of major problems utilize the perturbed
Hartree-Fock formalism as the central tool in carrying
out the solution. Bardeen's early work on the conduc-
tivity of alkali metals" is essentially equivalent to a
first-order perturbation method treatment in the Har-
tree approximation. The difference between the rigid
ion potentials at their equilibrium and displaced posi-
tions is the perturbing potential. The resulting change
in the self-consistent fi.eld of the valence electrons pro-
duced by distortion of the crystal was then calculated
with plane wave eigenfunctions.

Fuchs and Peng' applied Peng's perturbed Hartree-
~ J. Tillieu and J. Guy, Compt. rend. 239, 1203, 1283 (1954);

240, 1402 (1955); J. Guy and J. Tillieu, J. Chem. Phys. 24, 1117
(1956);J. Tillieu, Ann. phys. 2, 471, 631 (1957); Baudet, Tillieu,
and Guy, Compt. rend. 244, 1756 (1957).

4' J. H. Van Uleck, Theory of E/ectric and MagrIetic SNscepti-
bilities (Oxford University Press, New York, 1932), Chaps. VII, X.

~ T. P. Das and R. Bersohn, Phys. Rev. 104, 849 (1956);T. P.
Das and R. Bersohn, Phys. Rev. 115, 897 (1959);T. P. Das and
T. Ghose, J. Chem. Phys. Bl, 42 (1959).

4~ J. Bardeen, Phys. Rev. 52, 688 (1937).
4s K. Fuchs and H. W. Peng, Proc. Roy. Soc. (London) A180,

451 (1942).

Fock formalism" to the calculation of the elastic con-
stants in alkali metals. The perturbation was limited to
a homogeneous lattice deformation with the assumption
of a spherical atomic cell and a spherical distribution of
ions outside the cell. Wigner-Seitz solutions were used
for the unperturbed functions. The difficulties inherent
in the determination of the excited eigenfunction spec-
trum of the unperturbed equations were avoided by
neglecting the terms dependent upon the first-order
perturbed functions. Physical arguments and the prop-
erties of the Wigner-Seitz solutions justify the approxi-
mations for this application and their results agree well
with experiment.

Undoubtedly the most penetrating analysis and com-
prehensive use of Peng's equations" for solid state
problems is Herring's paper on the energy band de-
scription of the Bloch wall energy. 4' Herring assumes a
small sinusoidally varying perturbing torque in first
order which tends to rotate the magnetization vector
about an axis perpendicular to the direction of rnag-
netization and with the perturbation theory he derives
several general results of spin wave theory. Because the
problem is that of a metal, one must be concerned with
partially-filled bands and the possibility of lowering the
energy through a choice of occupation numbers dif-
ferent from those of the unperturbed state. This latter
question could be important for electromeric perturba-
tions in special classes of molecules as well as metals,
but it does not arise in the other applications we have
considered. In an appendix to his paper, Herring proves
that for a first-order perturbing potential which is odd
under inversion lowering of the energy by such a re-
shufQing will only occur in a higher order than X'. This
follows directly from the fact that there is no first-
order change in the one-electron energy parameter with
an odd perturbing potential. Herring's discussion of this
case is similar to that we have given for the uniform
field in part B of Sec. IV.

Finally, Callaway has estimated the contribution of
the core polarizabilities to the cohesive energy of
lithium, sodium, and potassium. His perturbing poten-
tial is the electrostatic potential between a core electron
(1) and a valence electron (v), 2/ri, . He makes a multi-
pole expansion of this potential and keeps only the
dipole term. Sternheimer's equation is used, but the
region rJ,&r, is neglected, i.e., the core electron is
assumed to spend a negligible time outside the valence
electron. An especially valuable point in Callaway's
paper is his estimate of the Coulomb and exchange
integrals neglected in Sternheimer's formulation. For
his problem and using lithium as a test case, he finds
only a small change except near the origin.
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1Vofe added irr proof. Whi—le this paper was in press

an article by Kaneko on the uniform Geld polarizability
of rare gas atoms has appeared. "Kaneko has carried
out a numerical calculation on helium using both the
exact erst order perturbed Hartree-Fock equation and
Sternheimer's equation. He Ands that Sternheimer's

approximation gives a value 12.5% too large.
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Elastic Scattering of Alpha Particles by Diss
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Absolute cross sections for the elastic scattering of alpha particles by 0'~ have been measured in a di8er-
entially pumped gas scattering chamber. The measurements were made for laboratory energies from 3.7 to
6.5 Mev, corresponding to 7.7- to 9.9-Mev excitation in Ne'0, at center-of-mass angles of 168.9', 149.4',
140.8', 125.3', and 90.0'.

Narrow resonances were observed at bombarding energies of 5.002, 5.11, 5.190, 5.432, 5.532, and 6.030
Mev. The data were analyzed in terms of Wigner-Eisenbud dispersion theory to And the spins, parities,
resonant energies, widths, reduced widths, and characteristic energies of the levels. The resonances observed
correspond to states in Ne with the following excitation energies, spine, and parities: 8.755(1 ), 8.84(5 ),
8.905 (1 ), 9.099(4+), 9.179(3 ), and 9.577 Mev (2+). In order to obtain a good fit to the data, it was neces-
sary to assume the existence of two broad overlapping resonances, one at ~8.7-Mev excitation (0+) and
the other at ~8.8 Mev (2+). There is also some evidence for the presence of a broad 4+ level at an energy
higher than 9.9-Mev excitation in Ne'0.

I. INTRODUCTION

'HEORETICAL developments in the last few years
have aroused interest in the nuclei with atomic

number just above that of the doubly closed shell
nucleus 0". Shell model calculations for nuclei of
masses 17, 18, and 19 ' and collective model calculations
for nuclei of masses 19 ' ' and 25 4 have been performed.
Both types of calculations have been very successful in
predicting the spins and parities of the lower excited
states.

An experimental determination of the spins and
parities of the states of Ne" would be of the greatest
importance in further testing the theoretical predictions
of the proposed models. The elastic scattering of alpha
particles by 0" provides an effective method for the
investigation of the T=O levels of Ne" above 5-Mev
excitation. Since the spins of both particles are zero, the
only possible combinations of total angular momentum

f This work partially supported by the U. S. Atomic Energy
Commission.

*Now at The Ohio State University, Columbus, Ohio.
$ Present address: City College of New York, New York, New

York.'I. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955).' E. B. Paul, Phil. Mag. 2, 311 (1957).' G. Rakavy, Nuclear Phys. 4, 375 (1957).

4 A. E. Litherland, E. B. Paul, G. A. Bartholomew, and H. E.
Gove, Phys. Rev. 102, 208 (1956).

and parity for the levels which can be seen are even J-
even parity and odd J-odd parity. Elastic scattering
and capture are the only energetically possible proc-
esses in the energy region covered. The (n,y) process is
negligible compared with the probability of particle
emission. For the case of spin zero on spin zero scat-
tering with no reactions present, the partial wave
analysis of excitation curves taken at several angles
and the subsequent interpretation according to dis-
persion theory are, in principle, relatively simple.

The elastic scattering of alpha particles by 0" from
0.94- to 4.0-Mev bombarding energy has previously
been investigated by Cameron. ' Five levels in Ne"
were found in the region of excitation from 5.5 to 7.9
Mev. The present experiment extends the energy range
studied from 4.0- to 6.5-Mev bombarding energy. This
same energy range had been studied much earlier by
Ferguson and Walker, ' who used RaC' as an alpha-
particle source. They found two resonances, one at
5.5-Mev and the other at 6.5-Mev bombarding energy.
A probable assignment of 1 was made for both of them.

IL EXPERIMENTAL APPARATUS

The scattering chamber and associated equipment
used for the measurement of the absolute cross sections

~ J. R. Cameron, Phys. Rev. 90, 839 (1953).
s A. J. Ferguson and L. R. Walker, Phys. Rev. 58, 666 (1940).


